-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_bo.py
82 lines (58 loc) · 2.14 KB
/
cnn_bo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#Convolutional Neural Network
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
#Initialising the CNN
model = Sequential()
#Adding in the convolutional layer
model.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
#adding in the pooling, reducing size of feature maps
model.add(MaxPooling2D(2,2))
model.add(Conv2D(32, (3, 3), activation = 'relu'))
model.add(MaxPooling2D(2,2))
#converting feature arrays to one flattened vector
model.add(Flatten())
#adding an artificial neural network to process the flattened data
model.add(Dense(output_dim = 128, activation = 'relu'))
model.add(Dense(output_dim = 1, activation = 'sigmoid'))
model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
#processing our images
from keras.preprocessing.image import ImageDataGenerator
#this rescales all of our pixels based on defined parameters to a number between 0 and 1
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory(
'dataset/training_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory(
'dataset/test_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
model.fit_generator(
training_set,
steps_per_epoch=8000,
epochs=25,
validation_data=test_set,
validation_steps=2000)
######################### Testing on a single picture #############
import numpy as np
from keras.preprocessing import image
test_image = image.load_img('dataset/single_prediction/cat_or_dog1.jpg', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
training_set.class_indices
result = model.predict(test_image)
if (result[0][0] == 1):
prediction = 'dog'
else:
prediction = 'cat'
print(prediction)