diff --git a/book/01-module/lesson-1a.ipynb b/book/01-module/lesson-1a.ipynb index ec84763..b99c142 100644 --- a/book/01-module/lesson-1a.ipynb +++ b/book/01-module/lesson-1a.ipynb @@ -94,7 +94,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -200,7 +200,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -457,7 +457,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, diff --git a/book/01-module/lesson-1b.ipynb b/book/01-module/lesson-1b.ipynb index 7b6198a..ae6afc9 100644 --- a/book/01-module/lesson-1b.ipynb +++ b/book/01-module/lesson-1b.ipynb @@ -46,7 +46,7 @@ "## Determining the type\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```\n", "\n", "First, we will use Python's built-in `type()` function to determine the type of some variables." @@ -1028,7 +1028,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -1226,7 +1226,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, diff --git a/book/01-module/lesson-1c.ipynb b/book/01-module/lesson-1c.ipynb index 6cc2f4f..a30e327 100644 --- a/book/01-module/lesson-1c.ipynb +++ b/book/01-module/lesson-1c.ipynb @@ -613,7 +613,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -905,7 +905,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -1177,7 +1177,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -1616,7 +1616,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, diff --git a/book/01-module/lesson-1d.ipynb b/book/01-module/lesson-1d.ipynb index f36dfa1..f5ef80a 100644 --- a/book/01-module/lesson-1d.ipynb +++ b/book/01-module/lesson-1d.ipynb @@ -30,7 +30,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -717,7 +717,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -1036,7 +1036,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -1353,7 +1353,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, diff --git a/book/02-module/lesson-2a.ipynb b/book/02-module/lesson-2a.ipynb index cc783c0..d343b3e 100644 --- a/book/02-module/lesson-2a.ipynb +++ b/book/02-module/lesson-2a.ipynb @@ -37,7 +37,7 @@ "## Terminology\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```\n", "\n", "People often use the terms _\"package\"_, _\"library\"_, and _\"module\"_ synonymously. If you are familiar with the R programming language you've probably heard some of these terms before. Although there are some semantical differences between R and Python, here is how you can think of the two terms:\n", @@ -422,7 +422,7 @@ "In the code above you saw the `import` statement. The `import` statement allows us to import code from another module. There are a few ways to use the statement, which we will mention briefly here, from most recommended to least recommended.\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```\n", "\n", "### Explicit module import\n", @@ -638,7 +638,7 @@ "## Standard library\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```\n", "\n", "In the above code we've seen a few different libraries installed (`math` and `numpy`). These libraries represent two of the many readily available libraries at your disposal. However, we refer to the `math` library is part of the **standard library** and the `numpy` library is considered a **third party library**.\n", @@ -769,7 +769,7 @@ "## Third-party modules\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```\n", "\n", "One of the things that makes Python useful, especially within the world of data science, is its ecosystem of third-party modules. These can be imported just as the built-in modules, but first the modules must be installed on your system. As previously mentioned, [Python Package Index](https://pypi.org/) (PyPI for short) and [Anaconda](https://anaconda.org/anaconda/repo) are the two primary public package managers for Python. To install packages from these locations we just use the following:\n", diff --git a/book/02-module/lesson-2b.ipynb b/book/02-module/lesson-2b.ipynb index afb1955..4b4caff 100644 --- a/book/02-module/lesson-2b.ipynb +++ b/book/02-module/lesson-2b.ipynb @@ -30,7 +30,7 @@ "## Data & memory\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```\n", "\n", "Python stores its data in memory - this makes it relatively quickly accessible but can cause size limitations in certain fields. In this class we will mainly work with small to moderate data sets, which means we should not run into any space limitations. \n", @@ -59,7 +59,7 @@ "## Delimited files\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```\n", "\n", "Text files are a popular way to hold and exchange tabular data as almost any data application supports exporting data to the CSV (or other text file) format. Text file formats use delimiters to separate the different elements in a line, and each line of data is in its own line in the text file. Therefore, importing different kinds of text files can follow a fairly consistent process once you’ve identified the delimiter.\n", @@ -708,7 +708,7 @@ "### File paths\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```\n", "\n", "It's important to understand where files exist on your computer and how to reference those paths. There are two main approaches:\n", @@ -1020,7 +1020,7 @@ "### Attributes & methods\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```\n", "\n", "We've seen that we can use the dot-notation to access functions in libraries (i.e. `pd.read_csv()`). We can use this same approach to access things inside of _objects_. What's an object? Basically, a variable that contains other data or functionality inside of it that is exposed to users. Consequently, our DataFrame item is an object.