-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfigs.py
51 lines (45 loc) · 1.92 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import argparse
import torch
import numpy as np
import pynvml
import os
def get_best_gpu():
"""Return gpu (:class:`torch.device`) with largest free memory."""
assert torch.cuda.is_available()
pynvml.nvmlInit()
deviceCount = pynvml.nvmlDeviceGetCount()
if "CUDA_VISIBLE_DEVICES" in os.environ.keys() is not None:
cuda_devices = [
int(device) for device in os.environ["CUDA_VISIBLE_DEVICES"].split(",")
]
else:
cuda_devices = range(deviceCount)
assert max(cuda_devices) < deviceCount
deviceMemory = []
for i in cuda_devices:
handle = pynvml.nvmlDeviceGetHandleByIndex(i)
mem_info = pynvml.nvmlDeviceGetMemoryInfo(handle)
deviceMemory.append(mem_info.free)
deviceMemory = np.array(deviceMemory, dtype=np.int64)
best_device_index = np.argmax(deviceMemory)
return torch.device("cuda:%d" % (best_device_index))
def get_args():
parser = argparse.ArgumentParser(description='manual to this script')
# model
parser.add_argument('--max_len', type=int, default=256)
parser.add_argument('--d_model', type=int, default=512)
parser.add_argument('--d_ff', type=int, default=2048)
parser.add_argument('--n_layer', type=int, default=6)
parser.add_argument('--n_head', type=int, default=3)
parser.add_argument('--hidden_layer', type=int, default=2048, help='ffn layer')
# optimizer
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--epoch', type=int, default=1000)
parser.add_argument('--dropout_prob', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=1e-5)
parser.add_argument('--warmup',type=int, default=4000)
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--epsilon_ls', type=float, default=1e-9)
parser.add_argument('--clip', type=float, default=1.0)
args = parser.parse_args()
return args