-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSlipnet.py
311 lines (268 loc) · 9.2 KB
/
Slipnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Slipnet.py -- Generic slipnet class
from dataclasses import dataclass, field
from typing import Union, List, Tuple, Dict, Set, FrozenSet, Iterable, Any, \
NewType, Type, ClassVar, Sequence, Callable, Hashable, Collection, \
Sequence
from itertools import chain
from copy import copy
import operator
from operator import itemgetter, attrgetter
from heapq import nlargest
import sys
import networkx as nx # type: ignore[import]
from Propagator import Propagator, Delta
from Indenting import Indenting, indent
from Graph import Node
from util import is_iter, as_iter, pts, pl, pr
#NodeId = NewType('NodeId', int)
'''
class Node:
def features(self) -> Iterable[Hashable]:
return []
'''
@dataclass(frozen=True)
class NodeA:
'''Node and activation.'''
node: Node
a: float
def __str__(self):
return f'{self.node!s:20s} {self.a:2.5f}'
@dataclass(frozen=True)
class NeighborW:
'''Neighbor node and edge weight.'''
neighbor: Node
weight: float
@dataclass(frozen=True)
class FeatureWrapper:
feature: Union[Hashable, None] = None
def __str__(self):
return f'{self.__class__.__name__}({self.feature})'
def features(self):
yield self.feature
class Before(FeatureWrapper):
pass
class After(FeatureWrapper):
pass
@dataclass
class SlipnetPropagator(Propagator):
noise: float = 0.0 #0.005
max_total: float = 10.0
positive_feedback_rate: float = 0.5 # higher -> initial features matter more
sigmoid_p: float = 1.05 # higher -> sharper distinctions, more salience
num_iterations: int = 10
alpha: float = 0.95
inflation_constant: float = 5.0 # 2.0 is minimum
def make_deltas(self, g, old_d):
#print() #DEBUG
return chain.from_iterable(
self.deltas_from(g, old_d, nodeid)
for nodeid in old_d
)
def INFLATIONARY_deltas_from(self, g, old_d, nodeid) \
-> List[Delta]:
'''Deltas from nodeid to its neighbors.'''
result: List[Delta] = []
nodeid_a = old_d.get(nodeid, 0.0)
for neighborid, edge_d in g.adj[nodeid].items():
weight = edge_d.get('weight', 1.0)
delta = Delta(
neighborid,
weight * nodeid_a,
nodeid
)
result.append(delta)
return result
def deltas_from(self, g, old_d, nodeid) \
-> List[Delta]:
'''Deltas from nodeid to its neighbors.
Outgoing weights are quasi-averaged in a way similar to that used by
Toby Tyrell, but the quasi-averaging is done on the outgoing edges
rather than the incoming edges. This might not work as well.'''
result: List[Delta] = []
nodeid_a = old_d.get(nodeid, 0.0)
nws: List[NeighborW] = g.incident_nws(nodeid)
num_edges = len(nws)
# wtotal = sum(nws, key=attrgetter('weight'))
# wmax = max(nws, key=attrgetter('weight'))
# alpha = 1.0 / num_edges**2
multiplier = self.inflation_constant / (
num_edges + self.inflation_constant - 1
)
for nw in nws:
delta = Delta(
nw.neighbor,
nodeid_a * nw.weight * multiplier,
nodeid
)
result.append(delta)
return result
def min_value(self, g, nodeid):
return 0.0
class Slipnet(nx.Graph):
def __init__(self, nodes: Iterable[Node] = []):
super().__init__()
self.features: Set[Node] = set()
self.propagator = SlipnetPropagator()
self.add_layer2_nodes(nodes)
def ns(self, node) -> List[str]:
'''Returns list of neighbors represented as strings.'''
return [str(neighbor) for neighbor in self.neighbors(node)]
def weight(self, node1, node2) -> float:
'''Returns weight of the edge from node1 to node2, or 0.0 if no such
edge exists. It is not an error to pass a non-existent node.'''
