From 2507794429be46ecc08d22851677105facb3f4b7 Mon Sep 17 00:00:00 2001 From: Benjamin Bolm <74359358+bennibolm@users.noreply.github.com> Date: Wed, 27 Mar 2024 19:00:29 +0100 Subject: [PATCH] Use @batch reduction for bounds check (#126) * Use @batch reduction for bounds check * Remove section in documentation --- docs/src/performance.md | 11 --- .../subcell_bounds_check_2d.jl | 77 +++++++------------ src/solvers/dgsem_tree/subcell_limiters_2d.jl | 10 +-- 3 files changed, 28 insertions(+), 70 deletions(-) diff --git a/docs/src/performance.md b/docs/src/performance.md index 40970e58c5c..9f81d3c3d8e 100644 --- a/docs/src/performance.md +++ b/docs/src/performance.md @@ -282,14 +282,3 @@ requires. It can thus be seen as a proxy for "energy used" and, as an extension, timing result, you need to set the analysis interval such that the `AnalysisCallback` is invoked at least once during the course of the simulation and discard the first PID value. - -## Performance issues with multi-threaded reductions -[False sharing](https://en.wikipedia.org/wiki/False_sharing) is a known performance issue -for systems with distributed caches. It also occurred for the implementation of a thread -parallel bounds checking routine for the subcell IDP limiting -in [PR #1736](https://github.com/trixi-framework/Trixi.jl/pull/1736). -After some [testing and discussion](https://github.com/trixi-framework/Trixi.jl/pull/1736#discussion_r1423881895), -it turned out that initializing a vector of length `n * Threads.nthreads()` and only using every -n-th entry instead of a vector of length `Threads.nthreads()` fixes the problem. -Since there are no processors with caches over 128B, we use `n = 128B / size(uEltype)`. -Now, the bounds checking routine of the IDP limiting scales as hoped. diff --git a/src/callbacks_stage/subcell_bounds_check_2d.jl b/src/callbacks_stage/subcell_bounds_check_2d.jl index a2441e0bcd0..9f2cd379aad 100644 --- a/src/callbacks_stage/subcell_bounds_check_2d.jl +++ b/src/callbacks_stage/subcell_bounds_check_2d.jl @@ -11,25 +11,15 @@ (; variable_bounds) = limiter.cache.subcell_limiter_coefficients (; idp_bounds_delta_local, idp_bounds_delta_global) = limiter.cache - # Note: Accessing the threaded memory vector `idp_bounds_delta_local` with - # `deviation = idp_bounds_delta_local[key][Threads.threadid()]` causes critical performance - # issues due to False Sharing. - # Initializing a vector with n times the length and using every n-th entry fixes this - # problem and allows proper scaling: - # `deviation = idp_bounds_delta_local[key][n * Threads.threadid()]` - # Since there are no processors with caches over 128B, we use `n = 128B / size(uEltype)` - stride_size = div(128, sizeof(eltype(u))) # = n - if local_minmax for v in limiter.local_minmax_variables_cons v_string = string(v) key_min = Symbol(v_string, "_min") key_max = Symbol(v_string, "_max") - deviation_min_threaded = idp_bounds_delta_local[key_min] - deviation_max_threaded = idp_bounds_delta_local[key_max] - @threaded for element in eachelement(solver, cache) - deviation_min = deviation_min_threaded[stride_size * Threads.threadid()] - deviation_max = deviation_max_threaded[stride_size * Threads.threadid()] + deviation_min = idp_bounds_delta_local[key_min] + deviation_max = idp_bounds_delta_local[key_max] + @batch reduction=((max, deviation_min), (max, deviation_max)) for element in eachelement(solver, + cache) for j in eachnode(solver), i in eachnode(solver) var = u[v, i, j, element] deviation_min = max(deviation_min, @@ -37,36 +27,34 @@ deviation_max = max(deviation_max, var - variable_bounds[key_max][i, j, element]) end - deviation_min_threaded[stride_size * Threads.threadid()] = deviation_min - deviation_max_threaded[stride_size * Threads.threadid()] = deviation_max end + idp_bounds_delta_local[key_min] = deviation_min + idp_bounds_delta_local[key_max] = deviation_max end end if spec_entropy key = :spec_entropy_min - deviation_threaded = idp_bounds_delta_local[key] - @threaded for element in eachelement(solver, cache) - deviation = deviation_threaded[stride_size * Threads.threadid()] + deviation = idp_bounds_delta_local[key] + @batch reduction=(max, deviation) for element in eachelement(solver, cache) for j in eachnode(solver), i in eachnode(solver) s = entropy_spec(get_node_vars(u, equations, solver, i, j, element), equations) deviation = max(deviation, variable_bounds[key][i, j, element] - s) end - deviation_threaded[stride_size * Threads.threadid()] = deviation end + idp_bounds_delta_local[key] = deviation end if math_entropy key = :math_entropy_max - deviation_threaded = idp_bounds_delta_local[key] - @threaded for element in eachelement(solver, cache) - deviation = deviation_threaded[stride_size * Threads.threadid()] + deviation = idp_bounds_delta_local[key] + @batch reduction=(max, deviation) for element in eachelement(solver, cache) for j in eachnode(solver), i in eachnode(solver) s = entropy_math(get_node_vars(u, equations, solver, i, j, element), equations) deviation = max(deviation, s - variable_bounds[key][i, j, element]) end - deviation_threaded[stride_size * Threads.threadid()] = deviation end + idp_bounds_delta_local[key] = deviation end if positivity for v in limiter.positivity_variables_cons @@ -74,40 +62,35 @@ continue end key = Symbol(string(v), "_min") - deviation_threaded = idp_bounds_delta_local[key] - @threaded for element in eachelement(solver, cache) - deviation = deviation_threaded[stride_size * Threads.threadid()] + deviation = idp_bounds_delta_local[key] + @batch reduction=(max, deviation) for element in eachelement(solver, cache) for j in eachnode(solver), i in eachnode(solver) var = u[v, i, j, element] deviation = max(deviation, variable_bounds[key][i, j, element] - var) end - deviation_threaded[stride_size * Threads.threadid()] = deviation end + idp_bounds_delta_local[key] = deviation end for variable in limiter.positivity_variables_nonlinear key = Symbol(string(variable), "_min") - deviation_threaded = idp_bounds_delta_local[key] - @threaded for element in eachelement(solver, cache) - deviation = deviation_threaded[stride_size * Threads.threadid()] + deviation = idp_bounds_delta_local[key] + @batch reduction=(max, deviation) for element in eachelement(solver, cache) for j in eachnode(solver), i in eachnode(solver) var = variable(get_node_vars(u, equations, solver, i, j, element), equations) deviation = max(deviation, variable_bounds[key][i, j, element] - var) end - deviation_threaded[stride_size * Threads.threadid()] = deviation end + idp_bounds_delta_local[key] = deviation end end for (key, _) in idp_bounds_delta_local - # Calculate maximum deviations of all threads - idp_bounds_delta_local[key][stride_size] = maximum(idp_bounds_delta_local[key][stride_size * i] - for i in 1:Threads.nthreads()) # Update global maximum deviations idp_bounds_delta_global[key] = max(idp_bounds_delta_global[key], - idp_bounds_delta_local[key][stride_size]) + idp_bounds_delta_local[key]) end return nothing @@ -118,46 +101,38 @@ end (; local_minmax, positivity, spec_entropy, math_entropy) = limiter (; idp_bounds_delta_local) = limiter.cache - stride_size = div(128, sizeof(eltype(u))) # = n - # Print errors to output file open("$output_directory/deviations.txt", "a") do f print(f, iter, ", ", time) if local_minmax for v in limiter.local_minmax_variables_cons v_string = string(v) - print(f, ", ", - idp_bounds_delta_local[Symbol(v_string, "_min")][stride_size], - ", ", - idp_bounds_delta_local[Symbol(v_string, "_max")][stride_size]) + print(f, ", ", idp_bounds_delta_local[Symbol(v_string, "_min")], + ", ", idp_bounds_delta_local[Symbol(v_string, "_max")]) end end if spec_entropy - print(f, ", ", idp_bounds_delta_local[:spec_entropy_min][stride_size]) + print(f, ", ", idp_bounds_delta_local[:spec_entropy_min]) end if math_entropy - print(f, ", ", idp_bounds_delta_local[:math_entropy_max][stride_size]) + print(f, ", ", idp_bounds_delta_local[:math_entropy_max]) end if positivity for v in limiter.positivity_variables_cons if v in limiter.local_minmax_variables_cons continue end - print(f, ", ", - idp_bounds_delta_local[Symbol(string(v), "_min")][stride_size]) + print(f, ", ", idp_bounds_delta_local[Symbol(string(v), "_min")]) end for variable in limiter.positivity_variables_nonlinear - print(f, ", ", - idp_bounds_delta_local[Symbol(string(variable), "_min")][stride_size]) + print(f, ", ", idp_bounds_delta_local[Symbol(string(variable), "_min")]) end end println(f) end # Reset local maximum deviations for (key, _) in idp_bounds_delta_local - for i in 1:Threads.nthreads() - idp_bounds_delta_local[key][stride_size * i] = zero(eltype(idp_bounds_delta_local[key][stride_size])) - end + idp_bounds_delta_local[key] = zero(eltype(idp_bounds_delta_local[key])) end return nothing diff --git a/src/solvers/dgsem_tree/subcell_limiters_2d.jl b/src/solvers/dgsem_tree/subcell_limiters_2d.jl index 19eb3eb3a9b..4be26f28f2b 100644 --- a/src/solvers/dgsem_tree/subcell_limiters_2d.jl +++ b/src/solvers/dgsem_tree/subcell_limiters_2d.jl @@ -26,18 +26,12 @@ function create_cache(limiter::Type{SubcellLimiterIDP}, equations::AbstractEquat # Memory for bounds checking routine with `BoundsCheckCallback`. # Local variable contains the maximum deviation since the last export. - # Using a threaded vector to parallelize bounds check. - idp_bounds_delta_local = Dict{Symbol, Vector{real(basis)}}() + idp_bounds_delta_local = Dict{Symbol, real(basis)}() # Global variable contains the total maximum deviation. idp_bounds_delta_global = Dict{Symbol, real(basis)}() - # Note: False sharing causes critical performance issues on multiple threads when using a vector - # of length `Threads.nthreads()`. Initializing a vector of length `n * Threads.nthreads()` - # and then only using every n-th entry, fixes the problem and allows proper scaling. - # Since there are no processors with caches over 128B, we use `n = 128B / size(uEltype)` stride_size = div(128, sizeof(eltype(basis.nodes))) # = n for key in bound_keys - idp_bounds_delta_local[key] = [zero(real(basis)) - for _ in 1:(stride_size * Threads.nthreads())] + idp_bounds_delta_local[key] = zero(real(basis)) idp_bounds_delta_global[key] = zero(real(basis)) end