forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGridSampler.cpp
176 lines (143 loc) · 5.43 KB
/
GridSampler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Config.h>
#include <ATen/cuda/CUDAConfig.h>
#include <ATen/native/GridSamplerUtils.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/empty.h>
#include <ATen/ops/cudnn_grid_sampler_native.h>
#include <ATen/ops/cudnn_grid_sampler_backward_native.h>
#endif
#if !AT_CUDNN_ENABLED()
namespace at { namespace native {
// See Note [ATen preprocessor philosophy]
Tensor cudnn_grid_sampler_forward(
const Tensor& input_t, const Tensor& grid_t) {
AT_ERROR("cudnn_grid_sampler_forward: ATen not compiled with cuDNN support");
}
std::tuple<Tensor, Tensor> cudnn_grid_sampler_backward(
const Tensor& input_t, const Tensor& grid_t,
const Tensor& grad_output_t) {
AT_ERROR("cudnn_grid_sampler_backward: ATen not compiled with cuDNN support");
}
}}
#else // AT_CUDNN_ENABLED
#include <ATen/cudnn/Descriptors.h>
#include <ATen/cudnn/Types.h>
#include <ATen/cudnn/Utils.h>
#include <ATen/cuda/Exceptions.h>
#include <ATen/TensorUtils.h>
#include <c10/util/irange.h>
// TODO: descriptor checking
namespace at { namespace native {
namespace {
void setSamplerDescriptor(SpatialTransformerDescriptor& desc, cudnnDataType_t dataType, const at::Tensor& tensor)
{
int inputSize[4] = {0};
for (const auto i : c10::irange(tensor.dim())) {
inputSize[i] = (int) tensor.size(i);
}
desc.set(dataType, 4, inputSize);
}
void checkGridSize(CheckedFrom c, TensorArg grid, TensorArg input)
{
// assert size of grid is n*h*w*2
// FYI: grid is between [-1, 1], where -1 left most pixel,
// 1 represents right most pixel (and hence 0 is the center pixel)
// if grid has values >1 or <-1, those values are ignored
checkContiguous(c, grid);
checkDim(c, grid, 4);
// TODO: Maybe more user friendly to report where the expected size
// came from
checkSize(c, grid, 0, input->size(0));
checkSize(c, grid, 3, 2);
}
} // namespace
Tensor cudnn_grid_sampler_forward(
const Tensor& input_t, const Tensor& grid_t)
{
// See NOTE [ grid_sampler Native Functions ].
// Add checks here in case this is called instead of grid_sampler.
check_grid_sampler_common(input_t, grid_t);
TORCH_CHECK(
cond_cudnn_grid_sampler(input_t, grid_t),
"Invalid arguments to cudnn_grid_sampler_forward");
auto input_contig = contiguousIfZeroInStrides(input_t);
auto grid_contig = grid_t.contiguous();
TensorArg input{ input_contig, "input", 1 },
grid{ grid_contig, "grid", 2 };
CheckedFrom c = "cudnn_grid_sampler_forward";
checkAllSameGPU(c, {input, grid});
checkAllSameType(c, {input, grid});
checkGridSize(c, grid, input);
checkDim(c, input, 4);
auto output_t = at::empty({0}, input->options());
output_t.resize_({input->size(0), input->size(1), grid->size(1), grid->size(2)});
TensorDescriptor idesc{ *input }; // input descriptor
TensorDescriptor odesc{ output_t }; // output descriptor
SpatialTransformerDescriptor desc; // sampler descriptor
auto handle = getCudnnHandle();
auto dataType = getCudnnDataType(*input);
setSamplerDescriptor(desc, dataType, output_t);
Constant one(dataType, 1);
Constant zero(dataType, 0);
AT_CUDNN_CHECK(cudnnSpatialTfSamplerForward(
handle, desc.desc(),
&one, idesc.desc(), input->data_ptr(),
grid->data_ptr(),
&zero, odesc.desc(), output_t.data_ptr()
));
return output_t;
}
// NB: CuDNN does not support output mask; you always get both
// gradients.
std::tuple<Tensor, Tensor> cudnn_grid_sampler_backward(
const Tensor& input_t, const Tensor& grid_t,
const Tensor& grad_output_t)
{
// See NOTE [ grid_sampler Native Functions ].
// Add checks here in case this is called instead of grid_sampler.
check_grid_sampler_common(input_t, grid_t);
TORCH_CHECK(
cond_cudnn_grid_sampler(input_t, grid_t),
"Invalid arguments to cudnn_grid_sampler_backward");
auto input_contig = contiguousIfZeroInStrides(input_t);
auto grid_contig = grid_t.contiguous();
auto grad_output_contig = contiguousIfZeroInStrides(grad_output_t);
TensorArg input{ input_contig, "input", 1 },
grid{ grid_contig, "grid", 2 },
grad_output{ grad_output_contig, "grad_output", 3 };
CheckedFrom c = "cudnn_grid_sampler_backward";
checkAllSameGPU(c, {input, grad_output, grid});
checkGridSize(c, grid, input);
checkDim(c, input, 4);
checkDim(c, grad_output, 4);
auto grad_input_t = at::empty({0}, input->options());
grad_input_t.resize_(input->sizes());
auto grad_grid_t = at::empty({0}, grid->options());
grad_grid_t.resize_(grid->sizes());
TensorDescriptor idesc{ *input }; // input descriptor
TensorDescriptor odesc{ *grad_output }; // grad_output descriptor
TensorDescriptor gdesc{ grad_input_t }; // grad_input descriptor
SpatialTransformerDescriptor desc; // sampler descriptor
auto handle = getCudnnHandle();
auto dataType = getCudnnDataType(*input);
setSamplerDescriptor(desc, dataType, *grad_output);
Constant one(dataType, 1);
Constant zero(dataType, 0);
AT_CUDNN_CHECK(cudnnSpatialTfSamplerBackward(
handle, desc.desc(),
&one, idesc.desc(), input->data_ptr(),
&zero, gdesc.desc(), grad_input_t.data_ptr(),
&one, odesc.desc(), grad_output->data_ptr(),
// intruigingly, the outputs don't need descriptors
grid->data_ptr(),
&zero, grad_grid_t.data_ptr()
));
return std::tuple<Tensor, Tensor>{ grad_input_t, grad_grid_t };
}
}} // namespace at::cudnn
#endif