forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Linear.cpp
452 lines (387 loc) · 15.6 KB
/
Linear.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/Config.h>
#include <ATen/Parallel.h>
#include <ATen/core/Tensor.h>
#include <torch/library.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_to_dense_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/linear.h>
#include <ATen/ops/mkldnn_linear_backward_input.h>
#include <ATen/ops/mkldnn_linear_backward_input_native.h>
#include <ATen/ops/mkldnn_linear_backward_native.h>
#include <ATen/ops/mkldnn_linear_backward_weights.h>
#include <ATen/ops/mkldnn_linear_backward_weights_native.h>
#include <ATen/ops/mkldnn_linear_native.h>
#endif
#if !AT_MKLDNN_ENABLED()
namespace at {
namespace native {
Tensor mkldnn_linear(
const Tensor& self,
const Tensor& weight, const c10::optional<Tensor>& bias_opt) {
TORCH_CHECK(false, "mkldnn_linear: ATen not compiled with MKLDNN support");
}
Tensor mkldnn_linear_backward_input(
IntArrayRef input_size, const Tensor& grad_output, const Tensor& weight) {
TORCH_CHECK(false, "mkldnn_linear_backward_input: ATen not compiled with MKLDNN support");
}
std::tuple<Tensor, Tensor> mkldnn_linear_backward_weights(
const Tensor& grad_output, const Tensor& input, const Tensor& weight, bool bias_defined) {
TORCH_CHECK(false, "mkldnn_linear_backward_weights: ATen not compiled with MKLDNN support");
}
std::tuple<Tensor, Tensor, Tensor> mkldnn_linear_backward(
const Tensor& input, const Tensor& grad_output_t,
const Tensor& weight, std::array<bool,3> output_mask) {
TORCH_CHECK(false, "mkldnn_linear_backward: ATen not compiled with MKLDNN support");
}
} // namespace native
} // namespace at
#else // AT_MKLDNN_ENABLED
#include <ATen/native/mkldnn/MKLDNNCommon.h>
#include <ATen/native/mkldnn/Utils.h>
namespace at {
namespace native {
Tensor mkldnn_linear(
const Tensor& self,
const Tensor& weight_t, const c10::optional<Tensor>& bias_opt) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> bias_maybe_owned = at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
const int64_t dim = self.dim();
TORCH_CHECK(
self.dim() != 0,
"mkldnn_linear: input needs to has dim at least 1, input dim ",
self.dim());
TORCH_CHECK(self.is_mkldnn(),
"mkldnn_linear: input needs to be mkldnn layout");
if (self.scalar_type() == ScalarType::BFloat16) {
TORCH_CHECK(mkldnn_bf16_device_check(),
"mkldnn_linear: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq");
}
// reshape first if input dim != 2 and the reshape will cost a memory copy.
auto self_reshaped =
dim == 2 ? self : self.reshape({-1, self.size(self.dim() - 1)});
const ideep::tensor x = itensor_from_mkldnn(self_reshaped);
// weight_t can be a mkldnn tensor or dense tensor.
const Tensor weight = (weight_t.is_mkldnn() || weight_t.is_contiguous()) ? weight_t : weight_t.contiguous();
const ideep::tensor w = itensor_from_tensor(weight);
ideep::tensor y;
if (bias.defined()) {
const ideep::tensor b = itensor_from_tensor(bias);
ideep::inner_product_forward::compute(x, w, b, y);
} else {
ideep::inner_product_forward::compute(x, w, y);
}
auto input_size = self.sizes();
std::vector<int64_t> output_size(input_size.begin(), input_size.end() - 1);
output_size.push_back(weight.size(0));
if (self.dim() != 2) {
return new_with_itensor_mkldnn(std::move(y), optTypeMetaToScalarType(self.options().dtype_opt()),
self.options().device_opt()).reshape(output_size);
}
return new_with_itensor_mkldnn(std::move(y), optTypeMetaToScalarType(self.options().dtype_opt()),
self.options().device_opt());
}
Tensor mkldnn_linear_backward_input(
IntArrayRef input_size, const Tensor& grad_output, const Tensor& weight_t){
TORCH_CHECK(grad_output.is_mkldnn(),
"mkldnn_linear_backward: grad_output needs to be mkldnn layout");
TORCH_CHECK(weight_t.device().is_cpu() && weight_t.scalar_type() == kFloat,
"mkldnn_linear_backward: weight_t needs to be a dense tensor");
auto grad_output_reshaped = grad_output.dim() > 2 ?
