Skip to content

Latest commit

 

History

History
143 lines (108 loc) · 5.6 KB

README.md

File metadata and controls

143 lines (108 loc) · 5.6 KB

文本智能校对大赛

最新动态

时间 事件
2022.7.19 修复指标计算的Bug, 详见metry.py ,感谢@HillZhang1999的提醒和贡献
2022.7.21 更新baseline在a榜数据集上的表现

赛程

时间 事件
2022.7.13 比赛启动,开放报名,赛事网址,初赛A榜数据集,初赛A榜提交入口
2022.8.12 报名截止,关闭初赛A榜评测入口
2022.8.13 开放初赛B榜数据集、评测入口
2022.8.17 关闭初赛B榜数据集、评测入口
2022.8.18 开放决赛数据集、评测入口
2022.8.20 关闭决赛数据集、评测入口

获奖队伍

|排名| 参赛队伍 | 得分 | |-------| ------- | ------- | |1| 苏州大学-阿里达摩院联队 | 0.7637 | |2| Grandmaly | 0.7338| |3| 语言组小分队 | 0.6916| |4| YanSun的团队 | 0.6779| |5| TAL-有错必改 | 0.6528| |6| NLPIR | 0.6425|

任务描述

本次赛题选择网络文本作为输入,从中检测并纠正错误,实现中文文本校对系统。即给定一段文本,校对系统从中检测出错误字词、错误类型,并进行纠正,最终输出校正后的结果。

文本校对又称文本纠错,相关资料可参考自然语言处理方向的语法纠错(Grammatical Error Correction, GEC)任务和中文拼写纠错(Chinese spelling check, CSC)

Baseline介绍

模型

提供了GECToR作为baseline模型,可参考GECToR论文GECToR源代码

代码结构

├── command
│   └── train.sh       # 训练脚本
├── data
├── logs
├── pretrained_model
└── src
    ├── __init__.py
    ├── baseline       # baseline系统
    ├── corrector.py   # 文本校对入口
    ├── evaluate.py    # 指标评估
    ├── metric.py      # 指标计算文件 
    ├── prepare_for_upload.py  # 生成要提交的结果文件
    └── train.py       # 训练入口

使用说明

  • 数据集获取:请于比赛网站获取数据集
  • 提供了基础校对系统的baseline,其中baseline模型训练参数说明参考src/baseline/trainer.py
  • baseline中的预训练模型支持使用bert类模型,可从HuggingFace下载bert类预训练模型,如: chinese-roberta-wwm-ext
  • baseline仅作参考,参赛队伍可对baseline进行二次开发,或采取其他解决方案。

baseline表现

  • baseline在a榜训练集(不含preliminary_extend_train.json),使用单机4卡分布式训练的情况下
  • 训练到第4个epoch结束在a榜提交得分约为:0.3587

具体训练参数如下:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m src.train \
--in_model_dir "pretrained_model/chinese-roberta-wwm-ext" \
--out_model_dir "model/ctc_train" \
--epochs "50" \
--batch_size "158" \
--max_seq_len "128" \
--learning_rate "5e-5" \
--train_fp "data/comp_data/preliminary_a_data/preliminary_train.json" \
--test_fp "data/comp_data/preliminary_a_data/preliminary_val.json" \
--random_seed_num "42" \
--check_val_every_n_epoch "0.5" \
--early_stop_times "20" \
--warmup_steps "-1" \
--dev_data_ratio "0.01" \
--training_mode "ddp" \
--amp true \
--freeze_embedding false

开始训练

cd command && sh train.sh

其他公开数据集

相关资源