This repository has been archived by the owner on Jul 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathuvast_dec.py
645 lines (561 loc) · 29.4 KB
/
uvast_dec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
# code from https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/transformer.py and https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/activation.py
# License: https://github.com/pytorch/pytorch/blob/master/LICENSE
# Come modifications were made
import warnings
from typing import Optional, Tuple
import torch
from torch import Tensor
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
from torch.nn.functional import linear
import torch.nn.functional as F
from typing import Callable, List, Optional, Tuple,Union
import math
import torch
from torch import Tensor
from torch.nn.parameter import Parameter, UninitializedParameter
from torch.nn import init
from torch.nn.modules.module import Module
from torch.nn.modules.lazy import LazyModuleMixin
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
from torch.nn.parameter import Parameter
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
import copy
import torch
from torch import Tensor
from torch.nn import functional as F
from torch.nn.modules.module import Module
from torch.nn.modules.container import ModuleList
from torch.nn.init import xavier_uniform_
from torch.nn.modules.dropout import Dropout
from torch.nn.modules.linear import Linear,NonDynamicallyQuantizableLinear
from torch.nn.modules.normalization import LayerNorm
import torch.nn as nn
import numpy as np
class MultiheadAttention_VAST_SA(Module):
__constants__ = ['batch_first']
bias_k: Optional[torch.Tensor]
bias_v: Optional[torch.Tensor]
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
kdim=None, vdim=None, batch_first=False, device=None, dtype=None ) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super(MultiheadAttention_VAST_SA, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.batch_first = batch_first
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if self._qkv_same_embed_dim is False:
self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
self.register_parameter('in_proj_weight', None)
else:
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
self.register_parameter('q_proj_weight', None)
self.register_parameter('k_proj_weight', None)
self.register_parameter('v_proj_weight', None)
if bias:
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
if add_bias_kv:
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self._reset_parameters()
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.)
constant_(self.out_proj.bias, 0.)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def __setstate__(self, state):
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
if '_qkv_same_embed_dim' not in state:
state['_qkv_same_embed_dim'] = True
super(MultiheadAttention_VAST_SA, self).__setstate__(state)
def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True, attn_mask: Optional[Tensor] = None,rpos=None,args=None) -> Tuple[Tensor, Optional[Tensor]]:
if self.batch_first:
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
if not self._qkv_same_embed_dim:
attn_output, attn_output_weights = multi_head_attention_forward_vast(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight)
else:
attn_output, attn_output_weights_v, attn_output_weights_SA, naive_attn = multi_head_attention_forward_vast(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, rpos=rpos,
attn_type = 'SA', args=args)
if self.batch_first:
return attn_output.transpose(1, 0), attn_output_weights_SA
else:
return attn_output, attn_output_weights_SA, naive_attn
class MultiheadAttention_VAST_CA(Module):
__constants__ = ['batch_first']
bias_k: Optional[torch.Tensor]
bias_v: Optional[torch.Tensor]
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super(MultiheadAttention_VAST_CA, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.batch_first = batch_first
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if self._qkv_same_embed_dim is False:
print(nope)
self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
self.register_parameter('in_proj_weight', None)
else:
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
self.register_parameter('q_proj_weight', None)
self.register_parameter('k_proj_weight', None)
self.register_parameter('v_proj_weight', None)
if bias:
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
# add_bias_kv = True
if add_bias_kv:
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self._reset_parameters()
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
print(nope)
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.)
