forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_expr.cpp
836 lines (711 loc) · 25.5 KB
/
test_expr.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
#include <gtest/gtest.h>
#include <test/cpp/tensorexpr/test_base.h>
#include <c10/util/irange.h>
#include <test/cpp/tensorexpr/padded_buffer.h>
#include <test/cpp/tensorexpr/test_utils.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/ir_verifier.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <cmath>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
using SimpleIRExprEval = ExprEval<SimpleIREvaluator>;
TEST(Expr, BasicValueTest) {
ExprHandle a = IntImm::make(2), b = IntImm::make(3);
ExprHandle c = Add::make(a, b);
SimpleIRExprEval eval(c);
ASSERT_EQ(eval.value<int>(), 5);
}
TEST(Expr, BasicValueTest02) {
ExprHandle a(2.0f);
ExprHandle b(3.0f);
ExprHandle c(4.0f);
ExprHandle d(5.0f);
ExprHandle f = (a + b) - (c + d);
SimpleIRExprEval eval(f);
ASSERT_EQ(eval.value<float>(), -4.0f);
}
TEST(Expr, IsChannelsLastContiguous) {
std::vector<VarHandle> vars = {
VarHandle("var1", kLong),
VarHandle("var2", kLong),
VarHandle("var3", kLong),
VarHandle("var4", kLong),
VarHandle("var5", kLong)};
// {
// key: ndims,
// value: [
// ...
// [dim_2, dim_1, ..., dim_n]
// ]
// }
using shapGenInfo = std::unordered_map<int, std::vector<std::vector<int>>>;
// {
// size: [ExprHandle_1, ExprHandle_2, ..., ExprHandle_n],
// strides: [
// ...
// [ExprHandle_x, ExprHandle_y, ..., ExprHandle_z]
// ]
// }
using shapeInfo =
std::pair<std::vector<ExprHandle>, std::vector<std::vector<ExprHandle>>>;
std::vector<int> dims = {3, 4, 5};
std::unordered_map<int, std::vector<ExprHandle>> dims_expr_vec_conf = {
{3, std::vector<ExprHandle>(vars.begin(), vars.begin() + 2)},
{4, std::vector<ExprHandle>(vars.begin(), vars.begin() + 3)},
{5, std::vector<ExprHandle>(vars.begin(), vars.begin() + 4)},
};
shapGenInfo channels_last_cont_shape_conf = {
{3, {{1, 2, 0}}}, {4, {{1, 3, 2, 0}}}, {5, {{1, 4, 3, 2, 0}}}};
shapGenInfo channels_last_non_cont_shape_conf = {
{3, {{2, 1, 0}, {1, 0, 2}}},
{4, {{3, 1, 2, 0}, {1, 2, 3, 0}, {1, 0, 2, 3}}},
{5, {{4, 3, 2, 1, 0}, {1, 3, 2, 4, 0}, {1, 4, 3, 2, 0}}}};
shapGenInfo cont_shape_conf = {
{3, {{0, 1, 2}}}, {4, {{0, 1, 2, 3}}}, {5, {{0, 1, 2, 3, 4}}}};
auto shape_gen_fn = [dims_expr_vec_conf](
int ndims, shapGenInfo shape_gen_info) -> shapeInfo {
auto dims_expr_vec = dims_expr_vec_conf.at(ndims);
std::vector<std::vector<ExprHandle>> strides_expr_vec;
for (size_t i = 0; i < strides_expr_vec.size(); i++) {
strides_expr_vec[i].resize(ndims);
}
auto stride_gen_fn = [](int indicator, ExprHandle a, ExprHandle b) {
if (indicator % 2 == 0) {
return a * b;
} else {
return b * a;
}
};
auto stride_order_vec = shape_gen_info.at(ndims);
for (size_t i = 0; i < strides_expr_vec.size(); i++) {
auto stride_order = stride_order_vec[i];
strides_expr_vec[i][stride_order[0]] = 1;
for (size_t j = 1; j < stride_order.size(); j++) {
