forked from kif/imageAlignment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·389 lines (357 loc) · 13 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#!/usr/bin/python
import sys
import feature
import scipy
import numpy
import matplotlib
from pylab import *
import time
from itertools import combinations, permutations
import Image
import multiprocessing
def img2array(fn):
i=Image.open(fn)
i.load()
j = numpy.fromstring(i.convert("F").tostring(), dtype="float32")
j.shape = -1, i.size[0]
return j
def siftManyImg(fn, nbcpu=None,cut=2000):
result={}
if not nbcpu:
nbcpu = multiprocessing.cpu_count()
for i in range((len(fn)-1)//nbcpu+1):
lf=[fn[0]]+[fn[j+1] for j in range(i*nbcpu,(i+1)*nbcpu) if j<len(fn)-1]
print lf
ld=[img2array(j)[cut:] for j in lf]
dr=feature.sift(*ld,verbose=False,vs_first=True)
for k,v in dr.items():
result[(lf[k[0]],lf[k[1]])]=v
print(lf[k[0]],lf[k[1]],calcShift(v))
return result
def Visual(im1, im2, ctrlPt):
s00, s01 = im1.shape
s10, s11 = im2.shape
bigimg = numpy.zeros((max(s00, s10) , s01 + s11))
bigimg[:s00, :s01] = im1
bigimg[:s10, s01:] = im2
imshow(bigimg)
arrow(s01, 0, 0, max(s00, s10), width=0)
for i in range(ctrlPt.shape[0]):
color = (cos(i) ** 2, cos(i + 1) ** 2, cos(i + 2) ** 2)
arrow(ctrlPt[i, 1], ctrlPt[i, 0], ctrlPt[i, 3] - ctrlPt[i, 1] + s01 , ctrlPt[i, 2] - ctrlPt[i, 0] , width=0, color=color)
show()
def Visual_SURF(im1, im2):
t0 = time.time()
out1 = feature.surf2(im1, im2, 1)
if out1.shape[0] < 15:
out = out1
print("Image alignment (shapes: %s,%s) took %.3fs. SURF found %i control points" %
(im1.shape, im2.shape, time.time() - t0, out1.shape[0],))
else:
out = feature.reduce_orsa(out1)
print("Image alignment (shapes: %s,%s) took %.3fs. SURF found %i control points; Reduced to %i with ORSA" %
(im1.shape, im2.shape, time.time() - t0, out1.shape[0], out.shape[0]))
Visual(im1, im2, out)
return out
def Visual_SIFT(im1, im2):
t0 = time.time()
out1 = feature.sift2(im1, im2, 1)
if out1.shape[0] < 15:
out = out1
print("Image alignment (shapes: %s,%s) took %.3fs. SIFT found %i control points" %
(im1.shape, im2.shape, time.time() - t0, out1.shape[0],))
else:
out = feature.reduce_orsa(out1)
print("Image alignment (shapes: %s,%s) took %.3fs. SIFT found %i control points; Reduced to %i with ORSA" %
(im1.shape, im2.shape, time.time() - t0, out1.shape[0], out.shape[0]))
Visual(im1, im2, out)
return out
def Visual_ASIFT(im1, im2):
t0 = time.time()
out1 = feature.asift2(im1, im2, 1)
if out1.shape[0] < 15:
out = out1
print("Image alignment (shapes: %s,%s) took %.3fs. ASIFT found %i control points" %
(im1.shape, im2.shape, time.time() - t0, out1.shape[0],))
else:
out = feature.reduce_orsa(out1)
print("Image alignment (shapes: %s,%s) took %.3fs. ASIFT found %i control points; Reduced to %i with ORSA" %
(im1.shape, im2.shape, time.time() - t0, out1.shape[0], out.shape[0]))
Visual(im1, im2, out)
return out
def calcShift(npa, mask=None):
"""
Calculates the shift based on the mean of the median half
@param npa: numpy array of size (n,4)
@param mask: mask with valid pixel>0
"""
if npa is None:
return None
n, m = npa.shape
assert m == 4
v0 = npa[:, 0] - npa[:, 2]
v1 = npa[:, 1] - npa[:, 3]
return numpy.median(v0), numpy.median(v1)
def stitch(*img):
if len(img) <= 1:
return img
d = feature.sift(*img, verbose=True)
t0 = time.time()
for i in d:
print i, "calcShift", calcShift(d[i])
so = setOfOffsets(d)
bigShape0 = max([i.shape[0] for i in img])
bigShape1 = max([i.shape[1] for i in img])