grad_output.reshape({-1, grad_output.size(grad_output.dim() - 1)}) : grad_output;
ideep::tensor& grady = itensor_from_mkldnn(grad_output_reshaped);
// weight_t always dense tensor for training.
const Tensor weight = weight_t.is_contiguous() ? weight_t : weight_t.contiguous();
const ideep::tensor w = itensor_view_from_dense(weight);
std::vector<int64_t> input_reshaped_size;
input_reshaped_size.push_back(grad_output_reshaped.size(0));
input_reshaped_size.push_back(weight.size(1));
ideep::tensor gradx;
ideep::inner_product_backward_data::compute(
grady, w, {input_reshaped_size.begin(), input_reshaped_size.end()}, gradx);
if (input_size.size() > 2) {
return new_with_itensor_mkldnn(std::move(gradx), optTypeMetaToScalarType(grad_output.options().dtype_opt()),
grad_output.options().device_opt()).reshape(input_size);
}
return new_with_itensor_mkldnn(std::move(gradx), optTypeMetaToScalarType(grad_output.options().dtype_opt()),
grad_output.options().device_opt());
}
std::tuple<Tensor, Tensor> mkldnn_linear_backward_weights(
const Tensor& grad_output, const Tensor& input, const Tensor& weight, bool bias_defined) {
TORCH_CHECK(grad_output.is_mkldnn() && input.is_mkldnn(),
"mkldnn_linear_backward: grad_output and input needs to be mkldnn layout");
TORCH_CHECK(weight.device().is_cpu() && weight.scalar_type() == kFloat,
"mkldnn_linear_backward: weight needs to be a dense tensor");
auto grad_output_reshaped = grad_output.dim() > 2 ?
grad_output.reshape({-1, grad_output.size(grad_output.dim() - 1)}) : grad_output;
auto input_reshaped = input.dim() > 2 ? input.reshape({-1, input.size(input.dim() - 1)}) : input;
ideep::tensor& grady = itensor_from_mkldnn(grad_output_reshaped);
ideep::tensor& x = itensor_from_mkldnn(input_reshaped);
ideep::tensor gradw, gradb;
if (bias_defined) {
ideep::inner_product_backward_weights::compute(x, grady, gradw, gradb);
} else {
ideep::inner_product_backward_weights::compute(x, grady, gradw);
}
return std::tuple<Tensor, Tensor>{
mkldnn_to_dense(new_with_itensor_mkldnn(std::move(gradw),
optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt())),
mkldnn_to_dense(new_with_itensor_mkldnn(std::move(gradb),
optTypeMetaToScalarType(weight.options().dtype_opt()),
weight.options().device_opt()))};
}
std::tuple<Tensor, Tensor, Tensor> mkldnn_linear_backward(
const Tensor& input, const Tensor& grad_output,
const Tensor& weight, std::array<bool,3> output_mask) {
Tensor grad_input, grad_weight, grad_bias;
if (output_mask[0]) {
grad_input = at::mkldnn_linear_backward_input(input.sizes(), grad_output, weight);
}
if (output_mask[1] || output_mask[2]) {
std::tie(grad_weight, grad_bias) = at::mkldnn_linear_backward_weights(grad_output, input, weight, output_mask[2]);
}
return std::tuple<Tensor, Tensor, Tensor>{grad_input, grad_weight, grad_bias};
}
Tensor mkldnn_linear_pointwise(
const Tensor& input_t,
const Tensor& weight_t,
const c10::optional<Tensor>& bias_opt,
c10::string_view attr,
torch::List<c10::optional<at::Scalar>> scalars,
c10::optional<c10::string_view> algorithm) {
auto input = input_t.contiguous();
auto input_size = input.sizes();
const int64_t dim = input.dim();
auto input_reshaped =
dim == 2 ? input : input.reshape({-1, input.size(input.dim() - 1)});
std::vector<int64_t> output_size(input_size.begin(), input_size.end() - 1);
output_size.push_back(weight_t.size(0));
auto output = at::empty(output_size, input.options());
if (output.sym_numel() == 0) {
return output;
}
if (dim != 2) {
std::vector<int64_t> output_size_reshaped = {input_reshaped.size(0),
weight_t.size(0)};
output = output.reshape(output_size_reshaped);
}
c10::impl::ExcludeDispatchKeyGuard edkg(c10::autograd_dispatch_keyset);
ideep::tensor mkldnn_output = itensor_from_tensor(output);
c10::MaybeOwned<Tensor> bias_maybe_owned =
at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
const ideep::tensor mkldnn_input = itensor_view_from_dense(input_reshaped);
c10::optional<ideep::tensor> mkldnn_bias{c10::nullopt};
if (bias.defined()) {
mkldnn_bias = itensor_from_tensor(bias);
}
const ideep::tensor w = itensor_from_tensor(weight_t);
ideep::attr_t op_attr = ideep::attr_t();
if (attr != "none") {