auto cur_dim_idx = stride_order[j];
auto adjacent_dim_idx = stride_order[j - 1];
strides_expr_vec[i][cur_dim_idx] = stride_gen_fn(
i,
dims_expr_vec[adjacent_dim_idx],
strides_expr_vec[i][adjacent_dim_idx]);
}
}
return {dims_expr_vec, strides_expr_vec};
};
auto check_channels_last_fn = [](int ndims, BufHandle buf_handle) -> bool {
if (ndims == 3) {
return buf_handle.is_channels_last_1d_contiguous();
} else if (ndims == 4) {
return buf_handle.is_contiguous(at::MemoryFormat::ChannelsLast);
} else {
return buf_handle.is_contiguous(at::MemoryFormat::ChannelsLast3d);
}
};
// channels-last contigous
for (size_t i = 0; i < dims.size(); i++) {
auto shape_info = shape_gen_fn(dims[i], channels_last_cont_shape_conf);
for (size_t j = 0; j < shape_info.second.size(); j++) {
BufHandle buf_handle("a", shape_info.first, shape_info.second[j], kFloat);
ASSERT_EQ(check_channels_last_fn(dims[i], buf_handle), true);
}
}
// channels-last non-contigous
for (size_t i = 0; i < dims.size(); i++) {
auto shape_info = shape_gen_fn(dims[i], channels_last_non_cont_shape_conf);
for (size_t j = 0; j < shape_info.second.size(); j++) {
BufHandle buf_handle("a", shape_info.first, shape_info.second[j], kFloat);
ASSERT_EQ(check_channels_last_fn(dims[i], buf_handle), false);
}
}
// contiguous
for (size_t i = 0; i < dims.size(); i++) {
auto shape_info = shape_gen_fn(dims[i], cont_shape_conf);
for (size_t j = 0; j < shape_info.second.size(); j++) {
BufHandle buf_handle("a", shape_info.first, shape_info.second[j], kFloat);
ASSERT_EQ(buf_handle.is_contiguous(), true);
}
}
// non-contiguous
for (size_t i = 0; i < dims.size(); i++) {
auto shape_info = shape_gen_fn(dims[i], channels_last_cont_shape_conf);
for (size_t j = 0; j < shape_info.second.size(); j++) {
BufHandle buf_handle("a", shape_info.first, shape_info.second[j], kFloat);
ASSERT_EQ(buf_handle.is_contiguous(), false);
}
}
}
TEST(Expr, LetTest01) {
VarHandle x("x", kFloat);
ExprHandle body = ExprHandle(2.f) + (x * ExprHandle(3.f) + ExprHandle(4.f));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle(3.f));
ASSERT_EQ(eval.value<float>(), 2 + (3 * 3 + 4));
}
TEST(Expr, LetTest02) {
VarHandle x("x", kFloat);
VarHandle y("y", kFloat);
ExprHandle body =
ExprHandle(2.f) + (x * ExprHandle(3.f) + ExprHandle(4.f) * y);
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle(3.f));
eval.bindVar(y, ExprHandle(6.f));
ASSERT_EQ(eval.value<float>(), 2 + (3 * 3 + 4 * 6));
}
TEST(Expr, LetStmtTest01) {
BufHandle a_buf("a", {1}, kFloat);
BufHandle b_buf("b", {1}, kFloat);
ExprHandle load_a = a_buf.load(0);
VarHandle var = VarHandle("v", kFloat);
StmtPtr let_store = Let::make(var, load_a);
StmtPtr store_b = b_buf.store({0}, var);
BlockPtr block = Block::make({let_store, store_b});
SimpleIREvaluator eval(block, {a_buf, b_buf});
PaddedBuffer<float> a_v(1);
PaddedBuffer<float> b_v(1);
PaddedBuffer<float> b_ref(1);
a_v(0) = 23;
b_ref(0) = a_v(0);
eval(a_v, b_v);
ExpectAllNear(b_v, b_ref, 1e-5);
}
