forked from kimlaine/bootcamp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
smallntt.h
279 lines (233 loc) · 8.4 KB
/
smallntt.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#pragma once
#include <stdexcept>
#include "seal/util/pointer.h"
#include "seal/memorymanager.h"
#include "seal/smallmodulus.h"
namespace seal
{
namespace util
{
class SmallNTTTables
{
public:
SmallNTTTables(MemoryPoolHandle pool = MemoryManager::GetPool()) :
pool_(std::move(pool))
{
#ifdef SEAL_DEBUG
if (!pool_)
{
throw std::invalid_argument("pool is uninitialized");
}
#endif
}
SmallNTTTables(int coeff_count_power, const SmallModulus &modulus,
MemoryPoolHandle pool = MemoryManager::GetPool());
SEAL_NODISCARD inline bool is_generated() const
{
return generated_;
}
bool generate(int coeff_count_power, const SmallModulus &modulus);
void reset();
SEAL_NODISCARD inline std::uint64_t get_root() const
{
#ifdef SEAL_DEBUG
if (!generated_)
{
throw std::logic_error("tables are not generated");
}
#endif
return root_;
}
SEAL_NODISCARD inline auto get_from_root_powers(
std::size_t index) const -> std::uint64_t
{
#ifdef SEAL_DEBUG
if (index >= coeff_count_)
{
throw std::out_of_range("index");
}
if (!generated_)
{
throw std::logic_error("tables are not generated");
}
#endif
return root_powers_[index];
}
SEAL_NODISCARD inline auto get_from_scaled_root_powers(
std::size_t index) const -> std::uint64_t
{
#ifdef SEAL_DEBUG
if (index >= coeff_count_)
{
throw std::out_of_range("index");
}
if (!generated_)
{
throw std::logic_error("tables are not generated");
}
#endif
return scaled_root_powers_[index];
}
SEAL_NODISCARD inline auto get_from_inv_root_powers(
std::size_t index) const -> std::uint64_t
{
#ifdef SEAL_DEBUG
if (index >= coeff_count_)
{
throw std::out_of_range("index");
}
if (!generated_)
{
throw std::logic_error("tables are not generated");
}
#endif
return inv_root_powers_[index];
}
SEAL_NODISCARD inline auto get_from_scaled_inv_root_powers(
std::size_t index) const -> std::uint64_t
{
#ifdef SEAL_DEBUG
if (index >= coeff_count_)
{
throw std::out_of_range("index");
}
if (!generated_)
{
throw std::logic_error("tables are not generated");
}
#endif
return scaled_inv_root_powers_[index];
}
SEAL_NODISCARD inline auto get_from_inv_root_powers_div_two(
std::size_t index) const -> std::uint64_t
{
#ifdef SEAL_DEBUG
if (index >= coeff_count_)
{
throw std::out_of_range("index");
}
if (!generated_)
{
throw std::logic_error("tables are not generated");
}
#endif
return inv_root_powers_div_two_[index];
}
SEAL_NODISCARD inline auto get_from_scaled_inv_root_powers_div_two(
std::size_t index) const -> std::uint64_t
{
#ifdef SEAL_DEBUG
if (index >= coeff_count_)
{
throw std::out_of_range("index");
}
if (!generated_)
{
throw std::logic_error("tables are not generated");
}
#endif
return scaled_inv_root_powers_div_two_[index];
}
SEAL_NODISCARD inline auto get_inv_degree_modulo() const
-> const std::uint64_t*
{
#ifdef SEAL_DEBUG
if (!generated_)
{
throw std::logic_error("tables are not generated");
}
#endif
return &inv_degree_modulo_;
}
SEAL_NODISCARD inline const SmallModulus &modulus() const
{
return modulus_;
}
SEAL_NODISCARD inline int coeff_count_power() const
{
return coeff_count_power_;
}
SEAL_NODISCARD inline std::size_t coeff_count() const
{
return coeff_count_;
}
private:
SmallNTTTables(const SmallNTTTables ©) = delete;
SmallNTTTables(SmallNTTTables &&source) = delete;
SmallNTTTables &operator =(const SmallNTTTables &assign) = delete;
SmallNTTTables &operator =(SmallNTTTables &&assign) = delete;
// Computed bit-scrambled vector of first 1 << coeff_count_power powers
// of a primitive root.
void ntt_powers_of_primitive_root(std::uint64_t root,
std::uint64_t *destination) const;
// Scales the elements of a vector returned by powers_of_primitive_root(...)
// by word_size/modulus and rounds down.
void ntt_scale_powers_of_primitive_root(const std::uint64_t *input,
std::uint64_t *destination) const;
MemoryPoolHandle pool_;
bool generated_ = false;
std::uint64_t root_ = 0;
// Size coeff_count_
Pointer<decltype(root_)> root_powers_;
// Size coeff_count_
Pointer<decltype(root_)> scaled_root_powers_;
// Size coeff_count_
Pointer<decltype(root_)> inv_root_powers_div_two_;
// Size coeff_count_
Pointer<decltype(root_)> scaled_inv_root_powers_div_two_;
int coeff_count_power_ = 0;
std::size_t coeff_count_ = 0;
SmallModulus modulus_;
// Size coeff_count_
Pointer<decltype(root_)> inv_root_powers_;
// Size coeff_count_
Pointer<decltype(root_)> scaled_inv_root_powers_;
std::uint64_t inv_degree_modulo_ = 0;
};
void ntt_negacyclic_harvey_lazy(std::uint64_t *operand,
const SmallNTTTables &tables);
inline void ntt_negacyclic_harvey(std::uint64_t *operand,
const SmallNTTTables &tables)
{
ntt_negacyclic_harvey_lazy(operand, tables);
// Finally maybe we need to reduce every coefficient modulo q, but we
// know that they are in the range [0, 4q).
// Since word size is controlled this is fast.
std::uint64_t modulus = tables.modulus().value();
std::uint64_t two_times_modulus = modulus * 2;
std::size_t n = std::size_t(1) << tables.coeff_count_power();
for (; n--; operand++)
{
if (*operand >= two_times_modulus)
{
*operand -= two_times_modulus;
}
if (*operand >= modulus)
{
*operand -= modulus;
}
}
}
void inverse_ntt_negacyclic_harvey_lazy(std::uint64_t *operand,
const SmallNTTTables &tables);
inline void inverse_ntt_negacyclic_harvey(std::uint64_t *operand,
const SmallNTTTables &tables)
{
inverse_ntt_negacyclic_harvey_lazy(operand, tables);
std::uint64_t modulus = tables.modulus().value();
std::size_t n = std::size_t(1) << tables.coeff_count_power();
// Final adjustments; compute a[j] = a[j] * n^{-1} mod q.
// We incorporated the final adjustment in the butterfly. Only need
// to reduce here.
for (; n--; operand++)
{
if (*operand >= modulus)
{
*operand -= modulus;
}
}
}
}
}