forked from kimlaine/bootcamp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
uintarith.cpp
725 lines (639 loc) · 27.1 KB
/
uintarith.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#include "seal/util/uintcore.h"
#include "seal/util/uintarith.h"
#include "seal/util/common.h"
#include <algorithm>
#include <functional>
#include <array>
using namespace std;
namespace seal
{
namespace util
{
void multiply_uint_uint(const uint64_t *operand1,
size_t operand1_uint64_count, const uint64_t *operand2,
size_t operand2_uint64_count, size_t result_uint64_count,
uint64_t *result)
{
#ifdef SEAL_DEBUG
if (!operand1 && operand1_uint64_count > 0)
{
throw invalid_argument("operand1");
}
if (!operand2 && operand2_uint64_count > 0)
{
throw invalid_argument("operand2");
}
if (!result_uint64_count)
{
throw invalid_argument("result_uint64_count");
}
if (!result)
{
throw invalid_argument("result");
}
if (result != nullptr && (operand1 == result || operand2 == result))
{
throw invalid_argument("result cannot point to the same value as operand1 or operand2");
}
#endif
// Handle fast cases.
if (!operand1_uint64_count || !operand2_uint64_count)
{
// If either operand is 0, then result is 0.
set_zero_uint(result_uint64_count, result);
return;
}
if (result_uint64_count == 1)
{
*result = *operand1 * *operand2;
return;
}
// In some cases these improve performance.
operand1_uint64_count = get_significant_uint64_count_uint(
operand1, operand1_uint64_count);
operand2_uint64_count = get_significant_uint64_count_uint(
operand2, operand2_uint64_count);
// More fast cases
if (operand1_uint64_count == 1)
{
multiply_uint_uint64(operand2, operand2_uint64_count,
*operand1, result_uint64_count, result);
return;
}
if (operand2_uint64_count == 1)
{
multiply_uint_uint64(operand1, operand1_uint64_count,
*operand2, result_uint64_count, result);
return;
}
// Clear out result.
set_zero_uint(result_uint64_count, result);
// Multiply operand1 and operand2.
size_t operand1_index_max = min(operand1_uint64_count,
result_uint64_count);
for (size_t operand1_index = 0;
operand1_index < operand1_index_max; operand1_index++)
{
const uint64_t *inner_operand2 = operand2;
uint64_t *inner_result = result++;
uint64_t carry = 0;
size_t operand2_index = 0;
size_t operand2_index_max = min(operand2_uint64_count,
result_uint64_count - operand1_index);
for (; operand2_index < operand2_index_max; operand2_index++)
{
// Perform 64-bit multiplication of operand1 and operand2
unsigned long long temp_result[2];
multiply_uint64(*operand1, *inner_operand2++, temp_result);
carry = temp_result[1] + add_uint64(temp_result[0], carry, 0, temp_result);
unsigned long long temp;
carry += add_uint64(*inner_result, temp_result[0], 0, &temp);
*inner_result++ = temp;
}
// Write carry if there is room in result
if (operand1_index + operand2_index_max < result_uint64_count)
{
*inner_result = carry;
}
operand1++;
}
}
void multiply_uint_uint64(const uint64_t *operand1,
size_t operand1_uint64_count, uint64_t operand2,
size_t result_uint64_count, uint64_t *result)
{
#ifdef SEAL_DEBUG
if (!operand1 && operand1_uint64_count > 0)
{
throw invalid_argument("operand1");
}
if (!result_uint64_count)
{
throw invalid_argument("result_uint64_count");
}
if (!result)
{
throw invalid_argument("result");
}
if (result != nullptr && operand1 == result)
{
throw invalid_argument("result cannot point to the same value as operand1");
}
#endif
// Handle fast cases.
if (!operand1_uint64_count || !operand2)
{
// If either operand is 0, then result is 0.
set_zero_uint(result_uint64_count, result);
return;
}
if (result_uint64_count == 1)
{
*result = *operand1 * operand2;
return;
}
// More fast cases
//if (result_uint64_count == 2 && operand1_uint64_count > 1)
//{
// unsigned long long temp_result;
// multiply_uint64(*operand1, operand2, &temp_result);
// *result = temp_result;
// *(result + 1) += *(operand1 + 1) * operand2;
// return;
//}
// Clear out result.
set_zero_uint(result_uint64_count, result);
// Multiply operand1 and operand2.
unsigned long long carry = 0;
size_t operand1_index_max = min(operand1_uint64_count,
result_uint64_count);
for (size_t operand1_index = 0;
operand1_index < operand1_index_max; operand1_index++)
{
unsigned long long temp_result[2];
multiply_uint64(*operand1++, operand2, temp_result);
unsigned long long temp;
carry = temp_result[1] + add_uint64(temp_result[0], carry, 0, &temp);
*result++ = temp;
}
// Write carry if there is room in result
if (operand1_index_max < result_uint64_count)
{
*result = carry;
}
}
void divide_uint_uint_inplace(uint64_t *numerator,
const uint64_t *denominator, size_t uint64_count,
uint64_t *quotient, MemoryPool &pool)
{
#ifdef SEAL_DEBUG
if (!numerator && uint64_count > 0)
{
throw invalid_argument("numerator");
}
if (!denominator && uint64_count > 0)
{
throw invalid_argument("denominator");
}
if (!quotient && uint64_count > 0)
{
throw invalid_argument("quotient");
}
if (is_zero_uint(denominator, uint64_count) && uint64_count > 0)
{
throw invalid_argument("denominator");
}
if (quotient && (numerator == quotient || denominator == quotient))
{
throw invalid_argument("quotient cannot point to same value as numerator or denominator");
}
#endif
if (!uint64_count)
{
return;
}
// Clear quotient. Set it to zero.
set_zero_uint(uint64_count, quotient);
// Determine significant bits in numerator and denominator.
int numerator_bits =
get_significant_bit_count_uint(numerator, uint64_count);
int denominator_bits =
get_significant_bit_count_uint(denominator, uint64_count);
// If numerator has fewer bits than denominator, then done.
if (numerator_bits < denominator_bits)
{
return;
}
// Only perform computation up to last non-zero uint64s.
uint64_count = safe_cast<size_t>(
divide_round_up(numerator_bits, bits_per_uint64));
// Handle fast case.
if (uint64_count == 1)
{
*quotient = *numerator / *denominator;
*numerator -= *quotient * *denominator;
return;
}
auto alloc_anchor(allocate_uint(uint64_count << 1, pool));
// Create temporary space to store mutable copy of denominator.
uint64_t *shifted_denominator = alloc_anchor.get();
// Create temporary space to store difference calculation.
uint64_t *difference = shifted_denominator + uint64_count;
// Shift denominator to bring MSB in alignment with MSB of numerator.
int denominator_shift = numerator_bits - denominator_bits;
left_shift_uint(denominator, denominator_shift, uint64_count,
shifted_denominator);
denominator_bits += denominator_shift;
// Perform bit-wise division algorithm.
int remaining_shifts = denominator_shift;
while (numerator_bits == denominator_bits)
{
// NOTE: MSBs of numerator and denominator are aligned.
// Even though MSB of numerator and denominator are aligned,
// still possible numerator < shifted_denominator.
if (sub_uint_uint(numerator, shifted_denominator,
uint64_count, difference))
{
// numerator < shifted_denominator and MSBs are aligned,
// so current quotient bit is zero and next one is definitely one.
if (remaining_shifts == 0)
{
// No shifts remain and numerator < denominator so done.
break;
}
// Effectively shift numerator left by 1 by instead adding
// numerator to difference (to prevent overflow in numerator).
add_uint_uint(difference, numerator, uint64_count, difference);
// Adjust quotient and remaining shifts as a result of
// shifting numerator.
left_shift_uint(quotient, 1, uint64_count, quotient);
remaining_shifts--;
}
// Difference is the new numerator with denominator subtracted.
// Update quotient to reflect subtraction.
quotient[0] |= 1;
// Determine amount to shift numerator to bring MSB in alignment
// with denominator.
numerator_bits = get_significant_bit_count_uint(difference, uint64_count);
int numerator_shift = denominator_bits - numerator_bits;
if (numerator_shift > remaining_shifts)
{
// Clip the maximum shift to determine only the integer
// (as opposed to fractional) bits.
numerator_shift = remaining_shifts;
}
// Shift and update numerator.
if (numerator_bits > 0)
{
left_shift_uint(difference, numerator_shift, uint64_count, numerator);
numerator_bits += numerator_shift;
}
else
{
// Difference is zero so no need to shift, just set to zero.
set_zero_uint(uint64_count, numerator);
}
// Adjust quotient and remaining shifts as a result of shifting numerator.
left_shift_uint(quotient, numerator_shift, uint64_count, quotient);
remaining_shifts -= numerator_shift;
}
// Correct numerator (which is also the remainder) for shifting of
// denominator, unless it is just zero.
if (numerator_bits > 0)
{
right_shift_uint(numerator, denominator_shift, uint64_count, numerator);
}
}
void divide_uint128_uint64_inplace_generic(uint64_t *numerator,
uint64_t denominator, uint64_t *quotient)
{
#ifdef SEAL_DEBUG
if (!numerator)
{
throw invalid_argument("numerator");
}
if (denominator == 0)
{
throw invalid_argument("denominator");
}
if (!quotient)
{
throw invalid_argument("quotient");
}
if (numerator == quotient)
{
throw invalid_argument("quotient cannot point to same value as numerator");
}
#endif
// We expect 129-bit input
constexpr size_t uint64_count = 2;
// Clear quotient. Set it to zero.
quotient[0] = 0;
quotient[1] = 0;
// Determine significant bits in numerator and denominator.
int numerator_bits = get_significant_bit_count_uint(numerator, uint64_count);
int denominator_bits = get_significant_bit_count(denominator);
// If numerator has fewer bits than denominator, then done.
if (numerator_bits < denominator_bits)
{
return;
}
// Create temporary space to store mutable copy of denominator.
uint64_t shifted_denominator[uint64_count]{ denominator, 0 };
// Create temporary space to store difference calculation.
uint64_t difference[uint64_count]{ 0, 0 };
// Shift denominator to bring MSB in alignment with MSB of numerator.
int denominator_shift = numerator_bits - denominator_bits;
left_shift_uint128(shifted_denominator, denominator_shift, shifted_denominator);
denominator_bits += denominator_shift;
// Perform bit-wise division algorithm.
int remaining_shifts = denominator_shift;
while (numerator_bits == denominator_bits)
{
// NOTE: MSBs of numerator and denominator are aligned.
// Even though MSB of numerator and denominator are aligned,
// still possible numerator < shifted_denominator.
if (sub_uint_uint(numerator, shifted_denominator, uint64_count, difference))
{
// numerator < shifted_denominator and MSBs are aligned,
// so current quotient bit is zero and next one is definitely one.
if (remaining_shifts == 0)
{
// No shifts remain and numerator < denominator so done.
break;
}
// Effectively shift numerator left by 1 by instead adding
// numerator to difference (to prevent overflow in numerator).
add_uint_uint(difference, numerator, uint64_count, difference);
// Adjust quotient and remaining shifts as a result of shifting numerator.
quotient[1] = (quotient[1] << 1) | (quotient[0] >> (bits_per_uint64 - 1));
quotient[0] <<= 1;
remaining_shifts--;
}
// Difference is the new numerator with denominator subtracted.
// Determine amount to shift numerator to bring MSB in alignment
// with denominator.
numerator_bits = get_significant_bit_count_uint(difference, uint64_count);
// Clip the maximum shift to determine only the integer
// (as opposed to fractional) bits.
int numerator_shift = min(denominator_bits - numerator_bits, remaining_shifts);
// Shift and update numerator.
// This may be faster; first set to zero and then update if needed
// Difference is zero so no need to shift, just set to zero.
numerator[0] = 0;
numerator[1] = 0;
if (numerator_bits > 0)
{
left_shift_uint128(difference, numerator_shift, numerator);
numerator_bits += numerator_shift;
}
// Update quotient to reflect subtraction.
quotient[0] |= 1;
// Adjust quotient and remaining shifts as a result of shifting numerator.
left_shift_uint128(quotient, numerator_shift, quotient);
remaining_shifts -= numerator_shift;
}
// Correct numerator (which is also the remainder) for shifting of
// denominator, unless it is just zero.
if (numerator_bits > 0)
{
right_shift_uint128(numerator, denominator_shift, numerator);
}
}
void divide_uint192_uint64_inplace(uint64_t *numerator,
uint64_t denominator, uint64_t *quotient)
{
#ifdef SEAL_DEBUG
if (!numerator)
{
throw invalid_argument("numerator");
}
if (denominator == 0)
{
throw invalid_argument("denominator");
}
if (!quotient)
{
throw invalid_argument("quotient");
}
if (numerator == quotient)
{
throw invalid_argument("quotient cannot point to same value as numerator");
}
#endif
// We expect 192-bit input
size_t uint64_count = 3;
// Clear quotient. Set it to zero.
quotient[0] = 0;
quotient[1] = 0;
quotient[2] = 0;
// Determine significant bits in numerator and denominator.
int numerator_bits = get_significant_bit_count_uint(numerator, uint64_count);
int denominator_bits = get_significant_bit_count(denominator);
// If numerator has fewer bits than denominator, then done.
if (numerator_bits < denominator_bits)
{
return;
}
// Only perform computation up to last non-zero uint64s.
uint64_count = safe_cast<size_t>(
divide_round_up(numerator_bits, bits_per_uint64));
// Handle fast case.
if (uint64_count == 1)
{
*quotient = *numerator / denominator;
*numerator -= *quotient * denominator;
return;
}
// Create temporary space to store mutable copy of denominator.
vector<uint64_t> shifted_denominator(uint64_count, 0);
shifted_denominator[0] = denominator;
// Create temporary space to store difference calculation.
vector<uint64_t> difference(uint64_count);
// Shift denominator to bring MSB in alignment with MSB of numerator.
int denominator_shift = numerator_bits - denominator_bits;
left_shift_uint192(shifted_denominator.data(), denominator_shift,
shifted_denominator.data());
denominator_bits += denominator_shift;
// Perform bit-wise division algorithm.
int remaining_shifts = denominator_shift;
while (numerator_bits == denominator_bits)
{
// NOTE: MSBs of numerator and denominator are aligned.
// Even though MSB of numerator and denominator are aligned,
// still possible numerator < shifted_denominator.
if (sub_uint_uint(numerator, shifted_denominator.data(),
uint64_count, difference.data()))
{
// numerator < shifted_denominator and MSBs are aligned,
// so current quotient bit is zero and next one is definitely one.
if (remaining_shifts == 0)
{
// No shifts remain and numerator < denominator so done.
break;
}
// Effectively shift numerator left by 1 by instead adding
// numerator to difference (to prevent overflow in numerator).
add_uint_uint(difference.data(), numerator, uint64_count, difference.data());
// Adjust quotient and remaining shifts as a result of shifting numerator.
left_shift_uint192(quotient, 1, quotient);
remaining_shifts--;
}
// Difference is the new numerator with denominator subtracted.
// Update quotient to reflect subtraction.
quotient[0] |= 1;
// Determine amount to shift numerator to bring MSB in alignment with denominator.
numerator_bits = get_significant_bit_count_uint(difference.data(), uint64_count);
int numerator_shift = denominator_bits - numerator_bits;
if (numerator_shift > remaining_shifts)
{
// Clip the maximum shift to determine only the integer
// (as opposed to fractional) bits.
numerator_shift = remaining_shifts;
}
// Shift and update numerator.
if (numerator_bits > 0)
{
left_shift_uint192(difference.data(), numerator_shift, numerator);
numerator_bits += numerator_shift;
}
else
{
// Difference is zero so no need to shift, just set to zero.
set_zero_uint(uint64_count, numerator);
}
// Adjust quotient and remaining shifts as a result of shifting numerator.
left_shift_uint192(quotient, numerator_shift, quotient);
remaining_shifts -= numerator_shift;
}
// Correct numerator (which is also the remainder) for shifting of
// denominator, unless it is just zero.
if (numerator_bits > 0)
{
right_shift_uint192(numerator, denominator_shift, numerator);
}
}
void exponentiate_uint(const uint64_t *operand,
size_t operand_uint64_count, const uint64_t *exponent,
size_t exponent_uint64_count, size_t result_uint64_count,
uint64_t *result, MemoryPool &pool)
{
#ifdef SEAL_DEBUG
if (!operand)
{
throw invalid_argument("operand");
}
if (!operand_uint64_count)
{
throw invalid_argument("operand_uint64_count");
}
if (!exponent)
{
throw invalid_argument("exponent");
}
if (!exponent_uint64_count)
{
throw invalid_argument("exponent_uint64_count");
}
if (!result)
{
throw invalid_argument("result");
}
if (!result_uint64_count)
{
throw invalid_argument("result_uint64_count");
}
#endif
// Fast cases
if (is_zero_uint(exponent, exponent_uint64_count))
{
set_uint(1, result_uint64_count, result);
return;
}
if (is_equal_uint(exponent, exponent_uint64_count, 1))
{
set_uint_uint(operand, operand_uint64_count, result_uint64_count, result);
return;
}
// Need to make a copy of exponent
auto exponent_copy(allocate_uint(exponent_uint64_count, pool));
set_uint_uint(exponent, exponent_uint64_count, exponent_copy.get());
// Perform binary exponentiation.
auto big_alloc(allocate_uint(
result_uint64_count + result_uint64_count + result_uint64_count, pool));
uint64_t *powerptr = big_alloc.get();
uint64_t *productptr = powerptr + result_uint64_count;
uint64_t *intermediateptr = productptr + result_uint64_count;
set_uint_uint(operand, operand_uint64_count, result_uint64_count, powerptr);
set_uint(1, result_uint64_count, intermediateptr);
// Initially: power = operand and intermediate = 1, product is not initialized.
while (true)
{
if ((*exponent_copy.get() % 2) == 1)
{
multiply_truncate_uint_uint(powerptr, intermediateptr,
result_uint64_count, productptr);
swap(productptr, intermediateptr);
}
right_shift_uint(exponent_copy.get(), 1, exponent_uint64_count,
exponent_copy.get());
if (is_zero_uint(exponent_copy.get(), exponent_uint64_count))
{
break;
}
multiply_truncate_uint_uint(powerptr, powerptr, result_uint64_count,
productptr);
swap(productptr, powerptr);
}
set_uint_uint(intermediateptr, result_uint64_count, result);
}
uint64_t exponentiate_uint64_safe(uint64_t operand, uint64_t exponent)
{
// Fast cases
if (exponent == 0)
{
return 1;
}
if (exponent == 1)
{
return operand;
}
// Perform binary exponentiation.
uint64_t power = operand;
uint64_t product = 0;
uint64_t intermediate = 1;
// Initially: power = operand and intermediate = 1, product irrelevant.
while (true)
{
if (exponent & 1)
{
product = mul_safe(power, intermediate);
swap(product, intermediate);
}
exponent >>= 1;
if (exponent == 0)
{
break;
}
product = mul_safe(power, power);
swap(product, power);
}
return intermediate;
}
uint64_t exponentiate_uint64(uint64_t operand, uint64_t exponent)
{
// Fast cases
if (exponent == 0)
{
return 1;
}
if (exponent == 1)
{
return operand;
}
// Perform binary exponentiation.
uint64_t power = operand;
uint64_t product = 0;
uint64_t intermediate = 1;
// Initially: power = operand and intermediate = 1, product irrelevant.
while (true)
{
if (exponent & 1)
{
product = power * intermediate;
swap(product, intermediate);
}
exponent >>= 1;
if (exponent == 0)
{
break;
}
product = power * power;
swap(product, power);
}
return intermediate;
}
}
}