constant_(self.out_proj.bias, 0.)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def __setstate__(self, state):
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
if '_qkv_same_embed_dim' not in state:
state['_qkv_same_embed_dim'] = True
super(MultiheadAttention_VAST_CA, self).__setstate__(state)
def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True, attn_mask: Optional[Tensor] = None, rpos=None, args=None) -> Tuple[Tensor, Optional[Tensor]]:
if self.batch_first:
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
if not self._qkv_same_embed_dim:
attn_output, attn_output_weights = multi_head_attention_forward_vast(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight)
else:
attn_output, attn_output_weights_v,attn_output_weights_CA,naive_attn_ca = multi_head_attention_forward_vast(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, rpos=rpos,
attn_type = 'CA', args=args)
if self.batch_first:
return attn_output.transpose(1, 0), attn_output_weights_CA, naive_attn_ca
else:
return attn_output, attn_output_weights_CA, naive_attn_ca
class TransformerDecoder_UVAST(Module):
r"""TransformerDecoder is a stack of N decoder layers
Args:
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
num_layers: the number of sub-decoder-layers in the decoder (required).
norm: the layer normalization component (optional).
Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
>>> memory = torch.rand(10, 32, 512)
>>> tgt = torch.rand(20, 32, 512)
>>> out = transformer_decoder(tgt, memory)
"""
__constants__ = ['norm']
def __init__(self, decoder_layer, num_layers, repeat_mod=1, norm=None, args=None):
super(TransformerDecoder_UVAST, self).__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.repeat_mod = repeat_mod
self.dropoutmod = torch.nn.Dropout(0.05)
self.args = args
def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None) -> Tensor:
"""Pass the inputs (and mask) through the decoder layer in turn.
Args:
tgt: the sequence to the decoder (required).
memory: the sequence from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
output = tgt
sa_list = []
ca_list = []
outputs = []
ca_listnaive = []
for mod in self.layers:
# for _ in range( self.args.num_layers_trf_dec_repeat):
output, output_sa, output_ca, outut_naive_ca_org = mod(output, memory, tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask)
# if self.args.dropout_dec_output:# and indexxx!=self.args.num_layers_dec-1:
# output = self.dropoutmod(output)
# output = self.dropoutmod(output.contiguous().permute(1,0,2)).permute(1,0,2)
sa_list.append(output_sa)
ca_list.append(output_ca)
ca_listnaive.append(outut_naive_ca_org)
outputs.append(output)
if self.norm is not None:
output = self.norm(output)
return outputs, sa_list, ca_list, ca_listnaive
class TransformerDecoderLayer_UVAST(Module):
__constants__ = ['batch_first', 'norm_first']
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=F.relu,
layer_norm_eps=1e-5, batch_first=False, norm_first=False,
device=None, dtype=None,args=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super(TransformerDecoderLayer_UVAST, self).__init__()
self.args = args
self.self_attn = MultiheadAttention_VAST_SA(d_model, nhead, dropout=dropout, batch_first=batch_first,
**factory_kwargs)
self.multihead_attn = MultiheadAttention_VAST_CA(d_model, nhead, dropout=dropout, batch_first=batch_first,
**factory_kwargs)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward )
self.dropout = Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model )
self.norm_first = norm_first
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm3 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.dropout1 = Dropout(dropout)
self.dropout2 = Dropout(dropout)
self.dropout3 = Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
self.activation = _get_activation_fn(activation)
else:
self.activation = activation
def __setstate__(self, state):
if 'activation' not in state:
state['activation'] = F.relu
super(TransformerDecoderLayer_UVAST, self).__setstate__(state)
def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None) -> Tensor:
x = tgt
if self.norm_first:
x = x + self._sa_block(self.norm1(x), tgt_mask, tgt_key_padding_mask)
x = x + self._mha_block(self.norm2(x), memory, memory_mask, memory_key_padding_mask)
x = x + self._ff_block(self.norm3(x))
else:
x_sa,attn_sa = self._sa_block(x, tgt_mask, tgt_key_padding_mask)
x = self.norm1(x + x_sa)
x_ca,attn_ca,naive_attn_ca = self._mha_block(x, memory, memory_mask, memory_key_padding_mask)
x = self.norm2(x + x_ca)
x = self.norm3(x + self._ff_block(x))
return x, attn_sa, attn_ca,naive_attn_ca
# self-attention block
def _sa_block(self, x: Tensor,
attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor],rpos = None) -> Tensor:
x, vis_self_att_SA,_ = self.self_attn(x, x, x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=True, rpos=rpos, args=self.args)
return self.dropout1(x), vis_self_att_SA
# multihead attention block
def _mha_block(self, x: Tensor, mem: Tensor,
attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], rpos=None) -> Tensor:
x, vis_cross_att_CA,naive_attn = self.multihead_attn(x, mem, mem,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=True, rpos=rpos, args=self.args)
return self.dropout2(x),vis_cross_att_CA,naive_attn
# feed forward block
def _ff_block(self, x: Tensor) -> Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout3(x)
def _get_clones(module, N):
return ModuleList([copy.deepcopy(module) for i in range(N)])
def _get_activation_fn(activation):
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
def multi_head_attention_forward_vast(
query: Tensor,
key: Tensor,
value: Tensor,
embed_dim_to_check: int,
num_heads: int,
in_proj_weight: Tensor,
in_proj_bias: Optional[Tensor],
bias_k: Optional[Tensor],
bias_v: Optional[Tensor],
add_zero_attn: bool,
dropout_p: float,
out_proj_weight: Tensor,
out_proj_bias: Optional[Tensor],
training: bool = True,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
use_separate_proj_weight: bool = False,
q_proj_weight: Optional[Tensor] = None,
k_proj_weight: Optional[Tensor] = None,
v_proj_weight: Optional[Tensor] = None,
static_k: Optional[Tensor] = None,
static_v: Optional[Tensor] = None,
rpos = None,
attn_type = None,
args = None
) -> Tuple[Tensor, Optional[Tensor]]:
# Outputs:
# attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
# E is the embedding dimension.
# attn_output_weights: :math:`(N, L, S)` where N is the batch size,
# L is the target sequence length, S is the source sequence length.
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
# set up shape vars
tgt_len, bsz, embed_dim = query.shape
src_len, _, _ = key.shape
assert embed_dim == embed_dim_to_check, \
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
if isinstance(embed_dim, torch.Tensor):
# embed_dim can be a tensor when JIT tracing
head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
else:
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
if use_separate_proj_weight:
# allow MHA to have different embedding dimensions when separate projection weights are used
assert key.shape[:2] == value.shape[:2], \
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
else:
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
#
# compute in-projection
#
if not use_separate_proj_weight:
q, k, v = F._in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
else:
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
if in_proj_bias is None:
b_q = b_k = b_v = None
else:
b_q, b_k, b_v = in_proj_bias.chunk(3)
q, k, v = F._in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
# prep attention mask
if attn_mask is not None:
if attn_mask.dtype == torch.uint8:
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
attn_mask = attn_mask.to(torch.bool)
else:
assert attn_mask.is_floating_point() or attn_mask.dtype == torch.bool, \
f"Only float, byte, and bool types are supported for attn_mask, not {attn_mask.dtype}"
# ensure attn_mask's dim is 3
if attn_mask.dim() == 2:
correct_2d_size = (tgt_len, src_len)
if attn_mask.shape != correct_2d_size:
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
attn_mask = attn_mask.unsqueeze(0)
elif attn_mask.dim() == 3:
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
if attn_mask.shape != correct_3d_size:
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
else:
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
# prep key padding mask
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
key_padding_mask = key_padding_mask.to(torch.bool)
# add bias along batch dimension (currently second)
if bias_k is not None and bias_v is not None:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
else:
assert bias_k is None
assert bias_v is None
#
# reshape q, k, v for multihead attention and make em batch first
#
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
if static_k is None:
k = k.contiguous().view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
else:
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
assert static_k.size(0) == bsz * num_heads, \
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
assert static_k.size(2) == head_dim, \
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
k = static_k
if static_v is None:
v = v.contiguous().view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
else:
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
assert static_v.size(0) == bsz * num_heads, \
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
assert static_v.size(2) == head_dim, \
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
v = static_v
# add zero attention along batch dimension (now first)
if add_zero_attn:
zero_attn_shape = (bsz * num_heads, 1, head_dim)
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
# update source sequence length after adjustments
src_len = k.size(1)
# merge key padding and attention masks
if key_padding_mask is not None:
assert key_padding_mask.shape == (bsz, src_len), \
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
if attn_mask is None:
attn_mask = key_padding_mask
elif attn_mask.dtype == torch.bool:
attn_mask = attn_mask.logical_or(key_padding_mask)
else:
attn_mask = attn_mask.masked_fill(key_padding_mask, float("-inf"))
# convert mask to float
if attn_mask is not None and attn_mask.dtype == torch.bool:
new_attn_mask = torch.zeros_like(attn_mask, dtype=torch.float)
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
attn_mask = new_attn_mask
# adjust dropout probability
if not training:
dropout_p = 0.0
#
# (deep breath) calculate attention and out projection
#
attn_output, attn_output_weights, attn_after_mask_c = _scaled_dot_product_attention_VAST(q, k, v, attn_mask, dropout_p,attn_type=attn_type,args=args)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
if need_weights:
# average attention weights over heads
attn_output_weights_v = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
return attn_output, attn_output_weights_v.sum(dim=1) / num_heads, attn_output_weights, attn_after_mask_c
else:
return attn_output, None
def _scaled_dot_product_attention_VAST(
q: Tensor,
k: Tensor,
v: Tensor,
attn_mask: Optional[Tensor] = None,
dropout_p: float = 0.0,
rpos=None,
attn_type=None,
args=None) -> Tuple[Tensor, Tensor]:
"""
Computes scaled dot product attention on query, key and value tensors, using an optional attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
Returns a tensor pair containing attended values and attention weights.
Args:
q, k, v: query, key and value tensors. See Shape section for shape details.
attn_mask: optional tensor containing mask values to be added to calculated attention. May be 2D or 3D; see Shape section for details.
dropout_p: dropout probability. If greater than 0.0, dropout is applied.
Shape:
- q: :math:`(B, Nt, E)` where B is batch size, Nt is the target sequence length, and E is embedding dimension.
- key: :math:`(B, Ns, E)` where B is batch size, Ns is the source sequence length, and E is embedding dimension.
- value: :math:`(B, Ns, E)` where B is batch size, Ns is the source sequence length, and E is embedding dimension.
- attn_mask: either a 3D tensor of shape :math:`(B, Nt, Ns)` or a 2D tensor of shape :math:`(Nt, Ns)`.
- Output: attention values have shape :math:`(B, Nt, E)`; attention weights have shape :math:`(B, Nt, Ns)`
"""
B, Nt, E = q.shape
q = q / (math.sqrt(E) )
attn = torch.bmm(q, k.transpose(-2, -1))
if attn_mask is not None:
attn_after_mask = attn + attn_mask
else:
attn_after_mask = attn
if attn_type == 'CA':
attn_after_mask_c = attn_after_mask.clone()
if args.AttentionPoolType_dec == 'avg':
AttentionPoolPad = args.AttentionPoolKernel_dec // 2
attn2 = torch.nn.functional.avg_pool1d(attn_after_mask, kernel_size=args.AttentionPoolKernel_dec, stride=1, padding=AttentionPoolPad)
attn2 = F.softmax(attn2, dim=-1)
elif args.AttentionPoolType_dec == 'max':
AttentionPoolPad = args.AttentionPoolKernel_dec // 2
attn2 = torch.nn.functional.max_pool1d(attn_after_mask, kernel_size=args.AttentionPoolKernel_dec, stride=1, padding=AttentionPoolPad)
attn2 = F.softmax(attn2, dim=-1)
elif args.AttentionPoolType_dec == 'none':
attn2 = F.softmax(attn_after_mask, dim=-1)
else:
attn_after_mask_c = 0
attn2 = F.softmax(attn_after_mask, dim=-1)
if dropout_p > 0.0:
attn2d = F.dropout(attn2, p=dropout_p)
else:
attn2d = attn2
output = torch.bmm(attn2d, (v)) # might be the main problem
return output, attn2, attn_after_mask_c