TEST(Expr, IntTest) {
VarHandle x("x", kInt);
ExprHandle body = ExprHandle(2) + (x * ExprHandle(3) + ExprHandle(4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle(3));
ASSERT_EQ(eval.value<int>(), 2 + (3 * 3 + 4));
}
TEST(Expr, FloatTest) {
VarHandle x("x", kFloat);
ExprHandle body = ExprHandle(2.f) + (x * ExprHandle(3.f) + ExprHandle(4.f));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle(3.f));
ASSERT_EQ(eval.value<float>(), 2 + (3 * 3 + 4));
}
TEST(Expr, ByteTest) {
VarHandle x("x", kByte);
ExprHandle body = ExprHandle((uint8_t)2) +
(x * ExprHandle((uint8_t)3) + ExprHandle((uint8_t)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((uint8_t)3));
ASSERT_EQ(eval.value<uint8_t>(), 2 + (3 * 3 + 4));
}
TEST(Expr, CharTest) {
VarHandle x("x", kChar);
ExprHandle body = ExprHandle((int8_t)2) +
(x * ExprHandle((int8_t)3) + ExprHandle((int8_t)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((int8_t)3));
ASSERT_EQ(eval.value<int8_t>(), 2 + (3 * 3 + 4));
}
TEST(Expr, ShortTest) {
VarHandle x("x", kShort);
ExprHandle body = ExprHandle((int16_t)2) +
(x * ExprHandle((int16_t)3) + ExprHandle((int16_t)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((int16_t)3));
ASSERT_EQ(eval.value<int16_t>(), 2 + (3 * 3 + 4));
}
TEST(Expr, LongTest) {
VarHandle x("x", kLong);
ExprHandle body = ExprHandle((int64_t)2) +
(x * ExprHandle((int64_t)3) + ExprHandle((int64_t)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((int64_t)3));
ASSERT_EQ(eval.value<int64_t>(), 2 + (3 * 3 + 4));
}
TEST(Expr, HalfTest) {
VarHandle x("x", kHalf);
ExprHandle body = ExprHandle((at::Half)2) +
(x * ExprHandle((at::Half)3) + ExprHandle((at::Half)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((at::Half)3));
ASSERT_EQ(eval.value<at::Half>(), 2 + (3 * 3 + 4));
}
TEST(Expr, DoubleTest) {
VarHandle x("x", kDouble);
ExprHandle body = ExprHandle((double)2) +
(x * ExprHandle((double)3) + ExprHandle((double)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((double)3));
ASSERT_EQ(eval.value<double>(), 2 + (3 * 3 + 4));
}
TEST(Expr, VectorAdd01) {
const int kVectorSize = 8;
const int kVectorCount = 128;
const int kTotalSize = kVectorSize * kVectorCount;
BufHandle a_buf("A", {kTotalSize}, kFloat);
BufHandle b_buf("B", {kTotalSize}, kFloat);
BufHandle c_buf("C", {kTotalSize}, kFloat);
/*
Build the following:
for (const auto index : c10::irange(kVectorCount)) {
store(c_buf, ramp(index * 8, 1, 8),
load(a_buf, ramp(index * 8, 1, 8) +
load(b_buf, ramp(index * 8, 1, 8))))
}
*/
VarHandle index = VarHandle("index", kInt);
ExprHandle load_a =
a_buf.load({Ramp::make(index * kVectorSize, 1, kVectorSize)});
ExprHandle load_b =
b_buf.load({Ramp::make(index * kVectorSize, 1, kVectorSize)});
ExprHandle value = load_a + load_b;
StmtPtr store_c =
c_buf.store({Ramp::make(index * kVectorSize, 1, kVectorSize)}, value);
StmtPtr stmt = For::make(index, 0, kVectorCount, store_c);
ASSERT_EQ(load_a.dtype(), Dtype(kFloat, kVectorSize));
