diff --git a/cran-comments.md b/cran-comments.md index 8e3b8d1..9457cb5 100644 --- a/cran-comments.md +++ b/cran-comments.md @@ -1,18 +1,27 @@ ## Note Added support for computing moments and statistics. +Changed doi format (brackets) in DESCRIPTION according to +comment from Uwe Ligges from +10.1641/0006-3568(2001)051[0341:lndats]2.0.co;2 +to +10.1641/0006-3568(2001)051%5B0341:lndats%5D2.0.co;2 + +And changed back to original doi after second comment +by Uwe Ligges + + ## Test environments +with old doi * local R 3.4.4 on Mint17 64bit * Ubuntu 14.04.5 LTS (on travis-ci), 14.04 * win-builder (devel) * R-Hub -## R CMD check results -There were no ERRORs nor WARNINGs - -Note on wrong doi: I checked that the doi correctly resolves -http://dx.doi.org/10.1641%2F0006-3568(2001)051[0341%3Alndats]2.0.co%3B2 - +with updated doi +* local R 3.4.4 on Mint17 64bit +## R CMD check results +Note on problem with doi \ No newline at end of file diff --git a/inst/docu/varianceBySigmaAndExpected.Rmd b/inst/docu/varianceBySigmaAndExpected.Rmd index 4b7e75e..58d4193 100644 --- a/inst/docu/varianceBySigmaAndExpected.Rmd +++ b/inst/docu/varianceBySigmaAndExpected.Rmd @@ -45,16 +45,18 @@ lines(dnorm(xPred, m, sqrt(V))~xPred, col = "blue", lty = "dashed") lines(dlnorm(xPred, mu, sigma)~xPred, col = "green") ``` ```{r} -df <- data.frame(nu = c(0.05,0.1,0.2,0.5,1,2,5,10,20)) -df$sigmaStar = sqrt(df$nu^2 + 1) +df <- data.frame(cv = c(0.05,0.1,0.2,0.5,1,2,5,10,20)) +df$sigma = sqrt(log(df$cv^2 + 1)) +df$sigmaStar <- exp(df$sigma) +#df$cvRev <- sqrt(exp(log(df$sigmaStar)^2) - 1) df ``` ```{r} -plot(sigmaStar ~ nu, df[1:3,]) +plot(sigmaStar ~ cv, df[1:3,]) ``` ```{r} sigmaStar <- 1.2 -(nu <- sqrt(sigmaStar^2 - 1)) +(cv <- sqrt(exp(log(sigmaStar)^2) - 1)) ``` diff --git a/inst/docu/varianceBySigmaAndExpected.nb.html b/inst/docu/varianceBySigmaAndExpected.nb.html index 62d7b97..e4efa4a 100644 --- a/inst/docu/varianceBySigmaAndExpected.nb.html +++ b/inst/docu/varianceBySigmaAndExpected.nb.html @@ -253,10 +253,10 @@

testing variance computation with expected value an \]

- +
n = 1e4
 sigma = log(1.2)
-sigma = log(1.41)
+#sigma = log(1.41)
 mu = log(10)
 logR = rnorm(n, mu, sigma)
 R = exp(logR)
@@ -266,69 +266,55 @@ 

testing variance computation with expected value an # m = exp(mu + sigma^2/2) V = (exp(sigma^2) - 1)*m^2 -c(meanR, m)

+c(meanR, m) +c(sdR, sqrt(V), sqrt(V2)) - -
[1] 10.61435 10.60804
- - -
c(sdR, sqrt(V), sqrt(V2))
- - -
[1] 3.768687 3.755077 3.755077
- - +
xPred <- seq(-2,22,length.out = 101) 
 plot(density(R), xlim = c(-2,22), lty = "dotted")
-abline(v = meanR)
- - -
lines(dnorm(xPred, m, sqrt(V))~xPred, col = "blue", lty = "dashed")
+abline(v = meanR)
+lines(dnorm(xPred, m, sqrt(V))~xPred, col = "blue", lty = "dashed")
 lines(dlnorm(xPred, mu, sigma)~xPred, col = "green")
- -

- - -
df <- data.frame(nu = c(0.05,0.1,0.2,0.5,1,2,5,10,20))
-df$sigmaStar = sqrt(df$nu^2 + 1)
+
+
df <- data.frame(cv = c(0.05,0.1,0.2,0.5,1,2,5,10,20))
+df$sigma = sqrt(log(df$cv^2 + 1))
+df$sigmaStar <- exp(df$sigma)
+df$cvRev <- sqrt(exp(log(df$sigmaStar)^2) - 1)
 df
- +
- -
plot(sigmaStar ~ nu, df[1:3,])
+ +
plot(sigmaStar ~ cv, df[1:3,])
- -

