-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdesign_inference.py
173 lines (147 loc) · 6.52 KB
/
design_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import copy
import json
import pickle
parser = argparse.ArgumentParser()
parser.add_argument('--sim_ckpt', type=str, default=None, required=True)
parser.add_argument('--data_dir', type=str, default='share/4AA_data')
parser.add_argument('--mddir', type=str, default='/data/cb/scratch/share/mdgen/4AA_sims')
parser.add_argument('--suffix', type=str, default='')
parser.add_argument('--pdb_id', nargs='*', default=[])
parser.add_argument('--num_frames', type=int, default=100)
parser.add_argument('--num_batches', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=10)
parser.add_argument('--out_dir', type=str, default=".")
parser.add_argument('--random_start_idx', action='store_true')
parser.add_argument('--split', type=str, default='splits/4AA_test.csv')
parser.add_argument('--chunk_idx', type=int, default=0)
parser.add_argument('--n_chunks', type=int, default=1)
args = parser.parse_args()
import mdgen.analysis
import os, torch, mdtraj, tqdm
import numpy as np
from mdgen.geometry import atom14_to_frames, atom14_to_atom37, atom37_to_torsions
from mdgen.tensor_utils import tensor_tree_map
from mdgen.residue_constants import restype_order, restype_atom37_mask
from mdgen.wrapper import NewMDGenWrapper
from mdgen.dataset import atom14_to_frames
import pandas as pd
import contextlib
import numpy as np
@contextlib.contextmanager
def temp_seed(seed):
state = np.random.get_state()
np.random.seed(seed)
try:
yield
finally:
np.random.set_state(state)
os.makedirs(args.out_dir, exist_ok=True)
def get_sample(arr, seqres, start_idxs, start_state, end_state, num_frames=100):
start_idx = np.random.choice(start_idxs, 1).item()
if args.random_start_idx:
start_idx = np.random.randint(low=0,high=len(arr)-num_frames)
end_idx = start_idx + num_frames
arr = np.copy(arr[start_idx: end_idx]).astype(np.float32)
seqres = torch.tensor([restype_order[c] for c in seqres])
frames = atom14_to_frames(torch.from_numpy(arr))
atom37 = torch.from_numpy(atom14_to_atom37(arr, seqres)).float()
torsions, torsion_mask = atom37_to_torsions(atom37, seqres[None])
L = frames.shape[1]
mask = torch.ones(L)
return {
'torsions': torsions,
'torsion_mask': torsion_mask[0],
'trans': frames._trans,
'rots': frames._rots._rot_mats,
'seqres': seqres,
'start_idx': start_idx,
'end_idx': end_idx,
'start_state': start_state,
'end_state': end_state,
'mask': mask, # (L,)
}
def do(model, name, seqres):
print('doing', name)
if os.path.exists(f'{args.out_dir}/{name}_metadata.pkl'):
pkl_metadata = pickle.load(open(f'{args.out_dir}/{name}_metadata.pkl', 'rb'))
msm = pkl_metadata['msm']
cmsm = pkl_metadata['cmsm']
ref_kmeans = pkl_metadata['ref_kmeans']
else:
with temp_seed(137):
feats, ref = mdgen.analysis.get_featurized_traj(f'{args.mddir}/{name}/{name}', sidechains=True)
tica, _ = mdgen.analysis.get_tica(ref)
kmeans, ref_kmeans = mdgen.analysis.get_kmeans(tica.transform(ref))
try:
msm, pcca, cmsm = mdgen.analysis.get_msm(ref_kmeans, nstates=10)
except Exception as e:
print('ERROR', e, name, flush=True)
return
pickle.dump({
'msm': msm,
'cmsm': cmsm,
'tica': tica,
'pcca': pcca,
'kmeans': kmeans,
'ref_kmeans': ref_kmeans,
}, open(f'{args.out_dir}/{name}_metadata.pkl', 'wb'))
flux_mat = cmsm.transition_matrix * cmsm.pi[None, :]
np.fill_diagonal(flux_mat, 0)
start_state, end_state = np.unravel_index(np.argmax(flux_mat, axis=None), flux_mat.shape)
ref_discrete = msm.metastable_assignments[ref_kmeans]
arr = np.lib.format.open_memmap(f'{args.data_dir}/{name}.npy', 'r')
if model.args.frame_interval:
arr = arr[::model.args.frame_interval]
ref_discrete = ref_discrete[::model.args.frame_interval]
is_start = ref_discrete == start_state
is_end = ref_discrete == end_state
trans_indices = is_start[:-args.num_frames] * is_end[args.num_frames:]
start_idxs = np.where(trans_indices)[0]
if (trans_indices).sum() == 0:
print('No transition path found for ', name, 'skipping...')
return
metadata = []
for i in tqdm.tqdm(range(args.num_batches), desc='num batch'):
batch_list = []
for _ in range(args.batch_size):
batch_list.append(
get_sample(arr, seqres, copy.deepcopy(start_idxs), start_state, end_state, num_frames=args.num_frames))
batch = next(iter(torch.utils.data.DataLoader(batch_list, batch_size=args.batch_size)))
batch = tensor_tree_map(lambda x: x.cuda(), batch)
print('Start tps for ', name, 'with start coords', batch['trans'][0, 0, 0], 'and with end coords', batch['trans'][0, -1, 0])
atom14s, aa_out = model.inference(batch)
for j in range(args.batch_size):
idx = i * args.batch_size + j
path = os.path.join(args.out_dir, f'{name}_{idx}.pdb')
atom14_to_pdb(atom14s[j].cpu().numpy(), batch['seqres'][0].cpu().numpy(), path)
traj = mdtraj.load(path)
traj.superpose(traj)
traj.save(os.path.join(args.out_dir, f'{name}_{idx}.xtc'))
traj[0].save(os.path.join(args.out_dir, f'{name}_{idx}.pdb'))
metadata.append({
'name': name,
'start_idx': batch['start_idx'][j].cpu().item(),
'end_idx': batch['end_idx'][j].cpu().item(),
'start_state': batch['start_state'][j].cpu().item(),
'end_state': batch['end_state'][j].cpu().item(),
'aa_out': aa_out[j].cpu().numpy().tolist(), # 'aa_out': 'aa_out',
'path': path,
})
json.dump(metadata, open(f'{args.out_dir}/{name}_metadata.json', 'w'))
@torch.no_grad()
def main():
model = NewMDGenWrapper.load_from_checkpoint(args.sim_ckpt)
model.eval().to('cuda')
df = pd.read_csv(args.split, index_col='name')
names = np.array(df.index)
chunks = np.array_split(names, args.n_chunks)
chunk = chunks[args.chunk_idx]
print('#' * 20)
print(f'RUN NUMBER: {args.chunk_idx}, PROCESSING IDXS {args.chunk_idx * len(chunk)}-{(args.chunk_idx + 1) * len(chunk)}')
print('#' * 20)
for name in tqdm.tqdm(chunk, desc='num peptides'):
if args.pdb_id and name not in args.pdb_id:
continue
do(model, name, df.seqres[name])
main()