forked from czq142857/BSP-NET-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
68 lines (58 loc) · 3.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import numpy as np
from modelAE import BSP_AE
from modelSVR import BSP_SVR
import argparse
import h5py
parser = argparse.ArgumentParser()
parser.add_argument("--phase", action="store", dest="phase", default=1, type=int, help="phase 0 = continuous, phase 1 = hard discrete, phase 2 = hard discrete with L_overlap, phase 3 = soft discrete, phase 4 = soft discrete with L_overlap [1]")
#phase 0 continuous for better convergence
#phase 1 hard discrete for bsp
#phase 2 hard discrete for bsp with L_overlap
#phase 3 soft discrete for bsp
#phase 4 soft discrete for bsp with L_overlap
#use [phase 0 -> phase 1] or [phase 0 -> phase 2] or [phase 0 -> phase 3] or [phase 0 -> phase 4]
parser.add_argument("--epoch", action="store", dest="epoch", default=0, type=int, help="Epoch to train [0]")
parser.add_argument("--iteration", action="store", dest="iteration", default=0, type=int, help="Iteration to train. Either epoch or iteration need to be zero [0]")
parser.add_argument("--learning_rate", action="store", dest="learning_rate", default=0.0001, type=float, help="Learning rate for adam [0.0001]")
parser.add_argument("--beta1", action="store", dest="beta1", default=0.5, type=float, help="Momentum term of adam [0.5]")
parser.add_argument("--dataset", action="store", dest="dataset", default="all_vox256_img", help="The name of dataset")
parser.add_argument("--checkpoint_dir", action="store", dest="checkpoint_dir", default="checkpoint", help="Directory name to save the checkpoints [checkpoint]")
parser.add_argument("--data_dir", action="store", dest="data_dir", default="./data/all_vox256_img/", help="Root directory of dataset [data]")
parser.add_argument("--sample_dir", action="store", dest="sample_dir", default="./samples/", help="Directory name to save the image samples [samples]")
parser.add_argument("--sample_vox_size", action="store", dest="sample_vox_size", default=64, type=int, help="Voxel resolution for coarse-to-fine training [64]")
parser.add_argument("--train", action="store_true", dest="train", default=False, help="True for training, False for testing [False]")
parser.add_argument("--start", action="store", dest="start", default=0, type=int, help="In testing, output shapes [start:end]")
parser.add_argument("--end", action="store", dest="end", default=16, type=int, help="In testing, output shapes [start:end]")
parser.add_argument("--ae", action="store_true", dest="ae", default=False, help="True for ae [False]")
parser.add_argument("--svr", action="store_true", dest="svr", default=False, help="True for svr [False]")
parser.add_argument("--getz", action="store_true", dest="getz", default=False, help="True for getting latent codes [False]")
parser.add_argument("--gpu", action="store", dest="gpu", default="0", help="Which GPU to use [0]")
FLAGS = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=FLAGS.gpu
if not os.path.exists(FLAGS.sample_dir):
os.makedirs(FLAGS.sample_dir)
if FLAGS.ae:
bsp_ae = BSP_AE(FLAGS)
if FLAGS.train:
bsp_ae.train(FLAGS)
elif FLAGS.getz:
bsp_ae.get_z(FLAGS)
else:
if FLAGS.phase==0:
bsp_ae.test_dae3(FLAGS)
else:
#bsp_ae.test_bsp(FLAGS)
bsp_ae.test_mesh_point(FLAGS)
#bsp_ae.test_mesh_obj_material(FLAGS)
elif FLAGS.svr:
bsp_svr = BSP_SVR(FLAGS)
if FLAGS.train:
bsp_svr.train(FLAGS)
else:
#bsp_svr.test_bsp(FLAGS)
bsp_svr.test_mesh_point(FLAGS)
#bsp_svr.test_mesh_obj_material(FLAGS)
else:
print("Please specify an operation: ae or svr?")