-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans.py
executable file
·189 lines (155 loc) · 5.49 KB
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python
import sys
import csv
import math
import random
import copy
import numpy as np
import matplotlib
from matplotlib import pyplot
from mpl_toolkits.mplot3d import Axes3D
GOOD_ENOUGH = 0.0001
NUM_CLUSTERS = 3
def main():
if len(sys.argv) != 2:
print("Usage: ./kmeans.py somedata.csv")
exit(1)
data = []
with open(sys.argv[1]) as f:
csv_reader = csv.reader(f)
row_iter = iter(csv_reader)
next(row_iter) # Skip the first row
for row in row_iter:
if (row[0] and row[1] and row[2] and row[3]):
data.append(_parse_vector(row))
else:
break
next(row_iter) # Skip the header in this row
initial_centers = [ # Grab the last 3 rows
_parse_vector(next(row_iter)),
_parse_vector(next(row_iter)),
_parse_vector(next(row_iter))
]
# Convert the data to a 600x3 matrix
np_data = np.array(data)
# Run the k-means algorithm to get the
# group assignments
groups, new_centers = \
k_means(np_data, NUM_CLUSTERS, initial_centers)
# Segregate the vectors into groups by the group
# assignments we generated above
grouped_vectors = []
for group_id in range(0, NUM_CLUSTERS):
grouped = [v for (i, v) in enumerate(np_data) \
if groups[i] == group_id]
grouped_vectors.append(grouped)
# Start plotting
fig = pyplot.figure()
ax = Axes3D(fig)
colors = ['yellow', 'cyan', 'red']
# First plot the new centers
np_new_centers = np.array(new_centers)
np_new_centers_t = np_new_centers.transpose()
ax.scatter(
np_new_centers_t[0],
np_new_centers_t[1],
np_new_centers_t[2], color="green", marker="X",
zorder=5
)
# Then the old centers
np_initial_centers = np.array(initial_centers)
np_initial_centers_t = np_initial_centers.transpose()
ax.scatter(
np_initial_centers_t[0],
np_initial_centers_t[1],
np_initial_centers_t[2], color="blue", marker="X",
zorder=5
)
# Plot each cluster one at a time
for i, vector_group in enumerate(grouped_vectors):
np_vector_group = np.array(vector_group)
# below: matplotlib expects axes separated out
np_vector_group_t = np_vector_group.transpose()
ax.scatter(
np_vector_group_t[0],
np_vector_group_t[1],
np_vector_group_t[2], color=colors[i])
# Finish plotting
matplotlib.use('TkAgg')
pyplot.show()
def _parse_vector(row):
return [
float(row[1]), float(row[2]), float(row[3])
]
def get_norm(vector):
return math.sqrt(vector.dot(vector))
def get_euclidean_distance(vector1, vector2):
return get_norm(vector1 - vector2) # note: vector op
def get_vectors_average(vectors):
new_vector = [0] * len(vectors[0])
for vector in vectors:
for i, element in enumerate(vector):
new_vector[i] += element
for i in range(len(vectors[0])):
new_vector[i] = new_vector[i] / len(vectors)
return new_vector
def get_closest_representative(vector, reps):
"""Find the closest representative to a vector
from among representatives and return its
index in reps.
Args:
vector (numpy.array): A vector to compare
against the representative vectors in reps
reps (list[numpy.array]): A list of vectors,
to be compared against vector
Returns:
int: Return the index of the closest
representative vector within reps
"""
min = math.inf
min_i = None
for i, rep in enumerate(reps):
result = get_euclidean_distance(rep, vector)
if result < min:
min = result
min_i = i
return min_i
def get_j_clust(vectors, groups, reps):
value = 0
for i, vector in enumerate(vectors):
# note: vector op
value += math.sqrt(get_norm(vector - reps[groups[i]]))
return value / len(vectors)
def k_means(vectors, k, reps):
# Given a list of n vectors, xi, … , xn, and k, the number of
# groups to form, and reps, the initial choice of vector
# representatives fo each group / cluster
# Choose initial groups for each vector
groups = list(range(0, k))
group_assignments = [random.randint(0, k-1) for _ in vectors]
# NOTE: Do the below so we don't muddle the original reps
group_reps = copy.deepcopy(reps)
old_j_clust = j_clust = math.inf
while True:
print("group assignments: {}".format(group_assignments))
print("group_reps: {}".format(group_reps))
print("j_clust: {}".format(j_clust))
for i, vector in enumerate(vectors):
group_assignments[i] = \
get_closest_representative(vector, group_reps)
for group in groups:
vector_indices_in_grp = \
[i for (i, g) in enumerate(group_assignments) \
if g == group]
group_reps[group] = get_vectors_average(
[v for (i, v) in enumerate(vectors) \
if i in vector_indices_in_grp]
)
old_j_clust = j_clust
j_clust = get_j_clust(vectors, group_assignments, group_reps)
if (old_j_clust - j_clust) <= GOOD_ENOUGH:
print("diff: {}".format(old_j_clust - j_clust))
break
return group_assignments, group_reps
if __name__ == "__main__":
main()