-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
136 lines (114 loc) · 4.27 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import nltk
nltk.download('popular')
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
import pickle
import numpy as np
from googletrans import Translator
from flask import Flask, render_template, request, jsonify, session
from keras.models import load_model
model = load_model('model.h5')
import json
import random
intents = json.loads(open('data.json').read())
words = pickle.load(open('texts.pkl','rb'))
classes = pickle.load(open('labels.pkl','rb'))
langVariable = "0"
def clean_up_sentence(sentence):
# tokenize the pattern - split words into array
sentence_words = nltk.word_tokenize(sentence)
# stem each word - create short form for word
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
def bow(sentence, words, show_details=True):
# tokenize the pattern
sentence_words = clean_up_sentence(sentence)
# bag of words - matrix of N words, vocabulary matrix
bag = [0]*len(words)
for s in sentence_words:
for i,w in enumerate(words):
if w == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print ("found in bag: %s" % w)
return(np.array(bag))
def predict_class(sentence, model):
# filter out predictions below a threshold
p = bow(sentence, words,show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
return return_list
def getResponse(ints, intents_json):
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if(i['tag']== tag):
result = random.choice(i['responses'])
break
return result
def chatbot_response(msg):
ints = predict_class(msg, model)
res = getResponse(ints, intents)
print("This is the response",res)
return res
def translate_to_devanagari(text):
translator = Translator()
translation = translator.translate(text, src='en', dest='hi')
return translation.text
def translate_to_english(text):
translator = Translator()
translation = translator.translate(text, src='hi', dest='en')
return translation.text
app = Flask(__name__)
app.static_folder = 'static'
app.secret_key = 'your_secret_key'
@app.route("/")
def home():
return render_template("index.html")
@app.route("/showmap")
def map():
return render_template("test.html")
@app.route("/get")
def get_bot_response():
langVariable = session.get('langVariable', "0")
print("This should be the lang variable",langVariable)
print(type(langVariable))
if (langVariable == "1" ):
userText = request.args.get('msg')
print(userText)
proText = translate_to_english(userText)
print(proText)
init_res = chatbot_response(proText)
print("This is the",init_res)
print(type(init_res))
if isinstance(init_res,dict):
init_res['res'] = translate_to_devanagari(init_res['res'])
else:
init_res = translate_to_devanagari(init_res)
return init_res
else:
print("Simon")
userText = request.args.get('msg')
return chatbot_response(userText)
@app.route('/your_flask_route', methods=['POST'])
def receive_variable():
data = request.get_json()
langVariable = data.get('variable')
session['langVariable'] = langVariable
# Process the variable as needed
# For example, print it and send a response back to the client
print('Received variable from JavaScript:', langVariable)
# You can send a response back to the client if needed
return jsonify({'message': 'Variable received successfully'})
if __name__ == '__main__':
app.run(debug=True)
if __name__ == "__main__":
app.run()