minPos = [0, 0]
maxPos = list(img[0].shape)
shifts = [(0, 0)]
for i in range(1, len(img)):
bp = so.bestPath(0, i)[-1]
print ((0, i), bp)
s = bp["shift"]
shifts.append(s)
if s[0] < minPos[0]:
minPos[0] = s[0]
if s[1] < minPos[1]:
minPos[1] = s[1]
if s[0] + img[i].shape[0] > maxPos[0]:
maxPos[0] = s[0] + img[i].shape[0]
if s[1] + img[i].shape[1] > maxPos[1]:
maxPos[1] = s[1] + img[i].shape[1]
print minPos, maxPos, shifts
print "Alignement:", time.time() - t0
big = numpy.zeros((maxPos[0] - minPos[0] + 1, maxPos[1] - minPos[1] + 1))
print big.shape
for i in range(len(img)):
s0 = int(round(shifts[i][0] - minPos[0]))
s1 = int(round(shifts[i][1] - minPos[1]))
print img[i].shape
print s0, s0 + img[i].shape[0], s1, s1 + img[i].shape[1]
big[s0:s0 + img[i].shape[0],
s1:s1 + img[i].shape[1]] = img[i]
print big.shape
print big
return big
class setOfOffsets(object):
def __init__(self, dico):
"""
@param dico: key is 2-tuple of images index, value is array of offsets
"""
self.offsets = {}
self.shifts = {}
self.counts = {}
self.idxMin = sys.maxint
self.idxMax = 0
for key in dico:
val = dico[key]
if val is None:
continue
rkey = (key[1], key[0])
self.counts[key] = self.counts[rkey] = val.shape[0]
if key[0] < self.idxMin:
self.idxMin = key[0]
if key[1] < self.idxMin:
self.idxMin = key[1]
if key[0] > self.idxMax:
self.idxMax = key[0]
if key[1] > self.idxMax:
self.idxMax = key[1]
if val.shape[1] == 2:
self.offsets[key] = val
m0 = numpy.median(val[0])
m1 = numpy.median(val[1])
self.shifts[key] = numpy.array([m0, m1])
elif val.shape[1] == 4:
self.offsets[key] = val[:, :2] - val[:, 2:]
self.shifts[key] = numpy.array(calcShift(val))
self.shifts[rkey] = -self.shifts[key]
self.offsets[rkey] = -self.offsets[key]
self.pairs = [i for i in self.shifts if self.shifts is not None ]
self.pairs.sort()
def calcPath(self, start, stop):
paths = {} #key tuple of all vertices, value: dict containing: tuple of edge shift, tuple of shifts, tuple of counts
if start == stop:
return
if start not in xrange(self.idxMin, self.idxMax + 1):
print("start (%i) out of range(%i,%i)" % (start, self.idxMin, self.idxMax + 1))
return
if stop not in xrange(self.idxMin, self.idxMax + 1):
print("Stop (%s) out of range(%i,%i)" % (stop, self.idxMin, self.idxMax + 1))
return
#direct edge is always possible:
# if (start, stop) in self.shifts:
# paths[(start, stop)] = {"edge":(self.shifts[(start, stop)],),
# "count":(self.counts[(start, stop)],) }
comb = []
if self.idxMax - self.idxMin > 10:
match = False
maxJumps = 0
intermediates1 = [start]
intermediates2 = [stop]
while True:
maxJumps += 1
for i in intermediates1[:]:
for j in range(self.idxMin, self.idxMax + 1):
if j in intermediates1:
continue
elif ((i, j) in self.pairs):
if j in intermediates2:
match = True
else:
intermediates1.append(j)
for i in intermediates2[:]:
for j in range(self.idxMin, self.idxMax + 1):
if j in intermediates2:
continue
elif ((i, j) in self.pairs):
if j in intermediates1:
match = True
else:
intermediates2.append(j)
if match:
break
intermediates = intermediates1 + intermediates2
intermediates.sort()
else:
maxJumps = self.idxMax - self.idxMin
intermediates = range(self.idxMin, self.idxMax + 1)
if len(intermediates) > 10:
gen = combinations
else:
gen = permutations
intermediates.remove(start)
intermediates.remove(stop)
for jumps in range(len(intermediates)):
comb += gen(intermediates, jumps)
for path in comb:
ok = True
v = (start,) + path + (stop,)