ASSERT_EQ(load_b.dtype(), Dtype(kFloat, kVectorSize));
ASSERT_EQ(value.dtype(), Dtype(kFloat, kVectorSize));
PaddedBuffer<float> a_v(kTotalSize);
PaddedBuffer<float> b_v(kTotalSize);
PaddedBuffer<float> c_v(kTotalSize);
PaddedBuffer<float> c_ref(kTotalSize);
for (const auto i : c10::irange(kTotalSize)) {
a_v(i) = i * i;
b_v(i) = i * i * 4;
c_ref(i) = a_v(i) + b_v(i);
}
SimpleIREvaluator ir_eval(stmt, {a_buf, b_buf, c_buf});
ir_eval(a_v, b_v, c_v);
ExpectAllNear(c_v, c_ref, 1e-5);
}
TEST(Expr, CompareSelectEQ) {
constexpr int N = 1024;
BufHandle a("A", {N}, kInt);
BufHandle b("B", {N}, kInt);
BufHandle c("C", {N}, kInt);
std::vector<int> a_buffer(N, 1);
std::vector<int> b_buffer(N, 1);
std::vector<int> c_buffer(N, 0);
std::vector<int> c_ref(N, 0);
VarHandle i("i", kInt);
auto memcpy_expr = For::make(
i,
0,
N,
c.store(
{i},
CompareSelect::make(
a.load(i), b.load(i), CompareSelectOperation::kEQ)));
SimpleIREvaluator ir_eval(memcpy_expr, {a, b, c});
ir_eval(a_buffer, b_buffer, c_buffer);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 1);
assertAllEqual(b_buffer, 1);
assertAllEqual(c_buffer, 1);
}
TEST(Expr, CompareSelectDtypes) {
// LHS and RHS expressions should have the same dtype, but this dtype could
// differ from the dtype of the return values (but dtypes of true and false
// return values should be the same).
// This test constructs a CompareSelect expression where the input dtype is
// different from the output dtype and verifies that it works correctly:
// result = ((int)lhs == (int)rhs) ? (float)retval1 : (float)retval2
constexpr int N = 1024;
BufHandle a("A", {N}, kInt);
BufHandle b("B", {N}, kInt);
BufHandle c("C", {N}, kFloat);
std::vector<int> a_buffer(N, 1);
std::vector<int> b_buffer(N, 1);
std::vector<float> c_buffer(N, 0.0f);
std::vector<float> c_ref(N, 3.14f);
VarHandle i("i", kInt);
// C[i] = (A[i] == B[i]) ? 3.14f : 2.78f
// A and B are int, C is float.
auto select_expr = For::make(
i,
0,
N,
c.store(
{i},
CompareSelect::make(
a.load(i),
b.load(i),
FloatImm::make(3.14f),
FloatImm::make(2.78f),
CompareSelectOperation::kEQ)));
SimpleIREvaluator ir_eval(select_expr, {a, b, c});
ir_eval(a_buffer, b_buffer, c_buffer);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 1);
assertAllEqual(b_buffer, 1);
ExpectAllNear(c_buffer, c_ref, 1e-7);
}
TEST(Expr, IntrinsicsDtypes) {
constexpr int N = 256;
BufHandle a("A", {N}, kDouble);
BufHandle b("B", {N}, kDouble);
std::vector<double> a_buffer(N, -10.0);
std::vector<double> b_buffer(N, 0.0);
std::vector<double> b_ref(N, 10.0);
VarHandle i("i", kInt);
auto abs_expr = For::make(i, 0, N, b.store({i}, tensorexpr::abs(a.load(i))));
SimpleIREvaluator ir_eval(abs_expr, {a, b});
ir_eval(a_buffer, b_buffer);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
assertAllEqual(a_buffer, -10.0);
ExpectAllNear(b_buffer, b_ref, 1e-7);
}
TEST(Expr, Substitute01) {
VarPtr x = alloc<Var>("x", kFloat);
VarPtr y = alloc<Var>("y", kFloat);
ExprPtr e =