auto it = fusion_unary_attr_map().find(attr);
TORCH_CHECK(
it != fusion_unary_attr_map().end(), "Fusion behavior undefined.");
op_attr = it->second(scalars, algorithm);
}
if (mkldnn_bias.has_value()) {
ideep::inner_product_forward::compute</*reorder_src=*/false, /*reorder_weight=*/false>(
mkldnn_input,
w,
mkldnn_bias.value(),
mkldnn_output,
op_attr);
} else {
ideep::inner_product_forward::compute</*reorder_src=*/false, /*reorder_weight=*/false>(
mkldnn_input,
w,
mkldnn_output,
op_attr);
}
if (dim != 2) {
output = output.reshape(output_size);
}
return output;
}
Tensor mkldnn_linear_pointwise_binary(
const Tensor& input_t,
const Tensor& other_t,
const Tensor& weight_t,
const c10::optional<Tensor>& bias_opt,
c10::string_view attr) {
c10::MaybeOwned<Tensor> bias_maybe_owned =
at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
// Make sure inputs have same type(device, layout, dtype), device is cpu and
// dtype is float or bfloat16.
check_mkldnn_binary_fusion_inputs(input_t, other_t, weight_t, bias);
auto input = input_t.contiguous();
auto it_binary = fusion_binary_alg_map().find(attr);
TORCH_CHECK(
it_binary != fusion_binary_alg_map().end(), "Fusion behavior undefined.");
auto input_size = input.sizes();
const int64_t dim = input.dim();
auto input_reshaped =
dim == 2 ? input : input.reshape({-1, input.size(input.dim() - 1)});
std::vector<int64_t> output_size(input_size.begin(), input_size.end() - 1);
output_size.push_back(weight_t.size(0));
auto output = at::empty(output_size, input.options());
if (output.sym_numel() == 0) {
return output;
}
auto other_reshaped = other_t.contiguous();
if (dim != 2) {
std::vector<int64_t> output_size_reshaped = {
input_reshaped.size(0), weight_t.size(0)};
output = output.reshape(output_size_reshaped);
other_reshaped = other_reshaped.reshape(output_size_reshaped);
}
TORCH_CHECK(
output.sizes() == other_reshaped.sizes(),
"linear_binary_run expects the size of output and other tensor to be the same");
c10::impl::ExcludeDispatchKeyGuard edkg(c10::autograd_dispatch_keyset);
ideep::tensor mkldnn_output = itensor_from_tensor(output);
const ideep::tensor mkldnn_other = itensor_from_tensor(other_reshaped);
const ideep::tensor mkldnn_input = itensor_view_from_dense(input_reshaped);
c10::optional<ideep::tensor> mkldnn_bias{c10::nullopt};
if (bias.defined()) {
mkldnn_bias = itensor_from_tensor(bias);
}
const ideep::tensor w = itensor_from_tensor(weight_t);
auto other_desc = mkldnn_other.get_desc();
auto op_attr = ideep::attr_t::fuse_binary(it_binary->second, other_desc);
if (mkldnn_bias.has_value()) {
ideep::inner_product_forward::compute_binary</*reorder_src=*/false, /*reorder_weight=*/false>(
mkldnn_input,
mkldnn_other,
w,
mkldnn_bias.value(),
mkldnn_output,
op_attr);
} else {
ideep::inner_product_forward::compute_binary</*reorder_src=*/false, /*reorder_weight=*/false>(
mkldnn_input, mkldnn_other, w, mkldnn_output, op_attr);
}
if (dim != 2) {
output = output.reshape(output_size);
}
return output;
}
#if AT_MKL_ENABLED()
#include <mkl.h>
Tensor mkl_linear(
const Tensor& self,
const Tensor& mkl_weight_t,
const Tensor& origin_weight_t,
const c10::optional<Tensor>& bias_opt,
const int64_t prepack_batch_size) {
c10::MaybeOwned<Tensor> bias_maybe_owned =
at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
TORCH_CHECK(
self.options().type_equal(origin_weight_t.options()),
"Input type (",
self.toString(),
") and weight type (",
origin_weight_t.toString(),
") should be the same");
TORCH_CHECK(
!bias.defined() || (self.options().type_equal(bias.options())),
"Input type (",
self.toString(),
") and bias type (",
bias.toString(),
") should be the same");
TORCH_CHECK(
mkl_weight_t.scalar_type() == origin_weight_t.scalar_type() &&
origin_weight_t.scalar_type() == kFloat,
"mkl_linear: weight dtype should be float");
c10::impl::ExcludeDispatchKeyGuard edkg(c10::autograd_dispatch_keyset);
auto input_size = self.sizes();
std::vector<int64_t> output_size(input_size.begin(), input_size.end() - 1);
output_size.push_back(origin_weight_t.size(0));
auto output = at::empty(output_size, self.options());
if (self.sym_numel() == 0) {
// avoid to call self.numel() / 0 when self.size(self.dim() - 1)==0.
