forked from tugstugi/pytorch-dc-tts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-ssrn.py
executable file
·141 lines (104 loc) · 4.52 KB
/
train-ssrn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python
"""Train the Text2Mel network. See: https://arxiv.org/abs/1710.08969"""
__author__ = 'Erdene-Ochir Tuguldur'
import sys
import time
import argparse
from tqdm import *
import torch
import torch.nn.functional as F
# project imports
from models import SSRN
from hparams import HParams as hp
from logger import Logger
from utils import get_last_checkpoint_file_name, load_checkpoint, save_checkpoint
from datasets.data_loader import SSRNDataLoader
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--dataset", required=True, choices=['ljspeech', 'mbspeech'], help='dataset name')
args = parser.parse_args()
if args.dataset == 'ljspeech':
from datasets.lj_speech import LJSpeech as SpeechDataset
else:
from datasets.mb_speech import MBSpeech as SpeechDataset
use_gpu = torch.cuda.is_available()
print('use_gpu', use_gpu)
if use_gpu:
torch.backends.cudnn.benchmark = True
train_data_loader = SSRNDataLoader(ssrn_dataset=SpeechDataset(['mags', 'mels']), batch_size=24, mode='train')
valid_data_loader = SSRNDataLoader(ssrn_dataset=SpeechDataset(['mags', 'mels']), batch_size=24, mode='valid')
ssrn = SSRN().cuda()
optimizer = torch.optim.Adam(ssrn.parameters(), lr=hp.ssrn_lr)
start_timestamp = int(time.time() * 1000)
start_epoch = 0
global_step = 0
logger = Logger(args.dataset, 'ssrn')
# load the last checkpoint if exists
last_checkpoint_file_name = get_last_checkpoint_file_name(logger.logdir)
if last_checkpoint_file_name:
print("loading the last checkpoint: %s" % last_checkpoint_file_name)
start_epoch, global_step = load_checkpoint(last_checkpoint_file_name, ssrn, optimizer)
def get_lr():
return optimizer.param_groups[0]['lr']
def lr_decay(step, warmup_steps=1000):
new_lr = hp.ssrn_lr * warmup_steps ** 0.5 * min((step + 1) * warmup_steps ** -1.5, (step + 1) ** -0.5)
optimizer.param_groups[0]['lr'] = new_lr
def train(train_epoch, phase='train'):
global global_step
lr_decay(global_step)
print("epoch %3d with lr=%.02e" % (train_epoch, get_lr()))
ssrn.train() if phase == 'train' else ssrn.eval()
torch.set_grad_enabled(True) if phase == 'train' else torch.set_grad_enabled(False)
data_loader = train_data_loader if phase == 'train' else valid_data_loader
it = 0
running_loss = 0.0
running_l1_loss = 0.0
pbar = tqdm(data_loader, unit="audios", unit_scale=data_loader.batch_size, disable=hp.disable_progress_bar)
for batch in pbar:
M, S = batch['mags'], batch['mels']
M = M.permute(0, 2, 1) # TODO: because of pre processing
S = S.permute(0, 2, 1) # TODO: because of pre processing
M.requires_grad = False
M = M.cuda()
S = S.cuda()
Z_logit, Z = ssrn(S)
l1_loss = F.l1_loss(Z, M)
loss = l1_loss
if phase == 'train':
lr_decay(global_step)
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_step += 1
it += 1
loss = loss.item()
l1_loss = l1_loss.item()
running_loss += loss
running_l1_loss += l1_loss
if phase == 'train':
# update the progress bar
pbar.set_postfix({
'l1': "%.05f" % (running_l1_loss / it)
})
logger.log_step(phase, global_step, {'loss_l1': l1_loss},
{'mags-true': M[:1, :, :], 'mags-pred': Z[:1, :, :], 'mels': S[:1, :, :]})
if global_step % 5000 == 0:
# checkpoint at every 5000th step
save_checkpoint(logger.logdir, train_epoch, global_step, ssrn, optimizer)
epoch_loss = running_loss / it
epoch_l1_loss = running_l1_loss / it
logger.log_epoch(phase, global_step, {'loss_l1': epoch_l1_loss})
return epoch_loss
since = time.time()
epoch = start_epoch
while True:
train_epoch_loss = train(epoch, phase='train')
time_elapsed = time.time() - since
time_str = 'total time elapsed: {:.0f}h {:.0f}m {:.0f}s '.format(time_elapsed // 3600, time_elapsed % 3600 // 60,
time_elapsed % 60)
print("train epoch loss %f, step=%d, %s" % (train_epoch_loss, global_step, time_str))
valid_epoch_loss = train(epoch, phase='valid')
print("valid epoch loss %f" % valid_epoch_loss)
epoch += 1
if global_step >= hp.ssrn_max_iteration:
print("max step %d (current step %d) reached, exiting..." % (hp.ssrn_max_iteration, global_step))
sys.exit(0)