alloc<Mul>(alloc<Sub>(x, alloc<FloatImm>(1.0f)), alloc<Add>(x, y));
VarPtr z = alloc<Var>("z", kFloat);
ExprPtr e2 = Substitute(e, {{x, alloc<Add>(z, alloc<FloatImm>(5.0f))}});
ExprPtr e2_ref = alloc<Mul>(
alloc<Sub>(alloc<Add>(z, alloc<FloatImm>(5.0f)), alloc<FloatImm>(1.0f)),
alloc<Add>(alloc<Add>(z, alloc<FloatImm>(5.0f)), y));
std::ostringstream oss;
oss << *e2;
std::string e2_str = oss.str();
oss.str("");
oss << *e2_ref;
std::string e2_ref_str = oss.str();
ASSERT_EQ(e2_str, e2_ref_str);
}
TEST(Expr, Math01) {
ExprHandle v = sin(ExprHandle(1.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "sin(1.f)");
SimpleIRExprEval eval(v);
float v_ref = std::sin(1.0f);
float res = eval.value<float>();
ASSERT_NEAR(res, v_ref, 1e-6);
}
TEST(Expr, UnaryMath01) {
struct TestConfig {
std::function<ExprHandle(const ExprHandle&)> func;
std::function<float(float)> ref_func;
};
std::vector<TestConfig> test_configs = {
{[](const ExprHandle& v) { return sin(v); },
[](float v) { return std::sin(v); }},
{[](const ExprHandle& v) { return sin(v); },
[](float v) { return std::sin(v); }},
{[](const ExprHandle& v) { return tan(v); },
[](float v) { return std::tan(v); }},
{[](const ExprHandle& v) { return asin(v); },
[](float v) { return std::asin(v); }},
{[](const ExprHandle& v) { return acos(v); },
[](float v) { return std::acos(v); }},
{[](const ExprHandle& v) { return atan(v); },
[](float v) { return std::atan(v); }},
{[](const ExprHandle& v) { return sinh(v); },
[](float v) { return std::sinh(v); }},
{[](const ExprHandle& v) { return cosh(v); },
[](float v) { return std::cosh(v); }},
{[](const ExprHandle& v) { return tanh(v); },
[](float v) { return std::tanh(v); }},
{[](const ExprHandle& v) { return exp(v); },
[](float v) { return std::exp(v); }},
{[](const ExprHandle& v) { return tensorexpr::abs(v); },
[](float v) { return std::fabs(v); }},
{[](const ExprHandle& v) { return log(v); },
[](float v) { return std::log(v); }},
{[](const ExprHandle& v) { return log2(v); },
[](float v) { return std::log2(v); }},
{[](const ExprHandle& v) { return log10(v); },
[](float v) { return std::log10(v); }},
{[](const ExprHandle& v) { return erf(v); },
[](float v) { return std::erf(v); }},
{[](const ExprHandle& v) { return sqrt(v); },
[](float v) { return std::sqrt(v); }},
{[](const ExprHandle& v) { return rsqrt(v); },
[](float v) { return 1.0f / std::sqrt(v); }},
{[](const ExprHandle& v) { return ceil(v); },
[](float v) { return std::ceil(v); }},
{[](const ExprHandle& v) { return floor(v); },
[](float v) { return std::floor(v); }},
{[](const ExprHandle& v) { return round(v); },
[](float v) { return std::round(v); }},
{[](const ExprHandle& v) { return trunc(v); },
[](float v) { return std::trunc(v); }},
};
for (const TestConfig& test_config : test_configs) {
const float input_v = 0.8765f;
ExprHandle v = test_config.func(ExprHandle(input_v));
float v_ref = test_config.ref_func(input_v);
SimpleIRExprEval eval(v);