return output.fill_(0);
}
if (output.sym_numel() == 0) {
return output;
}
int64_t M = self.numel() / self.size(self.dim() - 1);
if (M == prepack_batch_size && mkl_weight_t.is_mkldnn()) {
auto self_ = self.is_contiguous() ? self : self.contiguous();
auto K = origin_weight_t.size(1);
auto N = origin_weight_t.size(0);
const ideep::tensor& w = itensor_from_mkldnn(mkl_weight_t);
auto in_ptr = self_.data_ptr<float>();
auto weight_ptr = (float*)(w.get_data_handle());
auto out_ptr = output.data_ptr<float>();
if (bias.defined()) {
auto bias_ = bias.is_contiguous() ? bias : bias.contiguous();
auto bias_ptr = bias_.data_ptr<float>();
at::parallel_for(0, M, 1, [&](int64_t begin, int64_t end) {
for (const auto d : c10::irange(begin, end)) {
memcpy(out_ptr + d * N, bias_ptr, sizeof(float) * N);
}
});
}
cblas_sgemm_compute(
CblasRowMajor,
CblasNoTrans,
CblasPacked,
M,
N,
K,
in_ptr,
K,
weight_ptr,
K,
bias.defined() ? 1.f : 0.f,
out_ptr,
N);
} else {
output = at::linear_out(output, self, origin_weight_t, bias_opt);
}
return output;
}
TORCH_LIBRARY_IMPL(mkl, CPU, m) {
m.impl(TORCH_SELECTIVE_NAME("mkl::_mkl_linear"), TORCH_FN(mkl_linear));
}
TORCH_LIBRARY_IMPL(mkl, MkldnnCPU, m) {
m.impl(TORCH_SELECTIVE_NAME("mkl::_mkl_linear"), TORCH_FN(mkl_linear));
}
#else // AT_MKL_ENABLED
Tensor mkl_linear(
const Tensor& self,
const Tensor& mkl_weight_t,
const Tensor& origin_weight_t,
const c10::optional<Tensor>& bias_opt,
const int64_t prepack_batch_size) {
TORCH_CHECK(false, "mkl_linear: ATen not compiled with MKL support");
}
#endif// AT_MKL_ENABLED
TORCH_LIBRARY_IMPL(mkldnn, CPU, m) {
m.impl(
TORCH_SELECTIVE_NAME("mkldnn::_linear_pointwise"),
TORCH_FN(mkldnn_linear_pointwise));
m.impl(
TORCH_SELECTIVE_NAME("mkldnn::_linear_pointwise.binary"),
TORCH_FN(mkldnn_linear_pointwise_binary));
}
TORCH_LIBRARY_IMPL(mkldnn, MkldnnCPU, m) {
m.impl(
TORCH_SELECTIVE_NAME("mkldnn::_linear_pointwise"),
TORCH_FN(mkldnn_linear_pointwise));
m.impl(
TORCH_SELECTIVE_NAME("mkldnn::_linear_pointwise.binary"),
TORCH_FN(mkldnn_linear_pointwise_binary));
}
} // namespace native
} // namespace at
#endif // AT_MKLDNN_ENABLED