e = [(i, j) for i, j in zip(v[:-1], v[1:])]
s = []
c = []
for p in e:
if p in self.shifts:
s.append(self.shifts[p])
c.append(self.counts[p])
else:
ok = False
if not ok: continue
paths[v] = {"shift":s, "count":c}
return paths
def bestPath(self, start, stop):
def mysort(a, b):
if a["count"] > b["count"]:
return 1
elif a["count"] < b["count"]:
return -1
elif len(a["path"]) < len(b["path"]):
return 1
elif len(a["path"]) > len(b["path"]):
return -1
else:
return 0
d = []
paths = self.calcPath(start, stop)
if paths is not None:
for key in paths:
shift = numpy.zeros(2)
count = min(paths[key]["count"])
for npa in paths[key]["shift"]:
shift += npa
d.append({"path":key, "shift": shift, "count":count})
d.sort(mysort)
return d
if __name__ == "__main__":
#lena1 = numpy.zeros((512, 512))
#scipy.lena()
#lena1[100:150, 160:200] = 1
ao1, ao2 = 5, 3
print("Absolute offset is %s,%s" % (ao1, ao2))
lena1 = scipy.lena()
lena2 = numpy.zeros_like(lena1)
lena2[ao1:, ao2:] = lena1[:-ao1, :-ao2]
# out = Visual_SURF(lena1, lena2)
"""
out = feature.surf2(lena1, lena2, verbose=1)
print "clacShift", calcShift(out)
# raw_input("Enter to continue")
out2 = feature.reduce_orsa(out)
# print "SURF: %s keypoint; ORSA -> %s" % (out.shape[0], out2.shape[0])
# out = out2
print "*" * 80
# out = feature.sift2(lena1, lena2, verbose=1)
out = Visual_SIFT(lena1, lena2)
print "clacShift", calcShift(out)
out2 = feature.reduce_orsa(out)
print "SIFT: %s keypoint; ORSA -> %s" % (out.shape[0], out2.shape[0])
out = out2
print "clacShift", calcShift(out)
raw_input("Enter to continue")
print "*" * 80
# out = feature.asift2(lena1, lena2, verbose=0)
# out = Visual_ASIFT(lena1, lena2)
# print "Mean", (out[:, 0] - out[:, 2]).mean(), (out[:, 1] - out[:, 3]).mean()
# print "Median", numpy.median(out[:, 0] - out[:, 2]), numpy.median(out[:, 1] - out[:, 3])
# raw_input("Enter to continue")
# print "clacShift", calcShift(out)
"""
'''
l1 = lena1[:300, :300]
l2 = lena1[:300, 200:] + 10
l3 = lena1[200:, 200:] + 20
l4 = lena1[200:, :300] + 30
d = feature.sift(l1, l2, l3, l4, verbose=True)
for i in d:
print i, "clacShift", calcShift(d[i])
so = setOfOffsets(d)
for i in range(4):
print "#"*50
for j in range(i + 1, 4):
r = so.bestPath(i, j)
print (i, j)
for k in r:
print k
'''
if len(sys.argv) < 2:
l00 = lena1[:150, :150] + 0
l01 = lena1[:150, 100:250] + 4
l02 = lena1[:150, 200:350] + 8
l03 = lena1[:150, 300:] + 12
l10 = lena1[100:250, :150] + 16
l11 = lena1[100:250, 100:250] + 20
l12 = lena1[100:250, 200:350] + 24
l13 = lena1[100:250, 300:] + 28
l20 = lena1[200:350, :150] + 32
l21 = lena1[200:350, 100:250] + 36
l22 = lena1[200:350, 200:350] + 40
l23 = lena1[200:350, 300:] + 44
l30 = lena1[300:, :150] + 48
l31 = lena1[300:, 100:250] + 52
l32 = lena1[300:, 200:350] + 56
l33 = lena1[300:, 300:] + 60
l = (l00, l01, l02, l03, l10, l11, l12, l13, l20, l21, l22, l23, l30, l31, l32, l33)
else:
import Image
I = [Image.open(i) for i in sys.argv[1:] if i.lower().endswith(".jpg") or i.lower().endswith(".tif")]
l = []
for i in I:
print i
i.load()
j = numpy.fromstring(i.convert("F").tostring(), dtype="float32")
j.shape = -1, i.size[0]
l.append(j)
imshow(stitch(*l), cmap="gray")
show()
# d = feature.sift(*l, verbose=True)
# k = d.keys()
# k.sort()
# for i in k:
# print i, "clacShift", calcShift(d[i])
# so = setOfOffsets(d)
# print "#"*50
## for i in so.bestPath(0, 1):
## print i
# for i in range(1, len(l)):
# print 0, "-->", i
# print 0, i, so.bestPath(0, i)[-1]
raw_input("Enter to continue")