ASSERT_NEAR(eval.value<float>(), v_ref, 1e-6);
}
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
for (float input_v : {std::nan("1"), 0., .5}) {
ExprHandle v = FloatImm::make(input_v);
SimpleIRExprEval eval(Intrinsics::make(kIsNan, v));
ASSERT_NEAR(eval.value<int>(), std::isnan(input_v), 0);
}
}
TEST(Expr, BinaryMath01) {
struct TestConfig {
std::function<ExprHandle(const ExprHandle&, const ExprHandle&)> func;
std::function<float(float, float)> ref_func;
};
std::vector<TestConfig> test_configs = {
{[](const ExprHandle& v1, const ExprHandle& v2) { return pow(v1, v2); },
[](float v1, float v2) { return std::pow(v1, v2); }},
{[](const ExprHandle& v1, const ExprHandle& v2) { return fmod(v1, v2); },
[](float v1, float v2) { return std::fmod(v1, v2); }},
};
for (const TestConfig& test_config : test_configs) {
const float v1 = 0.8765f;
float v2 = 1.2345f;
ExprHandle v_expr = test_config.func(ExprHandle(v1), ExprHandle(v2));
float v_ref = test_config.ref_func(v1, v2);
SimpleIRExprEval eval(v_expr);
ASSERT_NEAR(eval.value<float>(), v_ref, 1e-6);
}
}
TEST(Expr, LogicalOps01) {
ExprHandle a(23);
ExprHandle b(11);
ExprHandle c(0.72f);
ExprHandle d(0.69f);
ExprHandle f1 = (a > b) && (c > d);
ExprHandle f2 = (a > b) && (c < d);
ExprHandle f3 = (a < b) && (c > d);
ExprHandle f4 = (a < b) && (c < d);
ExprHandle f5 = (a < b) || (c > d);
ExprHandle f6 = (a < b) || (c < d);
ExprHandle f7 = (a > b) || (c < d);
ExprHandle f8 = (a > b) || (c > d);
SimpleIRExprEval eval1(f1);
SimpleIRExprEval eval2(f2);
SimpleIRExprEval eval3(f3);
SimpleIRExprEval eval4(f4);
SimpleIRExprEval eval5(f5);
SimpleIRExprEval eval6(f6);
SimpleIRExprEval eval7(f7);
SimpleIRExprEval eval8(f8);
ASSERT_EQ(eval1.value<int>(), 1);
ASSERT_EQ(eval2.value<int>(), 0);
ASSERT_EQ(eval3.value<int>(), 0);
ASSERT_EQ(eval4.value<int>(), 0);
ASSERT_EQ(eval5.value<int>(), 1);
ASSERT_EQ(eval6.value<int>(), 0);
ASSERT_EQ(eval7.value<int>(), 1);
ASSERT_EQ(eval8.value<int>(), 1);
}
TEST(Expr, LogicalOps02) {
ExprHandle a(23);
ExprHandle b(11);
ExprHandle c(0.72f);
ExprHandle d(0.72f);
ExprHandle f1 = (a > b) || (c > d);
ExprHandle f2 = (a > b) && (c <= d);
ExprHandle f3 = (a > b) && (c > d);
ExprHandle ff1 = f1 && f2;
ExprHandle ff2 = f2 || f3;
SimpleIRExprEval eval1(ff1);
SimpleIRExprEval eval2(ff2);
ASSERT_EQ(eval1.value<int>(), 1);
ASSERT_EQ(eval2.value<int>(), 1);
}
TEST(Expr, LogicalOps03) {
ExprHandle a(23);
ExprHandle b(11);
ExprHandle c(0.72f);
ExprHandle d(0.69f);
// Bool types
ExprHandle bool_f1 = (a > b) && BoolImm::make(true);
ExprHandle bool_f2 = (c <= d) || BoolImm::make(true);
// Int types
ExprHandle int_f1 = (a > b) && IntImm::make(1);
ExprHandle int_f2 = (c <= d) || IntImm::make(1);
// Short types
ExprHandle short_f1 = (a > b) && ShortImm::make(1);
ExprHandle short_f2 = (c <= d) || ShortImm::make(1);
// Long types
ExprHandle long_f1 = (a > b) && LongImm::make(1);
ExprHandle long_f2 = (c <= d) || LongImm::make(1);
// Char types
ExprHandle char_f1 = (a > b) && CharImm::make(1);
ExprHandle char_f2 = (c <= d) || CharImm::make(1);
// Byte types
ExprHandle byte_f1 = (a > b) && ByteImm::make(1);
ExprHandle byte_f2 = (c <= d) || ByteImm::make(1);
SimpleIRExprEval eval1(bool_f1);
SimpleIRExprEval eval2(bool_f2);
SimpleIRExprEval eval3(int_f1);
SimpleIRExprEval eval4(int_f2);
SimpleIRExprEval eval5(short_f1);
SimpleIRExprEval eval6(short_f2);
SimpleIRExprEval eval7(long_f1);
SimpleIRExprEval eval8(long_f2);
SimpleIRExprEval eval9(char_f1);
SimpleIRExprEval eval10(char_f2);
SimpleIRExprEval eval11(byte_f1);
SimpleIRExprEval eval12(byte_f2);
ASSERT_EQ(eval1.value<bool>(), true);
ASSERT_EQ(eval2.value<bool>(), true);
ASSERT_EQ(eval3.value<int>(), 1);
ASSERT_EQ(eval4.value<int>(), 1);
ASSERT_EQ(eval5.value<int16_t>(), 1);
ASSERT_EQ(eval6.value<int16_t>(), 1);
ASSERT_EQ(eval7.value<int64_t>(), 1);
ASSERT_EQ(eval8.value<int64_t>(), 1);
ASSERT_EQ(eval9.value<int8_t>(), 1);
ASSERT_EQ(eval10.value<int8_t>(), 1);
ASSERT_EQ(eval11.value<uint8_t>(), 1);
ASSERT_EQ(eval12.value<uint8_t>(), 1);
}
TEST(Expr, BitwiseOps) {
ExprHandle a(59);
ExprHandle b(11);
ExprHandle c(101);
ExprHandle d(2);
ExprHandle f = (((a ^ (b << 1)) & c) >> 2) | d;
SimpleIRExprEval eval(f);
ASSERT_EQ(eval.value<int>(), 11);
}
TEST(Expr, DynamicShapeAdd) {
auto testWithSize = [](int32_t size) {
VarHandle n("n", kInt);
BufHandle a("a", {n}, kFloat);
BufHandle b("b", {n}, kFloat);
BufHandle c("c", {n}, kFloat);
VarHandle i("i", kInt);
StmtPtr s = For::make(i, 0, n, c.store({i}, a.load(i) + b.load(i)));
std::vector<float> aData(size, 1.0f);
std::vector<float> bData(size, 2.0f);
std::vector<float> cData(size, 0.0f);
SimpleIREvaluator(s, {a, b, c, n})(aData, bData, cData, size);
ExpectAllNear(cData, std::vector<float>(size, 3.0f), 1e-7);
};
testWithSize(1);
testWithSize(16);
testWithSize(37);
}
TEST(Expr, OutOfBounds) {
ExprHandle N(10);
ExprHandle start(0);
ExprHandle stop(15);
VarHandle i("i", kInt);
BufHandle X("X", {N}, kInt);
auto body = Store::make(X, {i}, i);
auto stmt = For::make(i, start, stop, body);
PaddedBuffer<int> data(20);
EXPECT_ANY_THROW(SimpleIREvaluator(stmt, {X})(data));
}
TEST(Expr, OutOfBounds2d) {
std::vector<std::pair<int, int>> size_options = {{10, 15}, {15, 10}};
for (auto sizes : size_options) {
ExprHandle N(sizes.first);
ExprHandle M(sizes.second);
ExprHandle start(0);
ExprHandle stopInner(15);
ExprHandle stopOuter(15);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
BufHandle X("X", {N, M}, kInt);
auto body = Store::make(X, {i, j}, i);
auto inner = For::make(j, start, stopInner, body);
auto stmt = For::make(i, start, stopOuter, inner);
PaddedBuffer<int> data(400);
EXPECT_ANY_THROW(SimpleIREvaluator(stmt, {X})(data));
}
}
TEST(Expr, OutOfBounds2dFlattenedIndex) {
ExprHandle buf_size(149);
ExprHandle start(0);
ExprHandle stopInner(15);
ExprHandle stopOuter(10);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
BufHandle X("X", {buf_size}, kInt);
auto idx = Add::make(Mul::make(i, stopInner), j);
auto body = Store::make(X, {idx}, i);
auto inner = For::make(j, start, stopInner, body);
auto stmt = For::make(i, start, stopOuter, inner);
PaddedBuffer<int> data(400);
EXPECT_ANY_THROW(SimpleIREvaluator(stmt, {X})(data));
}
void testCond01() {
const int N = 16;
PaddedBuffer<float> a_v(N);
BufHandle a_buf("a", {N}, kFloat);
VarHandle index = VarHandle("index", kInt);
StmtPtr assign_x2 = a_buf.store({index}, cast<float>(index) * 2);
StmtPtr assign_x3 = a_buf.store({index}, cast<float>(index) * 3);
ExprHandle even_cond = CompareSelect::make(Mod::make(index, 2), 0, kEQ);
StmtPtr assign = Cond::make(even_cond, assign_x2, assign_x3);
StmtPtr for_stmt = For::make(index, 0, N, assign);
SimpleIREvaluator(for_stmt, {a_buf})(a_v);
PaddedBuffer<float> a_ref(N);
for (const auto i : c10::irange(N)) {
if (i % 2 == 0) {
a_ref(i) = i * 2;
} else {
a_ref(i) = i * 3;
}
}
ExpectAllNear(a_v, a_ref, 1e-5);
}
void testIfThenElse01() {
ExprHandle v = ifThenElse(ExprHandle(1), ExprHandle(1.0f), ExprHandle(2.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "IfThenElse(1, 1.f, 2.f)");
SimpleIRExprEval eval(v);
ASSERT_EQ(eval.value<float>(), 1.0f);
}
void testIfThenElse02() {
ExprHandle v = ifThenElse(ExprHandle(0), ExprHandle(1.0f), ExprHandle(2.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "IfThenElse(0, 1.f, 2.f)");
SimpleIRExprEval eval(v);
ASSERT_EQ(eval.value<float>(), 2.0f);
}
void testIfThenElse03() {
ExprHandle v =
ifThenElse(BoolImm::make(false), ExprHandle(1.0f), ExprHandle(2.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "IfThenElse(0, 1.f, 2.f)");
SimpleIRExprEval eval(v);
ASSERT_EQ(eval.value<float>(), 2.0f);
}
void testStmtClone() {
const int N = 16;
BufHandle a_buf("a", {N}, kInt);
VarHandle index = VarHandle("index", kInt);
StmtPtr body = a_buf.store({index}, 5);
StmtPtr loop = For::make(index, 0, N, body);
StmtPtr cloned_loop = Stmt::clone(loop);
std::vector<int> orig_loop_results(N);
std::vector<int> cloned_loop_results(N);
SimpleIREvaluator(loop, {a_buf})(orig_loop_results);
SimpleIREvaluator(cloned_loop, {a_buf})(cloned_loop_results);
assertAllEqual(orig_loop_results, 5);
assertAllEqual(cloned_loop_results, 5);
// Let's add another assign to the body in the cloned loop and verify that the
// original statement hasn't changed while the cloned one has.
StmtPtr body_addition = a_buf.store({index}, 33);
BlockPtr cloned_body = static_to<Block>(static_to<For>(cloned_loop)->body());
cloned_body->append_stmt(body_addition);
std::vector<int> orig_loop_results_after_mutation(N);
std::vector<int> cloned_loop_results_after_mutation(N);
SimpleIREvaluator(loop, {a_buf})(orig_loop_results_after_mutation);
SimpleIREvaluator(cloned_loop, {a_buf})(cloned_loop_results_after_mutation);
assertAllEqual(orig_loop_results_after_mutation, 5);
assertAllEqual(cloned_loop_results_after_mutation, 33);
}
} // namespace jit
} // namespace torch