-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaggregate_cv_scores.py
117 lines (107 loc) · 4.33 KB
/
aggregate_cv_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Experiment resources related to the MuLMS-AZ corpus (CODI 2023).
# Copyright (c) 2023 Robert Bosch GmbH
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Calculates all metric scores across n (default: 5) folds.
"""
import os
from argparse import ArgumentParser
import numpy as np
import pandas as pd
from source.arg_zoning.evaluation.evaluation import calculate_average_scores
parser: ArgumentParser = ArgumentParser()
parser.add_argument(
"--input_path", type=str, help="Path to directoy which all CV scores are stored in."
)
parser.add_argument("--num_folds", type=int, help="Only change if really necessary.", default=5)
parser.add_argument(
"--set",
type=str,
choices=["dev", "test"],
help="Determines which split to evaluate.",
default="test",
)
parser.add_argument(
"--export_as_latex_table",
action="store_true",
help="Whether to export scores as Latex table.",
default=False,
)
args = parser.parse_args()
def main():
"""
Entry point.
"""
result_scores: list = []
for fold in range(1, args.num_folds + 1):
result_scores.append(
np.load(
os.path.join(args.input_path, f"cv_{fold}", f"scores_{args.set}.npz"),
allow_pickle=True,
)["arr_0"].item()
)
average_scores: dict = calculate_average_scores(result_scores)
print("Final avg results are: ")
print(f" Average micro hierarchical precision: {round(average_scores['micro_h_p'] * 100, 1)}")
print(f" Average micro hierarchical recall: {round(average_scores['micro_h_r'] * 100, 1)}")
print(f" Average micro hierarchical f1: {round(average_scores['micro_h_f1'] * 100, 1)}")
print(
f" Average micro hierarchical f1 standard deviation: {round(average_scores['micro_h_f1_std'] * 100, 1)}"
)
print(f" Average macro hierarchical f1: {round(average_scores['macro_h_f1'] * 100, 1)}")
print(
f" Average macro hierarchical f1 standard deviation: {round(average_scores['macro_h_f1_std'] * 100, 1)}"
)
print("\n\n Average labelwise scores:")
print("\nLABEL\tPREC.\tRECALL\tF1")
print("----------------------------------------")
for label in average_scores["p_labelwise"]:
print(
f"{label[:7]}\t{round(average_scores['p_labelwise'][label] * 100, 1)}\t{round(average_scores['r_labelwise'][label] * 100, 1)}\t{round(average_scores['f1_labelwise'][label] * 100, 1)}"
)
if args.export_as_latex_table:
df: pd.DataFrame = pd.DataFrame(
{
"H. Prec.": average_scores["p_labelwise"].values(),
"H. Rec.": average_scores["r_labelwise"].values(),
"H. F1": average_scores["f1_labelwise"].values(),
},
index=average_scores["f1_labelwise"].keys(),
)
df = df.append(
pd.DataFrame(
{
"H. Prec.": average_scores["micro_h_p"],
"H. Rec.": average_scores["micro_h_r"],
"H. F1": average_scores["micro_h_f1"],
},
index=["Micro Overall"],
)
)
df = df.append(
pd.DataFrame(
{
"H. Prec.": average_scores["macro_h_p"],
"H. Rec.": average_scores["macro_h_r"],
"H. F1": average_scores["macro_h_f1"],
},
index=["Macro Overall"],
)
)
df["H. Prec."] = df["H. Prec."].apply(lambda x: round(x * 100, 1))
df["H. Rec."] = df["H. Rec."].apply(lambda x: round(x * 100, 1))
df["H. F1"] = df["H. F1"].apply(lambda x: round(x * 100, 1))
df.to_latex(os.path.join(args.input_path, f"scores_{args.set}.tex"))
if __name__ == "__main__":
main()