Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bioepic: OverflowError: cannot convert float infinity to integer #45

Open
anishdattani opened this issue Nov 4, 2016 · 4 comments
Open

Comments

@anishdattani
Copy link

No description provided.

@anishdattani
Copy link
Author

I have installed bioepic and have run the epic program from the bin folder. However, each time I run my H3K27me3 ChIP against Input I get the following error:

Merging the bins on both strands per chromosome. (File: count_reads_in_windows, Log level: INFO, Time: Thu, 03 Nov 2016 21:53:12 )
Merging ChIP and Input data. (File: helper_functions, Log level: INFO, Time: Thu, 03 Nov 2016 21:57:15 )
600000000.0 effective_genome_size (File: compute_background_probabilites, Log level: DEBUG, Time: Thu, 03 Nov 2016 21:58:51 )
200 window size (File: compute_background_probabilites, Log level: DEBUG, Time: Thu, 03 Nov 2016 21:58:51 )
0 total chip count (File: compute_background_probabilites, Log level: DEBUG, Time: Thu, 03 Nov 2016 21:58:51 )
0.0 average_window_readcount (File: compute_background_probabilites, Log level: DEBUG, Time: Thu, 03 Nov 2016 21:58:51 )
1 island_enriched_threshold (File: compute_background_probabilites, Log level: DEBUG, Time: Thu, 03 Nov 2016 21:58:51 )
4.0 gap_contribution (File: compute_background_probabilites, Log level: DEBUG, Time: Thu, 03 Nov 2016 21:58:51 )
1.0 boundary_contribution (File: compute_background_probabilites, Log level: DEBUG, Time: Thu, 03 Nov 2016 21:58:51 )
/home/anish/.local/lib/python2.7/site-packages/epic/statistics/compute_score_threshold.py:22: RuntimeWarning: divide by zero encountered in log
score = -log(required_p_value)
Traceback (most recent call last):
File "./epic", line 218, in
run_epic(args)
File "/home/anish/.local/lib/python2.7/site-packages/epic/run/run_epic.py", line 47, in run_epic
compute_background_probabilities(nb_chip_reads, args)
File "/home/anish/.local/lib/python2.7/site-packages/epic/statistics/compute_background_probabilites.py", line 49, in compute_background_probabilities
boundary_contribution, genome_length_in_bins)
File "/home/anish/.local/lib/python2.7/site-packages/epic/statistics/compute_score_threshold.py", line 24, in compute_score_threshold
current_scaled_score = int(round(score / BIN_SIZE))
OverflowError: cannot convert float infinity to integer

What does this mean? I know that there should be broad peaks as I find them running MACS2 broad-peak (no-model) option. Forgive me - I am new to these sorts of analyses.

Best,
Anish

@endrebak
Copy link
Member

endrebak commented Nov 4, 2016

Thanks for reporting. It seems like epic cannot interpret your files. What do they look like?

Please post the output of

head <yourfiles> | cat -et

to this thread.

@anishdattani
Copy link
Author

Hi,

Sorry for the late reply. The following was what I inputted into epic:

./epic --control /pathtofolder/lib.filtered.input.sorted_2_MARKDUP.bed --treatment /pathtofolder/lib.filtered.H3K27me3_2_new.sorted.MARKDUP.bed --number-cores 30 --fragment-size 300 --chromsizes /pathtofolder/Asxl.size.file --effective_genome_size 6e8 > /pathtohomefolder/h3k27.broad.csv

My input folder looks like this:

scaffold4^I1^I160^INB501801:1:HN3WLBGXY:4:11601:9830:10032^I159$
scaffold4^I1^I164^INB501801:1:HN3WLBGXY:3:13412:18598:13811^I163$
scaffold4^I1^I167^INB501801:1:HN3WLBGXY:3:22404:14294:20264^I166$
scaffold4^I15^I189^INB501801:1:HN3WLBGXY:2:23204:7996:11409^I174$
scaffold4^I1^I201^INB501801:1:HN3WLBGXY:3:21609:2881:5564^I200$
scaffold4^I46^I230^INB501801:1:HN3WLBGXY:4:23510:23247:4818^I184$
scaffold4^I67^I239^INB501801:1:HN3WLBGXY:4:11406:17309:7190^I172$
scaffold4^I80^I273^INB501801:1:HN3WLBGXY:4:21606:9304:15988^I193$
scaffold4^I76^I287^INB501801:1:HN3WLBGXY:1:22103:20705:12481^I211$
scaffold4^I95^I288^INB501801:1:HN3WLBGXY:3:23411:2064:14725^I193$

