-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
252 lines (211 loc) · 9.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import random
import argparse
import yaml
import wandb
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import albumentations as A
from torch.utils.data import DataLoader
from src.models import get_model
from src.dataset import XRayDataset
from src.loss import LossFactory
from src.optimizer import OptimizerFactory
from src.trainer import Trainer
from src.scheduler import SchedulerFactory
def parse_args():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(description='Train segmentation model')
parser.add_argument('-c', '--config', type=str, default='smp_unetplusplus_efficientb0.yaml',
help='name of config file in configs directory')
parser.add_argument('--resume', type=str, default=None,
help='path to checkpoint to resume from')
args = parser.parse_args()
return args
def load_config(config_name):
"""Load config file from configs directory"""
config_path = os.path.join('configs', config_name)
if not os.path.exists(config_path):
print(f'Config file not found: {config_path}')
exit(1)
with open(config_path, 'r') as f:
try:
config = yaml.safe_load(f)
except yaml.YAMLError as e:
print(f'Error loading config file: {e}')
exit(1)
return config
def set_seed(seed):
"""Set random seed for reproducibility"""
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
def get_transforms(cfg):
"""Get data transforms for train and validation"""
image_size = cfg['DATASET'].get('IMAGE_SIZE', 512)
aug_cfg = cfg.get('AUGMENTATION', {})
train_transform = A.Compose([
A.Resize(image_size, image_size),
# Basic augmentations
A.HorizontalFlip(
p=aug_cfg.get('HORIZONTAL_FLIP', {}).get('P', 0.5)
) if aug_cfg.get('HORIZONTAL_FLIP', {}).get('ENABLED', True) else A.NoOp(),
A.VerticalFlip(
p=aug_cfg.get('VERTICAL_FLIP', {}).get('P', 0.5)
) if aug_cfg.get('VERTICAL_FLIP', {}).get('ENABLED', True) else A.NoOp(),
# Intensity augmentations
A.RandomBrightnessContrast(
brightness_limit=aug_cfg.get('RANDOM_BRIGHTNESS_CONTRAST', {}).get('BRIGHTNESS_LIMIT', 0.2),
contrast_limit=aug_cfg.get('RANDOM_BRIGHTNESS_CONTRAST', {}).get('CONTRAST_LIMIT', 0.2),
p=aug_cfg.get('RANDOM_BRIGHTNESS_CONTRAST', {}).get('P', 0.5)
) if aug_cfg.get('RANDOM_BRIGHTNESS_CONTRAST', {}).get('ENABLED', True) else A.NoOp(),
# Geometric augmentations
A.Rotate(
limit=aug_cfg.get('RANDOM_ROTATE', {}).get('LIMIT', 15),
p=aug_cfg.get('RANDOM_ROTATE', {}).get('P', 0.5)
) if aug_cfg.get('RANDOM_ROTATE', {}).get('ENABLED', True) else A.NoOp(),
# Noise and filtering
A.GaussNoise(
var_limit=aug_cfg.get('GAUSSIAN_NOISE', {}).get('VAR_LIMIT', [10.0, 50.0]),
p=aug_cfg.get('GAUSSIAN_NOISE', {}).get('P', 0.3)
) if aug_cfg.get('GAUSSIAN_NOISE', {}).get('ENABLED', True) else A.NoOp(),
# Contrast enhancement
A.CLAHE(
clip_limit=aug_cfg.get('CLAHE', {}).get('CLIP_LIMIT', 4.0),
p=aug_cfg.get('CLAHE', {}).get('P', 0.5)
) if aug_cfg.get('CLAHE', {}).get('ENABLED', True) else A.NoOp(),
A.RandomGamma(
gamma_limit=aug_cfg.get('RANDOM_GAMMA', {}).get('GAMMA_LIMIT', [80, 120]),
p=aug_cfg.get('RANDOM_GAMMA', {}).get('P', 0.3)
) if aug_cfg.get('RANDOM_GAMMA', {}).get('ENABLED', True) else A.NoOp(),
# Elastic and grid distortions
A.ElasticTransform(
alpha=aug_cfg.get('ELASTIC_TRANSFORM', {}).get('ALPHA', 120),
sigma=aug_cfg.get('ELASTIC_TRANSFORM', {}).get('SIGMA', 120 * 0.05),
alpha_affine=aug_cfg.get('ELASTIC_TRANSFORM', {}).get('ALPHA_AFFINE', 120 * 0.03),
p=aug_cfg.get('ELASTIC_TRANSFORM', {}).get('P', 0.3)
) if aug_cfg.get('ELASTIC_TRANSFORM', {}).get('ENABLED', True) else A.NoOp(),
A.GridDistortion(
num_steps=aug_cfg.get('GRID_DISTORTION', {}).get('NUM_STEPS', 5),
distort_limit=aug_cfg.get('GRID_DISTORTION', {}).get('DISTORT_LIMIT', 0.3),
p=aug_cfg.get('GRID_DISTORTION', {}).get('P', 0.3)
) if aug_cfg.get('GRID_DISTORTION', {}).get('ENABLED', True) else A.NoOp(),
A.augmentations.crops.transforms.CropNonEmptyMaskIfExists(
