-
Notifications
You must be signed in to change notification settings - Fork 1
/
buffer.py
34 lines (27 loc) · 1.35 KB
/
buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np
class ReplayBuffer():
def __init__(self, max_size, input_shape, n_actions, n_agents):
self.mem_size = max_size
self.mem_cntr = 0
self.state_memory = np.zeros((self.mem_size, input_shape * n_agents), dtype=np.float16)
self.action_memory = np.zeros((self.mem_size, n_actions * n_agents), dtype=np.float16)
self.reward_memory = np.zeros((self.mem_size),dtype=np.float16)
self.new_state_memory = np.zeros((self.mem_size, input_shape * n_agents), dtype=np.float16)
self.terminal_memory = np.zeros(self.mem_size, dtype=bool)
def store_transition(self, state, action, reward, state_, done):
index = self.mem_cntr % self.mem_size
self.state_memory[index] = state
self.action_memory[index] = action
self.reward_memory[index] = reward
self.new_state_memory[index] = state_
self.terminal_memory[index] = done
self.mem_cntr += 1
def sample_buffer(self, batch_size):
max_mem = min(self.mem_cntr, self.mem_size)
batch = np.random.choice(max_mem, batch_size)
states = self.state_memory[batch]
actions = self.action_memory[batch]
rewards = self.reward_memory[batch]
states_ = self.new_state_memory[batch]
dones = self.terminal_memory[batch]
return states, actions, rewards, states_, dones