forked from ibm-build-lab/RAG-LLM-Service
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
256 lines (198 loc) · 7.86 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import uvicorn
import sys
from dotenv import load_dotenv
# Fast API
from fastapi import FastAPI, Security, HTTPException
from fastapi.security.api_key import APIKeyHeader
from starlette.status import HTTP_403_FORBIDDEN, HTTP_500_INTERNAL_SERVER_ERROR
from fastapi.middleware.cors import CORSMiddleware
# ElasticSearch
from elasticsearch import AsyncElasticsearch
# wx.ai
from ibm_watson_machine_learning.foundation_models import Model
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
# Custom type classes
from customTypes.queryLLMElserResponse import queryLLMElserResponse
from customTypes.queryLLMElserRequest import queryLLMElserRequest, LLMParams
# wx.ai
from ibm_watson_machine_learning.foundation_models import Model
app = FastAPI()
# Set up CORS
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
load_dotenv()
# RAG APP Security
API_KEY_NAME = "RAG-APP-API-Key"
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
#Token to IBM Cloud
ibm_cloud_api_key = os.environ.get("IBM_CLOUD_API_KEY")
project_id = os.environ.get("WX_PROJECT_ID")
# wxd creds
wxd_creds = {
"username": os.environ.get("WXD_USERNAME"),
"password": os.environ.get("WXD_PASSWORD"),
"wxdurl": os.environ.get("WXD_URL")
}
wd_creds = {
"apikey": os.environ.get("WD_API_KEY"),
"wd_url": os.environ.get("WD_URL")
}
# WML Creds
wml_credentials = {
"url": os.environ.get("WX_URL"),
"apikey": os.environ.get("IBM_CLOUD_API_KEY")
}
# Create a global client connection to elastic search
async_es_client = AsyncElasticsearch(
wxd_creds["wxdurl"],
basic_auth=(wxd_creds["username"], wxd_creds["password"]),
verify_certs=True,
request_timeout=3600,
)
model_id = os.environ.get("LLM_MODEL_ID")
decoding_method = os.environ.get("DECODING_METHOD")
max_tokens = int(os.environ.get("MAX_TOKENS"))
min_tokens = int(os.environ.get("MIN_TOKENS"))
llm_params = LLMParams(model_id=model_id, parameters={"decoding_method": decoding_method, "max_new_tokens": max_tokens, "min_new_tokens": min_tokens})
llm_instructions = os.environ.get("LLM_INSTRUCTIONS")
model = Model(
model_id=model_id,
params=llm_params.parameters.dict(),
credentials=wml_credentials,
project_id=project_id
)
# Basic security for accessing the App
async def get_api_key(api_key_header: str = Security(api_key_header)):
if api_key_header == os.environ.get("RAG_APP_API_KEY"):
return api_key_header
else:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN, detail="Could not validate RAG APP credentials. Please check your ENV."
)
@app.get("/")
def index(api_key: str = Security(get_api_key)):
return {"Hello": "World"}
@app.post("/queryWXDLLM")
async def queryWXDLLM(request: queryLLMElserRequest, api_key: str = Security(get_api_key))->queryLLMElserResponse:
question = request.question
num_results = request.num_results
index_name = "search-juniper-documentation-chunked"
es_model_name = ".elser_model_2_linux-x86_64"
min_confidence = 10
# Sanity check for instructions
if "{query_str}" not in llm_instructions or "{context_str}" not in llm_instructions:
data_response = {
"llm_response": "",
"references": [],
"error": "LLM instructions must contain {query_str} and {context_str}"
}
return queryLLMElserResponse(**data_response)
# Query indexes
try:
relevant_chunks = []
# query_regular_index = await async_es_client.search(
# index=index_names[0],
# query={
# "text_expansion": {
# "tokens": {
# "model_id": es_model_name,
# "model_text": question,
# }
# }
# },
# size=num_results,
# min_score=min_confidence
# )
query_nested_index = await async_es_client.search(
#index=index_name,
query={
"nested": {
"path": "passages",
"query": {
"text_expansion": {
"passages.sparse.tokens": {
"model_id": es_model_name,
"model_text": question
}
}
},
"inner_hits": {"_source": {"excludes": ["passages.sparse"]}}
}
},
size=num_results,
min_score=min_confidence
)
except Exception as e:
return {"msg": "Error searching index", "error": e}
# Get relevant chunks and format
#relevant_chunks = x, query_nested_index]
#hits_index1 = [hit for hit in relevant_chunks[0]["hits"]["hits"]] #support portal
hits_index = [hit for hit in query_nested_index["hits"]["hits"]]
context2_preprocess = []
for hit in hits_index:
for passage in hit["_source"]["passages"]:
context2_preprocess.append(passage["text"])
#context1 = "\n\n\n".join([rel_ctx["_source"]['Text'] for rel_ctx in hits_index1])
#context1 = "\n" #removing support portal query
context = "\n\n".join(context2_preprocess)
prompt_text = get_custom_prompt(llm_instructions, context, question)
print("\n\n\n\n", prompt_text)
# LLM answer generation
print(model.params.items())
model_res = model.generate_text(prompt_text)
# LLM references formatting
uniform_format = {
"url": ["url"],
"title": ["title"],
"score": ["score"],
#"text": ["Text", "text"]
}
references_context = [(chunks["_source"], chunks["_score"]) for chunks in query_nested_index["hits"]["hits"]]
#references_context2 = [(chunks["_source"], chunks["_score"]) for chunks in relevant_chunks[1]["hits"]["hits"]]
references = []
#for (ref, score) in references_context1:
#ref["score"] = score
#references.append(convert_to_uniform_format(ref, uniform_format)) Hiding support portal references
for (ref, score) in references_context:
for passage in ref["passages"]:
passage["score"] = score
references.append(convert_to_uniform_format(passage, uniform_format))
references = sort_and_delete_duplicates(references, sort_key="score", unique_key="url")
res = {
"llm_response": model_res,
"references": references
}
return queryLLMElserResponse(**res)
def get_custom_prompt(llm_instructions, context_str, query_str):#
# Replace the placeholders in llm_instructions with the actual query and context
prompt = llm_instructions.replace("{query_str}", query_str).replace("{context_str}", context_str)
return prompt
def convert_to_uniform_format(obj, uniform_format):
uniform_obj = {}
for key, possible_keys in uniform_format.items():
for possible_key in possible_keys:
if possible_key in obj:
uniform_obj[key] = obj[possible_key]
break
if key not in uniform_obj:
uniform_obj[key] = None
return uniform_obj
def sort_and_delete_duplicates(obj_list, sort_key, unique_key):
sorted_objects = sorted(obj_list, key=lambda x: x[sort_key], reverse=True)
unique_objects = []
seen_keys = set()
for obj in sorted_objects:
if obj[unique_key] not in seen_keys:
unique_objects.append(obj)
seen_keys.add(obj[unique_key])
return unique_objects
if __name__ == '__main__':
if 'uvicorn' not in sys.argv[0]:
uvicorn.run("app:app", host='0.0.0.0', port=4050, reload=True)