My treatment folder looks like this:

scaffold4^I1^I164^INB501801:1:HN3WLBGXY:3:13412:18598:13811^I163$
scaffold4^I1^I165^INB501801:1:HN3WLBGXY:4:12512:24813:1400^I164$
scaffold4^I9^I188^INB501801:1:HN3WLBGXY:3:23511:22654:9868^I179$
scaffold4^I15^I189^INB501801:1:HN3WLBGXY:2:23204:7996:11409^I174$
scaffold4^I1^I204^INB501801:1:HN3WLBGXY:4:21412:4710:15556^I203$
scaffold4^I55^I239^INB501801:1:HN3WLBGXY:4:11508:23962:14301^I184$
scaffold4^I42^I250^INB501801:1:HN3WLBGXY:3:21401:2738:10832^I208$
scaffold4^I76^I287^INB501801:1:HN3WLBGXY:1:22103:20705:12481^I211$
scaffold4^I91^I298^INB501801:1:HN3WLBGXY:3:12411:9664:14867^I207$
scaffold4^I87^I304^INB501801:1:HN3WLBGXY:2:21106:6046:15213^I217$

My chromsize folder:

scaffold4^I49623$
scaffold1^I75538$
scaffold2^I35872$
scaffold6^I61357$
scaffold3^I23435$
scaffold7^I107993$
scaffold10^I43946$
scaffold11^I23991$
scaffold8^I118074$
scaffold13^I28105$

I hope this helps. Thank you in advance.

Best,
Anish

@endrebak
Copy link
Member

endrebak commented Nov 7, 2016

Effective genome size should be a number between 0 and 1.

You have no strand info in your files.

On Sat, Nov 5, 2016 at 12:20 PM, anishdattani [email protected]
wrote:

Hi,

Sorry for the late reply. The following was what I inputted into epic:

./epic --control /pathtofolder/lib.filtered.input.sorted_2_MARKDUP.bed
--treatment /pathtofolder/lib.filtered.H3K27me3_2_new.sorted.MARKDUP.bed
--number-cores 30 --fragment-size 300 --chromsizes
/pathtofolder/Asxl.size.file --effective_genome_size 6e8 >
/pathtohomefolder/h3k27.broad.csv

My input folder looks like this:

scaffold4^I1^I160^INB501801:1:HN3WLBGXY:4:11601:9830:10032^I159$
scaffold4^I1^I164^INB501801:1:HN3WLBGXY:3:13412:18598:13811^I163$
scaffold4^I1^I167^INB501801:1:HN3WLBGXY:3:22404:14294:20264^I166$
scaffold4^I15^I189^INB501801:1:HN3WLBGXY:2:23204:7996:11409^I174$
scaffold4^I1^I201^INB501801:1:HN3WLBGXY:3:21609:2881:5564^I200$
scaffold4^I46^I230^INB501801:1:HN3WLBGXY:4:23510:23247:4818^I184$
scaffold4^I67^I239^INB501801:1:HN3WLBGXY:4:11406:17309:7190^I172$
scaffold4^I80^I273^INB501801:1:HN3WLBGXY:4:21606:9304:15988^I193$
scaffold4^I76^I287^INB501801:1:HN3WLBGXY:1:22103:20705:12481^I211$
scaffold4^I95^I288^INB501801:1:HN3WLBGXY:3:23411:2064:14725^I193$

My treatment folder looks like this:

scaffold4^I1^I164^INB501801:1:HN3WLBGXY:3:13412:18598:13811^I163$
scaffold4^I1^I165^INB501801:1:HN3WLBGXY:4:12512:24813:1400^I164$
scaffold4^I9^I188^INB501801:1:HN3WLBGXY:3:23511:22654:9868^I179$
scaffold4^I15^I189^INB501801:1:HN3WLBGXY:2:23204:7996:11409^I174$
scaffold4^I1^I204^INB501801:1:HN3WLBGXY:4:21412:4710:15556^I203$
scaffold4^I55^I239^INB501801:1:HN3WLBGXY:4:11508:23962:14301^I184$
scaffold4^I42^I250^INB501801:1:HN3WLBGXY:3:21401:2738:10832^I208$
scaffold4^I76^I287^INB501801:1:HN3WLBGXY:1:22103:20705:12481^I211$
scaffold4^I91^I298^INB501801:1:HN3WLBGXY:3:12411:9664:14867^I207$
scaffold4^I87^I304^INB501801:1:HN3WLBGXY:2:21106:6046:15213^I217$

My chromsize folder:

scaffold4^I49623$
scaffold1^I75538$
scaffold2^I35872$
scaffold6^I61357$
scaffold3^I23435$
scaffold7^I107993$
scaffold10^I43946$
scaffold11^I23991$
scaffold8^I118074$
scaffold13^I28105$

I hope this helps. Thank you in advance.

Best,

Anish


You are receiving this because you commented.
Reply to this email directly, view it on GitHub
#45 (comment), or mute
the thread
https://github.com/notifications/unsubscribe-auth/AQ9I0nN8mE_fLgCVzVNXL6zX6hMGASOtks5q7GZ1gaJpZM4KpblD
.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants