You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have followed the 293_denoising_RGB_images_using_deep_learning.ipynb and everything seemed fine except while trying to predict.
This is the error that I get:
`pred = model.predict(img, axes='YXC')
ValueError Traceback (most recent call last)
Cell In[26], line 5
1 # Here we denoise the image (predict)
2 # The parameter 'n_tiles' can be used if images are to big for the GPU memory.
3 # If we do not provide the n_tiles' parameter the system will automatically try to find an appropriate tiling.
4 # This can take longer.
----> 5 pred = model.predict(img, axes='YXC')
File ~/Desktop/N2VTensorFlow/n2vTF/lib/python3.8/site-packages/n2v/models/n2v_standard.py:382, in N2V.predict(self, img, axes, resizer, n_tiles, tta) 380 if n_tiles: 381 new_n_tiles = tuple([n_tiles[axes.index(c)] for c in axes if c != 'C']) + (n_tiles[axes.index('C')],)
--> 382 normalized = self.normalize(np.moveaxis(img, axes.index('C'), -1), means, stds) 383 else: 384 normalized = self.normalize(img[..., np.newaxis], means, stds)
I have followed the 293_denoising_RGB_images_using_deep_learning.ipynb and everything seemed fine except while trying to predict.
This is the error that I get:
`pred = model.predict(img, axes='YXC')
ValueError Traceback (most recent call last)
Cell In[26], line 5
1 # Here we denoise the image (predict)
2 # The parameter 'n_tiles' can be used if images are to big for the GPU memory.
3 # If we do not provide the n_tiles' parameter the system will automatically try to find an appropriate tiling.
4 # This can take longer.
----> 5 pred = model.predict(img, axes='YXC')
File ~/Desktop/N2VTensorFlow/n2vTF/lib/python3.8/site-packages/n2v/models/n2v_standard.py:382, in N2V.predict(self, img, axes, resizer, n_tiles, tta)
380 if n_tiles:
381 new_n_tiles = tuple([n_tiles[axes.index(c)] for c in axes if c != 'C']) + (n_tiles[axes.index('C')],)
--> 382 normalized = self.normalize(np.moveaxis(img, axes.index('C'), -1), means, stds)
383 else:
384 normalized = self.normalize(img[..., np.newaxis], means, stds)
File ~/Desktop/N2VTensorFlow/n2vTF/lib/python3.8/site-packages/n2v/models/n2v_standard.py:341, in N2V.normalize(self, data, means, stds)
340 def normalize(self, data, means, stds):
--> 341 return (data - means) / stds
ValueError: operands could not be broadcast together with shapes (359,497,4) (1,1,3)`
The text was updated successfully, but these errors were encountered: