This repository has been archived by the owner on May 21, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 12
/
train_metabo_furuta.py
executable file
·131 lines (122 loc) · 4.74 KB
/
train_metabo_furuta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) 2019 Robert Bosch GmbH
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# ******************************************************************
# train_metabo_furuta.py
# Train MetaBO on Furuta control task in simulation
# The weights, stats, logs, and the learning curve are stored in metabo/log and can
# be evaluated using metabo/eval/evaluate.py
# ******************************************************************
import os
import multiprocessing as mp
from datetime import datetime
from metabo.policies.policies import NeuralAF
from metabo.ppo.ppo import PPO
from metabo.ppo.plot_learning_curve_online import plot_learning_curve_online
from gym.envs.registration import register
rootdir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "metabo")
# specifiy environment
true_mass_arm = 0.095
true_mass_pendulum = 0.024
true_length_arm = 0.085
true_length_pendulum = 0.129
low_mult = 0.75
high_mult = 1.25
env_spec = {
"env_id": "MetaBO-Furuta-v0",
"D": 4,
"f_type": "Furuta",
"f_opts": {"furuta_domain": [[-0.5, 0.2],
[-1.6, 4.0],
[-0.1, 0.04],
[-0.04, 0.1]],
"mass_arm_low": low_mult * true_mass_arm,
"mass_arm_high": high_mult * true_mass_arm,
"mass_pendulum_low": low_mult * true_mass_pendulum,
"mass_pendulum_high": high_mult * true_mass_pendulum,
"length_arm_low": low_mult * true_length_arm,
"length_arm_high": high_mult * true_length_arm,
"length_pendulum_low": low_mult * true_length_pendulum,
"length_pendulum_high": high_mult * true_length_pendulum,
"pos": [0, 1, 2, 3]},
"features": ["posterior_mean", "posterior_std", "x"],
"T_min": 1,
"T_max": 25,
"n_init_samples": 0,
"pass_X_to_pi": False,
"kernel_lengthscale": [0.1, 0.1, 0.1, 0.1],
"kernel_variance": 1.5,
"noise_variance": 1e-2,
"use_prior_mean_function": True,
"local_af_opt": True,
"N_MS": 10000,
"N_LS": 1000,
"k": 1,
"reward_transformation": "neg_linear" # true maximum not known
}
# specify PPO parameters
n_iterations = 2000
batch_size = 1200
n_workers = 10
arch_spec = 4 * [200]
ppo_spec = {
"batch_size": batch_size,
"max_steps": n_iterations * batch_size,
"minibatch_size": batch_size // 50,
"n_epochs": 4,
"lr": 1e-4,
"epsilon": 0.15,
"value_coeff": 1.0,
"ent_coeff": 0.01,
"gamma": 0.98,
"lambda": 0.98,
"loss_type": "GAElam",
"normalize_advs": True,
"n_workers": n_workers,
"env_id": env_spec["env_id"],
"seed": 0,
"env_seeds": list(range(n_workers)),
"policy_options": {
"activations": "relu",
"arch_spec": arch_spec,
"use_value_network": True,
"t_idx": -2,
"T_idx": -1,
"arch_spec_value": arch_spec
}
}
# register environment
register(
id=env_spec["env_id"],
entry_point="metabo.environment.metabo_gym:MetaBO",
max_episode_steps=env_spec["T_max"],
reward_threshold=None,
kwargs=env_spec
)
# log data and weights go here, use this folder for evaluation afterwards
logpath = os.path.join(rootdir, "log", env_spec["env_id"], datetime.strftime(datetime.now(), "%Y-%m-%d-%H-%M-%S"))
# set up policy
policy_fn = lambda observation_space, action_space, deterministic: NeuralAF(observation_space=observation_space,
action_space=action_space,
deterministic=deterministic,
options=ppo_spec["policy_options"])
# do training
print("Training on {}.\nFind logs, weights, and learning curve at {}\n\n".format(env_spec["env_id"], logpath))
ppo = PPO(policy_fn=policy_fn, params=ppo_spec, logpath=logpath, save_interval=1)
# learning curve is plotted online in separate process
p = mp.Process(target=plot_learning_curve_online, kwargs={"logpath": logpath, "reload": True})
p.start()
ppo.train()
p.terminate()
plot_learning_curve_online(logpath=logpath, reload=False)