-
Notifications
You must be signed in to change notification settings - Fork 2
/
setup_ccd.py
247 lines (212 loc) · 7.37 KB
/
setup_ccd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""Modified from biotite setup_ccd.py"""
# flake8: noqa
import gzip
import json
import logging
from collections import defaultdict
from dataclasses import asdict
from io import StringIO
from pathlib import Path
import numpy as np
import requests
from bio_datasets.structure.pdbx import *
OUTPUT_CCD = (
Path(__file__).parent
/ "src"
/ "bio_datasets"
/ "structure"
/ "library"
/ "components.bcif"
)
CCD_URL = "https://files.wwpdb.org/pub/pdb/data/monomers/components.cif.gz"
def concatenate_ccd(categories=None):
"""
Create the CCD in BinaryCIF format with each category contains the
data of all blocks.
Parameters
----------
categories : list of str, optional
The names of the categories to include.
By default, all categories from the CCD are included.
Returns
-------
compressed_file : BinaryCIFFile
The compressed CCD in BinaryCIF format.
"""
archive = (
Path(__file__).parent
/ "src"
/ "bio_datasets"
/ "structure"
/ "library"
/ "components.cif.gz"
)
if not archive.exists():
logging.info(f"Downloading CCD from {CCD_URL}...")
ccd_cif_text = gzip.decompress(requests.get(CCD_URL).content).decode()
else:
logging.info("Reading downloaded CCD...")
ccd_cif_text = gzip.decompress(archive.read_bytes()).decode()
ccd_file = CIFFile.read(StringIO(ccd_cif_text))
compressed_block = BinaryCIFBlock()
if categories is None:
categories = _list_all_category_names(ccd_file)
for category_name in categories:
logging.info(f"Concatenate and compress '{category_name}' category...")
compressed_block[category_name] = compress(
_concatenate_blocks_into_category(ccd_file, category_name)
)
logging.info("Write concatenated CCD into BinaryCIF...")
compressed_file = BinaryCIFFile()
compressed_file["components"] = compressed_block
return compressed_file
def _concatenate_blocks_into_category(pdbx_file, category_name):
"""
Concatenate the given category from all blocks into a single
category.
Parameters
----------
pdbx_file : PDBxFile
The PDBx file, whose blocks should be concatenated.
category_name : str
The name of the category to concatenate.
Returns
-------
category : BinaryCIFCategory
The concatenated category.
"""
columns_names = _list_all_column_names(pdbx_file, category_name)
data_chunks = defaultdict(list)
mask_chunks = defaultdict(list)
for block in pdbx_file.values():
if category_name not in block:
continue
category = block[category_name]
for column_name in columns_names:
if column_name in category:
column = category[column_name]
data_chunks[column_name].append(column.data.array)
if column.mask is not None:
mask_chunks[column_name].append(column.mask.array)
else:
mask_chunks[column_name].append(
np.full(category.row_count, MaskValue.PRESENT, dtype=np.uint8)
)
else:
# Column is missing in this block
# -> handle it as data masked as 'missing'
data_chunks[column_name].append(
# For now all arrays are of type string anyway,
# as they are read from a CIF file
np.full(category.row_count, "", dtype="U1")
)
mask_chunks[column_name].append(
np.full(category.row_count, MaskValue.MISSING, dtype=np.uint8)
)
bcif_columns = {}
for col_name in columns_names:
data = np.concatenate(data_chunks[col_name])
mask = np.concatenate(mask_chunks[col_name])
data = _into_fitting_type(data, mask)
if np.all(mask == MaskValue.PRESENT):
mask = None
bcif_columns[col_name] = BinaryCIFColumn(data, mask)
return BinaryCIFCategory(bcif_columns)
def _list_all_column_names(pdbx_file, category_name):
"""
Get all columns that exist in any block for a given category.
Parameters
----------
pdbx_file : PDBxFile
The PDBx file to search in for the columns.
category_name : str
The name of the category to search in.
Returns
-------
columns_names : list of str
The names of the columns.
"""
columns_names = set()
for block in pdbx_file.values():
if category_name in block:
columns_names.update(block[category_name].keys())
return sorted(columns_names)
def _list_all_category_names(pdbx_file):
"""
Get all categories that exist in any block.
Parameters
----------
pdbx_file : PDBxFile
The PDBx file to search in for the columns.
Returns
-------
columns_names : list of str
The names of the columns.
"""
category_names = set()
for block in pdbx_file.values():
category_names.update(block.keys())
return sorted(category_names)
def _into_fitting_type(string_array, mask):
"""
Try to find a numeric type for a string ndarray, if possible.
Parameters
----------
string_array : ndarray, dtype=string
The array to convert.
mask : ndarray, dtype=uint8
Only values in `string_array` where the mask is ``MaskValue.PRESENT`` are
considered for type conversion.
Returns
-------
array : ndarray
The array converted into an appropriate dtype.
"""
mask = mask == MaskValue.PRESENT
# Only try to find an appropriate dtype for unmasked values
values = string_array[mask]
try:
# Try to fit into integer type
values = values.astype(int)
except ValueError:
try:
# Try to fit into float type
values = values.astype(float)
except ValueError:
# Keep string type
pass
array = np.zeros(string_array.shape, dtype=values.dtype)
array[mask] = values
return array
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(message)s")
OUTPUT_CCD.parent.mkdir(parents=True, exist_ok=True)
compressed_ccd = concatenate_ccd(
[
"chem_comp",
"chem_comp_atom",
"chem_comp_bond",
"pdbx_chem_comp_descriptor", # added for SMILES
]
)
compressed_ccd.write(OUTPUT_CCD)
# Download residue frequency data
logging.info("Downloading residue frequency data...")
url = "http://ligand-expo.rcsb.org/dictionaries/cc-counts.tdd"
response = requests.get(url)
response.raise_for_status()
# Save to same directory as CCD.
freq_path = OUTPUT_CCD.parent / "cc-counts.tdd"
with open(freq_path, "wb") as f:
f.write(response.content)
logging.info(f"Saved residue frequencies to {freq_path}")
# Save residue dictionary
# import bio_datasets only after CCD has been created
from bio_datasets.structure.residue import ResidueDictionary
residue_dictionary = ResidueDictionary.from_ccd()
residue_dictionary = asdict(residue_dictionary)
with open(OUTPUT_CCD.parent / "ccd_residue_dictionary.json", "w") as f:
json.dump(residue_dictionary, f)
logging.info(
f"Saved residue dictionary to {OUTPUT_CCD.parent / 'ccd_residue_dictionary.json'}"
)