-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
124 lines (95 loc) · 3.98 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import datetime as dt
import gym
import cv2
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers, models
env = gym.make("BreakoutNoFrameskip-v4")
def to_grayscale(state, width, height):
state = state[20:] # Cut off score
state = np.sum(state, axis=2) / 255 # Combine color channels
state = cv2.resize(state, (width, height))
return state
def create_model():
model = models.Sequential()
model.add(layers.Input((84, 84, 4)))
model.add(layers.Conv2D(filters=32, kernel_size=8, strides=4, activation="relu"))
model.add(layers.Conv2D(filters=64, kernel_size=4, strides=2, activation="relu"))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation="relu"))
model.add(layers.Dense(4, activation="linear"))
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=0.0005, clipnorm=1.0),
loss=keras.losses.Huber()
)
return model
model = create_model()
target_model = create_model()
# Uncomment and complete filename to continue training from file
# model = models.load_model('models/model-xxxx-xx-xx-xx-xx-xx')
# target_model.set_weights(model.get_weights())
discount = 0.99
epsilon = 1.0
epsilon_min = 0.1
epsilon_steps = 500000
epsilon_decay = (epsilon - epsilon_min) / epsilon_steps
batch_size = 32
state_history = []
episode_rewards = [0]
episode_count = 0
frame_count = 0
max_memory_size = 100000
update_target_network_frames = 10000
while True: # Run until solved
state = np.array(env.reset(), dtype="float")
episode_reward = 0
state = to_grayscale(state, 84, 84)
# Stacking 4 frames
state = np.stack((state, state, state, state), axis=2)
done = False
while not done:
frame_count += 1
if frame_count < 50000 or epsilon > np.random.rand(1)[0]:
# Exploration
action = np.random.choice(4)
if epsilon > epsilon_min:
epsilon -= epsilon_decay
else:
# Exploitation
action = np.argmax(model.predict(np.array([state])))
# Apply step
next_state, reward, done, info = env.step(action)
next_state = to_grayscale(next_state, 84, 84)
next_state = np.stack((state[:, :, 1], state[:, :, 2], state[:, :, 3], next_state), axis=2)
episode_reward += reward
state_history.append((state, action, reward, done))
state = next_state
# Fit model every 4 frames
if frame_count % 4 == 0 and len(state_history) - 1 > batch_size:
# Select minibatch frames
i_list = np.random.choice(range(len(state_history) - 1), size=batch_size)
state_sample = np.array([state_history[i][0] for i in i_list])
next_state_sample = np.array([state_history[i + 1][0] for i in i_list])
reward_sample = np.array([state_history[i][2] for i in i_list])
done_sample = np.array([float(state_history[i][3]) for i in i_list])
# Update q_values
future_rewards = target_model.predict(next_state_sample)
q_values = reward_sample + discount * np.amax(future_rewards, axis=1)
q_values = q_values * (1 - done_sample) - done_sample
# Fit the model on the selected frames
model.fit(state_sample, q_values, verbose=0)
if frame_count % update_target_network_frames == 0:
target_model.set_weights(model.get_weights())
date = dt.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
model.save('./models/model-{}'.format(date), save_format="tf")
if len(state_history) > max_memory_size:
del state_history[0]
if info["ale.lives"] == 0:
done = True
episode_rewards.append(episode_reward)
if len(episode_rewards) > 100:
del episode_rewards[0]
episode_count += 1
if frame_count % 1000 == 0:
print("frame {}, episode {}, reward: {}".format(
frame_count, episode_count, np.mean(episode_rewards)))