height=cfg.get('CROP_NON_EMPTY_MASK', {}).get('HEIGHT', image_size/2), width=cfg.get('CROP_NON_EMPTY_MASK', {}).get('WIDTH', image_size/2), ignore_values=cfg.get('CROP_NON_EMPTY_MASK', {}).get('IGNORE_VALUES', None)
) if aug_cfg.get('CROP_NON_EMPTY_MASK', {}).get('ENABLED', True) else A.NoOp(),
])
val_transform = A.Compose([
A.Resize(image_size, image_size),
])
return train_transform, val_transform
def main(args=None):
"""Main training function"""
# Parse arguments and load config
if args is None:
args = parse_args()
cfg = load_config(args.config)
wandb.init(
project = "Segmentation",
entity = 'jhs7027-naver',
group = cfg['WANDB']['GROUP'],
name = cfg['WANDB']['NAME'],
config = {
"IMAGE_SIZE": cfg['DATASET'].get('IMAGE_SIZE'),
"BATCH_SIZE": cfg['DATASET'].get('BATCH_SIZE'),
"NUM_WORKERS": cfg['DATASET'].get('NUM_WORKERS'),
"ENCODER": cfg['MODEL'].get('ENCODER'),
"NUM_EPOCHS": cfg['TRAIN'].get('NUM_EPOCHS'),
"VAL_EVERY": cfg['TRAIN'].get('VAL_EVERY'),
"LEARNING_RATE": cfg['TRAIN'].get('LEARNING_RATE'),
"WEIGHT_DECAY": cfg['TRAIN'].get('WEIGHT_DECAY'),
"RANDOM_SEED": cfg['TRAIN'].get('RANDOM_SEED'),
"LOSS_NAME": cfg['LOSS'].get('NAME'),
"LOSS_WEIGHTS": cfg['LOSS'].get('WEIGHTS'),
"OPTIMIZER_NAME": cfg['OPTIMIZER'].get('NAME'),
"OPTIMIZER_LR": cfg['OPTIMIZER'].get('LR'),
"OPTIMIZER_WEIGHT_DECAY": cfg['OPTIMIZER'].get('WEIGHT_DECAY'),
"OPTIMIZER_BETAS": cfg['OPTIMIZER'].get('BETAS'),
"OPTIMIZER_USE_TRITON": cfg['OPTIMIZER'].get('USE_TRITON'),
"OPTIMIZER_MOMENTUM": cfg['OPTIMIZER'].get('MOMENTUM'),
"OPTIMIZER_USE_LOOKAHEAD": cfg['OPTIMIZER'].get('USE_LOOKAHEAD'),
"OPTIMIZER_LOOKAHEAD_K": cfg['OPTIMIZER'].get('LOOKAHEAD_K'),
"OPTIMIZER_LOOKAHEAD_ALPHA": cfg['OPTIMIZER'].get('LOOKAHEAD_ALPHA'),
"SCHEDULER_NAME": cfg['SCHEDULER'].get('NAME'),
"SCHEDULER_STEP_SIZE": cfg['SCHEDULER'].get('STEP_SIZE'),
"SCHEDULER_MILESTONES": cfg['SCHEDULER'].get('MILESTONES'),
"SCHEDULER_GAMMA": cfg['SCHEDULER'].get('GAMMA'),
"SCHEDULER_FACTOR": cfg['SCHEDULER'].get('FACTOR'),
"SCHEDULER_PATIENCE": cfg['SCHEDULER'].get('PATIENCE'),
"SCHEDULER_VERBOSE": cfg['SCHEDULER'].get('VERBOSE'),
"SCHEDULER_T_MAX": cfg['SCHEDULER'].get('T_MAX'),
"SCHEDULER_ETA_MIN": cfg['SCHEDULER'].get('ETA_MIN'),
"VALIDATION_THRESHOLD": cfg['VALIDATION'].get('THRESHOLD'),
}
)
# Set random seed
set_seed(cfg['TRAIN']['RANDOM_SEED'])
# Create save directory if it doesn't exist
save_dir = cfg['TRAIN'].get('SAVED_DIR', 'checkpoints') # Default to 'checkpoints' if not specified
os.makedirs(save_dir, exist_ok=True)
# Setup transforms
train_transform, val_transform = get_transforms(cfg)
# Setup datasets
train_dataset = XRayDataset(
cfg=cfg,
is_train=True,
transforms=train_transform
)
valid_dataset = XRayDataset(
cfg=cfg,
is_train=False,
transforms=val_transform
)
# Setup dataloaders
train_loader = DataLoader(
dataset=train_dataset,
batch_size=cfg['DATASET']['BATCH_SIZE'],
shuffle=True,
num_workers=cfg['DATASET']['NUM_WORKERS'],
drop_last=True
)
valid_loader = DataLoader(
dataset=valid_dataset,
batch_size=cfg['DATASET']['BATCH_SIZE'],
shuffle=False,
num_workers=cfg['DATASET']['NUM_WORKERS'], # Prevent memory issues during validation
drop_last=False
)
# Setup model
model = get_model(cfg)
if args.resume:
print(f"Loading checkpoint from {args.resume}")
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['model_state_dict'])
# Setup loss function, optimizer, and scheduler using factories
criterion = LossFactory.get_loss(cfg['LOSS'])
optimizer = OptimizerFactory.get_optimizer(cfg['OPTIMIZER'], model.parameters())
# Create scheduler only if enabled in config
scheduler = None
if cfg['SCHEDULER'].get('USE_SCHEDULER', True): # Default to True for backward compatibility
scheduler = SchedulerFactory.get_scheduler(cfg['SCHEDULER'], optimizer)
# Setup trainer with model name and config name
trainer = Trainer(
cfg=cfg,
model=model,
train_loader=train_loader,
val_loader=valid_loader,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
config_name=os.path.splitext(args.config)[0] # Add config_name parameter
)
# Start training
trainer.train()
if __name__ == '__main__':
main()