- - +
sigmaStar <- 1.2
-(nu <- sqrt(sigmaStar^2-1))
+(cv <- sqrt(exp(log(sigmaStar)^2) - 1))
- -
[1] 0.663325
+ +
[1] 0.1838472
-
LS0tCnRpdGxlOiAidGVzdGluZyB2YXJpYW5jZSBjb21wdXRhdGlvbiB3aXRoIGV4cGVjdGVkIHZhbHVlIGFuZCBzaWdtYSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKRm9ybXVsYSBmb3IgVmFyaWFuY2UgZ2l2ZW4gc2lnbWEgYXQgbG9nIHNjYWxlIGFuZCBleHBlY3RlZCB2YWx1ZQoKV2Ugc3RhcnQgd2l0aCBmb3JtdWxhcyBmb3IgdmFyaWFuY2UgYW5kIG1lYW4uCiQkClYgPSAgKGVee1xzaWdtYV4yfSAtIDEpIGVeezJcbXUgKyBcc2lnbWFeMn0gXFwKbSA9IGVee1xtdSArIFxzaWdtYV4yLzJ9CiQkCm1lYW4gZm9ybXVsYSByZXNvbHZlZCBmb3IgJFxtdSQgYW5kIHN1YnN0aXR1dGVkIGludG8gVi4KJCQKXG11ID0gbG9nX20gLSBcc2lnbWFeMi8yIFxcClYgPSAgKGVee1xzaWdtYV4yfSAtIDEpIGVeezIobG9nX20gLSBcc2lnbWFeMi8yKSArIFxzaWdtYV4yfSBcXApWID0gIChlXntcc2lnbWFeMn0gLSAxKSBlXnsybG9nX20gLSBcc2lnbWFeMiArIFxzaWdtYV4yfSBcXApWID0gIChlXntcc2lnbWFeMn0gLSAxKSBlXnsybG9nX219IFxcClYgPSAgKGVee1xzaWdtYV4yfSAtIDEpIChlXntsb2dfbX0pXjIgXFwKViA9ICAoZV57XHNpZ21hXjJ9IC0gMSkgbV4yIFxcCiQkCgoKYGBge3J9Cm4gPSAxZTQKc2lnbWEgPSBsb2coMS4yKQojc2lnbWEgPSBsb2coMS40MSkKbXUgPSBsb2coMTApCmxvZ1IgPSBybm9ybShuLCBtdSwgc2lnbWEpClIgPSBleHAobG9nUikKbWVhblIgPSBtZWFuKFIpCnNkUiA9IHNkKFIpClYyID0gKGV4cChzaWdtYV4yKSAtIDEpKmV4cCgyKm11ICsgc2lnbWFeMikKIwptID0gZXhwKG11ICsgc2lnbWFeMi8yKQpWID0gKGV4cChzaWdtYV4yKSAtIDEpKm1eMgpjKG1lYW5SLCBtKQpjKHNkUiwgc3FydChWKSwgc3FydChWMikpCmBgYApgYGB7cn0KeFByZWQgPC0gc2VxKC0yLDIyLGxlbmd0aC5vdXQgPSAxMDEpIApwbG90KGRlbnNpdHkoUiksIHhsaW0gPSBjKC0yLDIyKSwgbHR5ID0gImRvdHRlZCIpCmFibGluZSh2ID0gbWVhblIpCmxpbmVzKGRub3JtKHhQcmVkLCBtLCBzcXJ0KFYpKX54UHJlZCwgY29sID0gImJsdWUiLCBsdHkgPSAiZGFzaGVkIikKbGluZXMoZGxub3JtKHhQcmVkLCBtdSwgc2lnbWEpfnhQcmVkLCBjb2wgPSAiZ3JlZW4iKQpgYGAKYGBge3J9CmRmIDwtIGRhdGEuZnJhbWUobnUgPSBjKDAuMDUsMC4xLDAuMiwwLjUsMSwyLDUsMTAsMjApKQpkZiRzaWdtYVN0YXIgPSBzcXJ0KGRmJG51XjIgKyAxKQpkZgpgYGAKYGBge3J9CnBsb3Qoc2lnbWFTdGFyIH4gbnUsIGRmWzE6MyxdKQpgYGAKCmBgYHtyfQpzaWdtYVN0YXIgPC0gMS4yCihudSA8LSBzcXJ0KHNpZ21hU3Rhcl4yIC0gMSkpCmBgYAoK
+
LS0tCnRpdGxlOiAidGVzdGluZyB2YXJpYW5jZSBjb21wdXRhdGlvbiB3aXRoIGV4cGVjdGVkIHZhbHVlIGFuZCBzaWdtYSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKRm9ybXVsYSBmb3IgVmFyaWFuY2UgZ2l2ZW4gc2lnbWEgYXQgbG9nIHNjYWxlIGFuZCBleHBlY3RlZCB2YWx1ZQoKV2Ugc3RhcnQgd2l0aCBmb3JtdWxhcyBmb3IgdmFyaWFuY2UgYW5kIG1lYW4uCiQkClYgPSAgKGVee1xzaWdtYV4yfSAtIDEpIGVeezJcbXUgKyBcc2lnbWFeMn0gXFwKbSA9IGVee1xtdSArIFxzaWdtYV4yLzJ9CiQkCm1lYW4gZm9ybXVsYSByZXNvbHZlZCBmb3IgJFxtdSQgYW5kIHN1YnN0aXR1dGVkIGludG8gVi4KJCQKXG11ID0gbG9nX20gLSBcc2lnbWFeMi8yIFxcClYgPSAgKGVee1xzaWdtYV4yfSAtIDEpIGVeezIobG9nX20gLSBcc2lnbWFeMi8yKSArIFxzaWdtYV4yfSBcXApWID0gIChlXntcc2lnbWFeMn0gLSAxKSBlXnsybG9nX20gLSBcc2lnbWFeMiArIFxzaWdtYV4yfSBcXApWID0gIChlXntcc2lnbWFeMn0gLSAxKSBlXnsybG9nX219IFxcClYgPSAgKGVee1xzaWdtYV4yfSAtIDEpIChlXntsb2dfbX0pXjIgXFwKViA9ICAoZV57XHNpZ21hXjJ9IC0gMSkgbV4yIFxcCiQkCgoKYGBge3J9Cm4gPSAxZTQKc2lnbWEgPSBsb2coMS4yKQojc2lnbWEgPSBsb2coMS40MSkKbXUgPSBsb2coMTApCmxvZ1IgPSBybm9ybShuLCBtdSwgc2lnbWEpClIgPSBleHAobG9nUikKbWVhblIgPSBtZWFuKFIpCnNkUiA9IHNkKFIpClYyID0gKGV4cChzaWdtYV4yKSAtIDEpKmV4cCgyKm11ICsgc2lnbWFeMikKIwptID0gZXhwKG11ICsgc2lnbWFeMi8yKQpWID0gKGV4cChzaWdtYV4yKSAtIDEpKm1eMgpjKG1lYW5SLCBtKQpjKHNkUiwgc3FydChWKSwgc3FydChWMikpCmBgYApgYGB7cn0KeFByZWQgPC0gc2VxKC0yLDIyLGxlbmd0aC5vdXQgPSAxMDEpIApwbG90KGRlbnNpdHkoUiksIHhsaW0gPSBjKC0yLDIyKSwgbHR5ID0gImRvdHRlZCIpCmFibGluZSh2ID0gbWVhblIpCmxpbmVzKGRub3JtKHhQcmVkLCBtLCBzcXJ0KFYpKX54UHJlZCwgY29sID0gImJsdWUiLCBsdHkgPSAiZGFzaGVkIikKbGluZXMoZGxub3JtKHhQcmVkLCBtdSwgc2lnbWEpfnhQcmVkLCBjb2wgPSAiZ3JlZW4iKQpgYGAKYGBge3J9CmRmIDwtIGRhdGEuZnJhbWUoY3YgPSBjKDAuMDUsMC4xLDAuMiwwLjUsMSwyLDUsMTAsMjApKQpkZiRzaWdtYSA9IHNxcnQobG9nKGRmJGN2XjIgKyAxKSkKZGYkc2lnbWFTdGFyIDwtIGV4cChkZiRzaWdtYSkKI2RmJGN2UmV2IDwtIHNxcnQoZXhwKGxvZyhkZiRzaWdtYVN0YXIpXjIpIC0gMSkKZGYKYGBgCmBgYHtyfQpwbG90KHNpZ21hU3RhciB+IGN2LCBkZlsxOjMsXSkKYGBgCgpgYGB7cn0Kc2lnbWFTdGFyIDwtIDEuMgooY3YgPC0gc3FydChleHAobG9nKHNpZ21hU3RhcileMikgLSAxKSkKYGBgCgo=