Year | Scene | Sensor | Method | Features | Link | |
---|---|---|---|---|---|---|
Jiao et al (Review) | 2019 | A Survey of Deep Learning-based Object Detection | [a1] | |||
He et al (Mask R-CNN) | 2017 | General | RGB | Mask R-CNN | Two-stage, accurate, generate pixel-wise masks | [a2] |
Redmon et al (YOLOv2) | 2017 | General | RGB | YOLOv2 | One-stage, efficient, predict object-wise bounding boxes | [a3] |
Scene | Sensor | Method | Model | Features | Link | |
---|---|---|---|---|---|---|
parkhiya2018constructing | indoor | RGB | geometry | points | model matching | [b01] |
grinvald2019volumetric | indoor | RGB-D | geometry | points | mask segmentation | [b02] |
rubino20173d | indoor | RGB | geometry | quadric | 2D ellipse, multi-view optimization | [b03] |
nicholson2018quadricslam | indoor | RGB | geometry | quadric | 2D box to 3D enveloping planes | [b04] |
liao2020object | indoor | RGB-D | geometry | quadric | symmetric planes | [b05] |
gupta2010estimating | indoor | RGB | geometry | cuboid | line segmentation | [b06] |
xiao2012localizing | indoor | RGB | geometry | cuboid | corner detection | [b07] |
yang2019cubeslam | indoor | RGB | geometry | cuboid | vanishing lines | [b08] |
jiang2013linear | indoor | RGB-D | geometry | cuboid | minimal cuboid | [b09] |
mishima2019incremental | indoor | RGB-D | geometry | cuboid | three perpendicular planes | [b10] |
lin2021topology | indoor | RGB-D | geometry | cuboid | projecting onto ground | [b11] |
Scene | Sensor | Method | Model | Features | Link | |
---|---|---|---|---|---|---|
dwibedi2016deep | indoor | RGB | network | cuboid | corner regression | [c01] |
huang2019perspectivenet | indoor | RGB | network | cuboid | perspective points | [c02] |
huang2018cooperative | indoor | RGB | network | cuboid | size, rotation, distance regression, cooperative training | [c03] |
nie2020total3dunderstanding | indoor | RGB | network | cuboid | relationship with surrounding | [c04] |
qi2017pointnet | indoor | RGB-D | network | points | interesting points selection | [c05] |
qi2017pointnet++ | indoor | RGB-D | network | points | geometric structure with neighbourhoods | [c06] |
qi2019deep | indoor | RGB-D | network | points | object center voting and geometry constraints | [c07] |
qi2020imvotenet | indoor | RGB-D | network | points | 2D-3D consistency, voting schedule | [c08] |
Scene | Sensor | Method | Model | Features | Link | |
---|---|---|---|---|---|---|
lee2009geometric | indoor | RGB | geometry | cuboid | vanishing line, Hypotheses, 2d to 3d | [b12] |
hedau2010thinking | indoor | RGB | geometry | cuboid | GC+HoG, Vanishing line, feature, cuboid model | [b13] |
lee2010estimating | indoor | RGB | geometry | cuboid | OM. vanishing lines, orientation map, volumetric constraints | [b14] |
schwing2013box | indoor | RGB | geometry | cuboid | GC+OM + DM, Vanishing lines, orientation map, geometric context, branch and bound | [b15] |
pillai2015monocular | indoor | RGB | geometry | cuboid | Feature points (SIFT), multi-view, Object Evidence Aggregation | [b16] |
Li2020view | indoor | RGB | geometry | cuboid | Feature points, Matching, inlier, line | [b17] |
wu2020eao | indoor | RGB | geometry | cuboid | Feature points, Non-parametric test, single-sample test, Ensemble Data Association | [b18] |
lin2013holistic | indoor | RGBD | geometry | cuboid | Cluster, Point cloud, multi-view optimization, surface plane estimation | [b19] |