try:
edge_d = self[node1][node2]
except KeyError:
return 0.0
return edge_d.get('weight', 0.0)
# TODO Mutual inhibition between layer-2 nodes
def add_layer2_nodes(self, nodes: Iterable[Node]):
for node in nodes:
self.add_node(node)
for f in as_iter(self.features_of(node)):
self.add_edge(f, node, weight=1.0)
self.features.add(f)
# TODO Limit to 2 levels of features
def xfeatures_of(self, x0) -> Set[Hashable]:
result = set()
visited = set()
to_visit = {x0}
print('XF', x0)
while to_visit:
next_to_visit = set()
for x in to_visit:
visited.add(x)
for f in self.features_of1(x):
result.add(f)
if f not in visited:
next_to_visit.add(f)
to_visit = next_to_visit
return result
def features_of1(self, x) -> Iterable[Hashable]:
if hasattr(x, 'features'):
yield from x.features()
else:
yield from self.default_features(x)
features_of = features_of1
def default_features(self, x) -> Iterable[Hashable]:
'''Override this in subclasses.'''
if False:
yield None
# TODO UT, UT with non-existent node
def incident_nws(self, node: Hashable) -> List[NeighborW]:
try:
return [
NeighborW(neighbor, edge_d.get('weight', 1.0))
for neighbor, edge_d in self.adj[node].items()
]
except KeyError:
#print('INCNWS', node, len(self.nodes)) #DIAG
return []
def dquery(
self,
features: Iterable[Hashable]=None,
activations_in: Dict[Hashable, float]=None
) -> Dict[Hashable, float]:
'''Pass either features or a dictionary of activations.
Returns dictionary of activations.'''
if activations_in is None:
activations_in = {}
for f in as_iter(features):
if isinstance(f, NodeA):
a = f.a
f = f.node
else:
try:
a = f.default_a
except AttributeError:
a = 1.0
activations_in[f] = max(activations_in.get(f, 0.0), a)
#print('DQ', type(activations_in))
return self.propagator.propagate(self, activations_in)
def query(
self,
features: Iterable[Hashable]=None,
activations_in: Dict[Hashable, float]=None,
type: Type=None,
k: Union[int, None]=None,
filter: Union[Callable, None]=None
) -> List[NodeA]:
activations_out = self.dquery(
features=features, activations_in=activations_in
)
#print('QUERY')
#pr(self.top(activations_out, k=k))
#print('SUM', sum(activations_out.values()))
return self.top(activations_out, type, k, filter=filter)
@classmethod
def to_d(cls, nas: List[NodeA]) -> Dict[Hashable, float]:
return dict((na.node, na.a) for na in nas)
@classmethod
def top(
cls,
d: Dict[Hashable, float],
type: Type=None,
k: Union[int, None]=None,
filter: Union[Callable, None]=None
) -> List[NodeA]:
if filter is None:
filter = lambda x: True
if type is None:
nas = [
NodeA(node, a)
for (node, a) in d.items()
if filter(node)
]
else:
nas = [
NodeA(node, a)
for (node, a) in d.items()
if isinstance(node, type) and filter(node)
]
if k is None:
return sorted(nas, key=attrgetter('a'), reverse=True)
else:
return nlargest(k, nas, key=attrgetter('a'))
def qnodes(self, pred) -> Iterable:
''''Query the nodes'. Returns a generator of all the nodes that meet
pred.'''
# TODO Allow pred to a function, not just a class.
return (node for node in self if isinstance(node, pred))
def pr(self):
'''Prints the slipnet.'''
p = Indenting(sys.stdout, prefix=' ')
for node in sorted(self.nodes, key=str):
print(str(node), file=p)
with indent(p):
for neighbor in sorted(self.neighbors(node), key=str):
print(
f'{self.weight(node, neighbor): .2f} {neighbor}',
file=p
)
class Leading(FeatureWrapper):
'''Indicates the leading digit of something.'''
pass
class Trailing(FeatureWrapper):
'''Indicates the last digit of something.'''
pass
@dataclass(frozen=True)
class Even:
pass
@dataclass(frozen=True)
class Odd:
pass
class IntFeatures(Slipnet):
def default_features(self, x):
#print('INTF')
if isinstance(x, int):
if x & 1:
yield Odd()
else:
yield Even()
s = str(x)
if len(s) > 1:
yield Leading(int(s[0]))
yield Trailing(int(s[1]))
else:
yield from super().default_features(x)
empty_slipnet = Slipnet()