This repository has been archived by the owner on May 21, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathevaluate_metabo_gps.py
executable file
·130 lines (121 loc) · 4.71 KB
/
evaluate_metabo_gps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2019 Robert Bosch GmbH
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# ******************************************************************
# evaluate_metabo_gps.py
# Reproduce results from MetaBO paper on GP-samples
# For convenience, we provide the pretrained weights resulting from the experiments described in the paper.
# These weights can be reproduced using train_metabo_gps.py
# ******************************************************************
import os
from metabo.eval.evaluate import eval_experiment
from metabo.eval.plot_results2 import plot_results2
from gym.envs.registration import register, registry
from datetime import datetime
# set evaluation parameters
afs_to_evaluate = ["MetaBO", "EI", "Random"]
rootdir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "metabo")
logpath = os.path.join(rootdir, "iclr2020", "MetaBO-GP-v0", "Matern52", "2019-11-11-21-05-02")
savepath = os.path.join(logpath, "eval", datetime.strftime(datetime.now(), "%Y-%m-%d-%H-%M-%S"))
n_workers = 10
n_episodes = 100
# evaluate all afs
for af in afs_to_evaluate:
# set af-specific parameters
if af == "MetaBO":
features = ["posterior_mean", "posterior_std", "incumbent", "timestep_perc", "timestep",
"budget"] # dimensionality agnostic
pass_X_to_pi = False
n_init_samples = 0
load_iter = 1161 # determined via metabo.ppo.util.get_best_iter_idx()
T_training = None
deterministic = False
policy_specs = {} # will be loaded from the logfiles
else:
features = ["posterior_mean", "posterior_std", "incumbent", "timestep"]
T_training = None
pass_X_to_pi = False
n_init_samples = 1
load_iter = None # does only apply for MetaBO
deterministic = None # does only apply for MetaBO
if af == "EI":
policy_specs = {}
elif af == "Random":
policy_specs = {}
else:
raise ValueError("Unknown AF!")
# define environment
kernel = "Matern52"
env_spec = {
"env_id": "MetaBO-GP-v0",
"D": 5, # MetaBO is dimensionality agnostic and can be evaluated for any D
"f_type": "GP",
"f_opts": {"kernel": kernel,
"lengthscale_low": 0.05,
"lengthscale_high": 0.5,
"noise_var_low": 0.1,
"noise_var_high": 0.1,
"signal_var_low": 1.0,
"signal_var_high": 1.0,
"min_regret": 0},
"features": features,
"T": 140,
"T_training": T_training,
"n_init_samples": n_init_samples,
"pass_X_to_pi": pass_X_to_pi,
# will be set individually for each new function to the sampled hyperparameters
"kernel": kernel,
"kernel_lengthscale": None,
"kernel_variance": None,
"noise_variance": None,
"use_prior_mean_function": True,
"local_af_opt": True,
"N_MS": 4000,
"N_LS": 4000,
"k": 5,
"reward_transformation": "none",
}
# register gym environment
if env_spec["env_id"] in registry.env_specs:
del registry.env_specs[env_spec["env_id"]]
register(
id=env_spec["env_id"],
entry_point="metabo.environment.metabo_gym:MetaBO",
max_episode_steps=env_spec["T"],
reward_threshold=None,
kwargs=env_spec
)
# define evaluation run
eval_spec = {
"env_id": env_spec["env_id"],
"env_seed_offset": 100,
"policy": af,
"logpath": logpath,
"load_iter": load_iter,
"deterministic": deterministic,
"policy_specs": policy_specs,
"savepath": savepath,
"n_workers": n_workers,
"n_episodes": n_episodes,
"T": env_spec["T"],
}
# perform evaluation
print("Evaluating {} on {}...".format(af, env_spec["env_id"]))
eval_experiment(eval_spec)
print("Done! Saved result in {}".format(savepath))
print("**********************\n\n")
# plot (plot is saved to savepath)
print("Plotting...")
plot_results2(path=savepath, logplot=True)
print("Done! Saved plot in {}".format(savepath))