-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsaxpy_pycuda.py
47 lines (36 loc) · 1.18 KB
/
saxpy_pycuda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import time
import numpy as np
import pycuda.autoinit
from pycuda.compiler import SourceModule
import pycuda.driver as cuda
import saxpy
print("Using device {}".format(cuda.Context.get_device().name()))
print("N: {}".format(saxpy.N))
host_x = np.zeros([saxpy.N], dtype=np.float32) + np.float32(saxpy.XVAL)
host_y = np.zeros([saxpy.N], dtype=np.float32) + np.float32(saxpy.YVAL)
AVAL = np.float32(saxpy.AVAL)
dev_x = cuda.mem_alloc(host_x.nbytes)
dev_y = cuda.mem_alloc(host_y.nbytes)
cuda.memcpy_htod(dev_x, host_x)
cuda.memcpy_htod(dev_y, host_y)
saxpy_mod = SourceModule("""
__global__ void saxpy(size_t n, float a, float *x, float *y)
{
const size_t index = blockIdx.x * blockDim.x + threadIdx.x;
const size_t stride = blockDim.x * gridDim.x;
for (size_t i = index; i < n; i += stride) {
y[i] += a * x[i];
}
}
""")
grid = (4096, 1, 1)
block = (256, 1, 1)
saxpy_func = saxpy_mod.get_function("saxpy")
saxpy_func.prepare("NfPP")
t0 = time.time()
saxpy_func.prepared_call(grid, block, saxpy.N, AVAL, dev_x, dev_y)
cuda.Context.synchronize()
elapsed = time.time() - t0
print("Elapsed: {} ms".format(elapsed * 1000))
cuda.memcpy_dtoh(host_y, dev_y)
saxpy.verify(host_y)