-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathConvolutions_old.py
216 lines (181 loc) · 7.91 KB
/
Convolutions_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import sys
import numpy as np
from scipy.signal import convolve
from tensorflow import keras
from utility_functions import relu, averager, extract_averager_value, np_random_normal
def relu_prime(x):
return relu(x,der=True)
def batch_generator(X, y, batch_size, total_count):
idx = np.arange(0, len(y))
for i in range(total_count):
idx_batch = np.random.choice(idx, batch_size)
yield X[idx_batch], y[idx_batch]
def forward_pass_batch(W1, W2, X_batch, y_batch):
num_filters = W1.shape[-1]
batch_size = len(y_batch)
idx_batch_size = range(batch_size)
l0 = X_batch
l0_conv = np.zeros((batch_size, image_size, image_size, num_filters))
for n in range(batch_size):
for j in range(num_filters):
l0_conv[n, :, :, j] = convolve(l0[n],
W1[::-1, ::-1, ::-1, j],
'same')[:, :, num_channels // 2]
l1 = relu(l0_conv)
f1p = relu_prime(l0_conv)
l1_dot_W2 = l1.reshape(batch_size, -1).dot(W2)
p_un = np.exp(l1_dot_W2)
p_sum = p_un.sum(1)
l2 = p_un / p_un.sum(1)[:, None]
loss = -l1_dot_W2[idx_batch_size, y_batch] + np.log(p_sum)
accuracy = l2.argmax(1) == y_batch
return l0, l1, f1p, l2, loss, accuracy
DATASET = 'CIFAR10'
if DATASET == 'CIFAR10':
print('Using CIFAR10')
(X_train_full, y_train_full), (
X_test, y_test) = keras.datasets.cifar10.load_data()
elif DATASET == 'CIFAR100':
print('Using CIFAR100')
(X_train_full, y_train_full), (
X_test, y_test) = keras.datasets.cifar100.load_data()
else:
print('Using Fashion_MNIST')
(X_train_full, y_train_full), (
X_test, y_test) = keras.datasets.fashion_mnist.load_data()
X_train, X_valid = X_train_full[:-5000], X_train_full[-5000:]
y_train, y_valid = y_train_full[:-5000], y_train_full[-5000:]
X_mean = X_train.mean(axis=0, keepdims=True)
X_std = X_train.std(axis=0, keepdims=True) + 1e-7
X_train = (X_train - X_mean) / X_std
X_valid = (X_valid - X_mean) / X_std
X_test = (X_test - X_mean) / X_std
if len(X_train_full.shape) == 3:
X_train = X_train[..., np.newaxis]
X_valid = X_valid[..., np.newaxis]
X_test = X_test[..., np.newaxis]
y_train = y_train.flatten()
y_valid = y_valid.flatten()
y_test = y_test.flatten()
K = 3
num_channels = X_train.shape[3]
image_size = X_train.shape[1]
image_size_embedding_size = image_size + K - 1
num_categories = len(set(list(y_train)))
eta = .001
batch_size = 32
idx_batch_size = list(range(batch_size))
num_steps = len(y_train) // batch_size
def train(num_filters, W1=None, W2=None, train_W1=True, train_W2=True):
if not W1:
W1 = np_random_normal(0, 1 / np.sqrt(K * K * num_channels),
size=(K, K, num_channels, num_filters))
if not W2:
W2 = np_random_normal(0, 1 / np.sqrt(
num_filters * image_size * image_size),
size=(num_filters * image_size * image_size,
num_categories))
idx_batch_size = list(range(batch_size))
lt0 = np.zeros((batch_size,
image_size_embedding_size,
image_size_embedding_size,
num_channels))
l0_conv = np.zeros((batch_size, image_size, image_size, num_filters))
l1 = np.zeros_like(l0_conv)
f1p = np.zeros_like(l0_conv)
print('Training with num filters {}'.format(num_filters))
for epoch in range(5):
train_loss = averager()
train_accuracy = averager()
for i, (X_batch, y_batch) in enumerate(
batch_generator(X_train, y_train, batch_size, num_steps)):
if (i + 1) % 10 == 0:
sys.stdout.write(
'Epoch: {} Step {}/{}\r'.format(epoch + 1, i + 1,
num_steps))
# l0 = X_batch
# lt0=np.zeros((l0.shape[0],l0.shape[1]+K-1,l0.shape[2]+K-1,
# l0.shape[3]))
# for n in range(batch_size):
# for j in range(num_filters):
# l0_conv[n, :, :, j] = convolve(l0[n], W1[::-1, ::-1,
# ::-1, j], 'same')[:, :,
# num_randomchannels // 2]
# l1[:] = 0
# f1p[:] = 0
# l1[:] = relu(l0_conv)
# f1p[:] = relu_prime(l0_conv)
# l1_dot_W2 = l1.reshape(batch_size, -1).dot(W2)
# p_un = np.exp(l1_dot_W2)
# p_sum = p_un.sum(1)
# l2 = p_un / p_un.sum(1)[:, None]
# loss = -l1_dot_W2[idx_batch_size, y_batch] + np.log(p_sum)
# accuracy = l2.argmax(1) == y_batch
l0, l1, f1p, l2, loss, accuracy = forward_pass_batch(W1, W2,
X_batch,
y_batch)
train_loss.send(loss.mean())
train_accuracy.send(accuracy.mean())
lt0[:] = 0
lt0[:, K // 2:-K // 2 + 1, K // 2:-K // 2 + 1] = l0
if train_W2:
d = np.zeros(shape=(batch_size, num_categories))
d[idx_batch_size, y_batch] = 1
dW2 = (l1.reshape(batch_size, -1)[:, :, None] * (l2 - d)[:,
None, :])
if train_W1:
dl1 = (l2.dot(W2.T) - W2[:, y_batch].T).reshape(batch_size,
image_size,
image_size,
num_filters)
dl1_f1p = (dl1 * f1p)
dW1 = np.array(
[[(lt0[:, alpha:image_size_embedding_size + alpha - (K - 1),
beta:image_size_embedding_size + beta - (K - 1)][:, :, :,
:, None] \
* dl1_f1p[:, :, :, None, :]).sum((1, 2)) \
for beta in range(K)] for alpha in range(K)]).transpose(2,
0,
1,
3,
4)
if train_W2:
W2 += -eta * dW2.sum(0)
if train_W1:
W1 += -eta * dW1.sum(0)
loss_averager_valid = averager()
accuracy_averager_valid = averager()
for X_valid_batch, y_valid_batch in batch_generator(X_valid, y_valid,
batch_size,
len(
y_valid) //
batch_size):
_, _, _, _, loss, accuracy = forward_pass_batch(W1, W2,
X_valid_batch,
y_valid_batch)
loss_averager_valid.send(loss.mean())
accuracy_averager_valid.send(accuracy.mean())
train_loss, train_accuracy, valid_loss, valid_accuracy = map(
extract_averager_value, [
train_loss,
train_accuracy,
loss_averager_valid,
accuracy_averager_valid]
)
msg = 'Epoch {}: train loss {:.2f}, train acc {:.2f}, valid loss {' \
':.2f}, valid acc {:.2f}'.format(
epoch + 1,
train_loss,
train_accuracy,
valid_loss,
valid_accuracy
)
print(msg)
return W1, W2
import time
for num_filters in (5,):
t0=time.time()
np.random.seed(42)
train(num_filters)
t1=time.time()
print('Total time',t1-t0)