-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_load_cv_vf.py
86 lines (79 loc) · 3.5 KB
/
data_load_cv_vf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
import numpy as np
# from skimage.io import imread
import cv2
import copy
from skimage.transform import resize
def load_data_vf(x_size,y_size,data_path,label_path,vf_path,validation_name,test_name):
tmp = np.loadtxt(label_path, dtype=np.str, delimiter=",")
# delete one image because we don't have the jpg image, 8252 is the position of this item and 1 is related to the title
tmp = np.delete(tmp,8252+1, axis = 0)
ran = tmp[:,0]
lr = tmp[:,1]
tracking = tmp[:,2]
tmp1=tmp[:,3]
ran = ran[1:len(ran)]
lr = lr[1:len(lr)]
tracking = tracking[1:len(tracking)]
tmp1=tmp1[1:len(tmp1)]
#generate ran and tracking numer for image with vf
tmp_vf = np.loadtxt(vf_path, dtype=np.str, delimiter=",")
ran_vf = tmp_vf[:,0]
tracking_vf = tmp_vf[:,1]
ran_vf = ran_vf[1:len(ran_vf)]
tracking_vf = tracking_vf[1:len(tracking_vf)]
# val_images = np.ndarray((len(validation_name)*20, 224, 224,3))
# # val_images = []
# val_labels = []
# le = 0
# for i in range(len(validation_name)):
# ind = np.argwhere(ran==validation_name[i][0])
# for j in range(len(ind)):
# if lr[int(ind[j])] == validation_name[i][1]:
# data_paths = os.path.join(data_path, (ran[int(ind[j])] + '-'+ tracking[int(ind[j])] + '.jpg'))
# IM = cv2.imread(data_paths)
# val_images[le] = IM
# le += 1
# #val_images = np.append(val_images,IM)
# val_labels = np.append(val_labels,tmp1[int(ind[j])])
# # continue
# val_images = val_images[0:le,:,:,:]
# test_images = np.ndarray((len(test_name)*20, 224, 224,3))
# #test_images = []
# test_labels = []
# le = 0
# for i in range(len(test_name)):
# ind = np.argwhere(ran==test_name[i][0])
# for j in range(len(ind)):
# if lr[int(ind[j])] == test_name[i][1]:
# data_paths = os.path.join(data_path, (ran[int(ind[j])] + '-'+ tracking[int(ind[j])] + '.jpg'))
# IM = cv2.imread(data_paths)
# test_images[le] = IM
# #test_images = np.append(test_images,IM)
# le += 1
# test_labels = np.append(test_labels,tmp1[int(ind[j])])
# # continue
# test_images = test_images[0:le,:,:,:]
# x_size = 331
# y_size = 331
test_images_vf = np.ndarray((len(test_name)*10, x_size, y_size,3))
#test_images = []
test_labels_vf = []
le = 0
for i in range(len(test_name)):
ind = np.argwhere(ran==test_name[i][0])
ind_tf = np.argwhere(ran_vf==test_name[i][0])
for j in range(len(ind)):
if lr[int(ind[j])] == test_name[i][1] and len(np.argwhere(tracking_vf[ind_tf]==tracking[int(ind[j])])) != 0:
data_paths = os.path.join(data_path, (ran[int(ind[j])] + '-'+ tracking[int(ind[j])] + '.jpg'))
IM = cv2.imread(data_paths)
test_images_vf[le] = cv2.resize(IM, (x_size, y_size))
#test_images_vf[le] = resize(IM, (x_size, y_size, 3))
# test_images_vf[le] = IM
#test_images = np.append(test_images,IM)
le += 1
test_labels_vf = np.append(test_labels_vf,tmp1[int(ind[j])])
# continue
test_images_vf = test_images_vf[0:le,:,:,:]
return test_images_vf, test_labels_vf
#return val_images,val_labels, test_images,test_labels, test_images_s, test_labels_s, test_images_un, test_labels_un