\n", diff --git a/book/02-module/lesson-2c.ipynb b/book/02-module/lesson-2c.ipynb index 3fee2cc..d1cc882 100644 --- a/book/02-module/lesson-2c.ipynb +++ b/book/02-module/lesson-2c.ipynb @@ -114,7 +114,7 @@ "## What Are DataFrames Made of?\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```\n", "\n", "Accessing an individual column of a DataFrame can be done by passing the column name as a string, in brackets (`[]`)." @@ -496,7 +496,7 @@ "## What Can You Do with a Series?\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -953,7 +953,7 @@ "## DataFrame Indexes\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```\n", "\n", "It's not just Series that have indexes! DataFrames have them too. Take a look at the carrier DataFrame again and note the bold numbers on the left." diff --git a/book/03-module/lesson-3a.ipynb b/book/03-module/lesson-3a.ipynb index 590b6df..09d225e 100644 --- a/book/03-module/lesson-3a.ipynb +++ b/book/03-module/lesson-3a.ipynb @@ -179,7 +179,7 @@ "## Subsetting dimensions\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```\n", "\n", "We don't always want all of the data in a DataFrame, so we need to take subsets of the DataFrame. In general, **subsetting** is extracting a small portion of a DataFrame -- making the DataFrame smaller. Since the DataFrame is two-dimensional, there are two dimensions on which to subset.\n", @@ -903,7 +903,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -2156,7 +2156,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -2491,7 +2491,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, diff --git a/book/03-module/lesson-3b.ipynb b/book/03-module/lesson-3b.ipynb index 38bf044..55b017b 100644 --- a/book/03-module/lesson-3b.ipynb +++ b/book/03-module/lesson-3b.ipynb @@ -1013,7 +1013,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -1720,7 +1720,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -2700,7 +2700,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, diff --git a/book/03-module/lesson-3c.ipynb b/book/03-module/lesson-3c.ipynb index d9e2801..277b602 100644 --- a/book/03-module/lesson-3c.ipynb +++ b/book/03-module/lesson-3c.ipynb @@ -274,7 +274,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -859,7 +859,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -2318,7 +2318,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, diff --git a/book/04-module/lesson-4a.ipynb b/book/04-module/lesson-4a.ipynb index e4ecee9..2bf07d4 100644 --- a/book/04-module/lesson-4a.ipynb +++ b/book/04-module/lesson-4a.ipynb @@ -23,7 +23,7 @@ "Once a DataFrame is tidy, it becomes much easier to compute summary statistics, join with other datasets, visualize, apply machine learning models, etc. In this lesson we will focus on ways to reshape DataFrames so that they meet the tidy guidelines.\n", "\n", "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -458,8 +458,8 @@ "source": [ "ames_wide.melt(\n", " id_vars='neighborhood',\n", - " value_vars=['2007', '2008', '2009', '2010'], \n", - " var_name='year', \n", + " value_vars=['2007', '2008', '2009', '2010'],\n", + " var_name='year',\n", " value_name='homes_sold'\n", " )" ] @@ -498,7 +498,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -1202,7 +1202,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, diff --git a/book/04-module/lesson-4b.ipynb b/book/04-module/lesson-4b.ipynb index 9f1dc98..f9c3951 100644 --- a/book/04-module/lesson-4b.ipynb +++ b/book/04-module/lesson-4b.ipynb @@ -1480,7 +1480,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -1655,7 +1655,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, diff --git a/book/04-module/lesson-4c.ipynb b/book/04-module/lesson-4c.ipynb index 30e6ab3..c0248f1 100644 --- a/book/04-module/lesson-4c.ipynb +++ b/book/04-module/lesson-4c.ipynb @@ -1009,7 +1009,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -3761,7 +3761,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, diff --git a/book/06-module/lesson-6a.ipynb b/book/06-module/lesson-6a.ipynb index ad8afaf..ccda7b3 100644 --- a/book/06-module/lesson-6a.ipynb +++ b/book/06-module/lesson-6a.ipynb @@ -120,7 +120,7 @@ } ], "source": [ - "# multiple lines in the statement are fine as long as they have the \n", + "# multiple lines in the statement are fine as long as they have the\n", "# same indentation\n", "if x < 0:\n", " new_value = abs(x)\n", @@ -254,7 +254,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -339,7 +339,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -520,18 +520,18 @@ "def produce_revenue(sqft, visits, trend):\n", " total = 9.91 * sqft * visits * trend\n", " return round(total, 2)\n", - " \n", + "\n", "def frozen_revenue(sqft, visits, trend):\n", " prod = produce_revenue(sqft, visits, trend)\n", - " total = 3.28 * sqft * visits * trend - prod * .005 \n", + " total = 3.28 * sqft * visits * trend - prod * .005\n", " return round(total, 2)\n", - " \n", + "\n", "expected_annual_revenue = {\n", - " 'produce': produce_revenue, \n", - " 'frozen': frozen_revenue, \n", + " 'produce': produce_revenue,\n", + " 'frozen': frozen_revenue,\n", " 'pharmacy': lambda: 16.11 * visits * trend\n", " }\n", - " \n", + "\n", "choice = 'frozen'\n", "expected_annual_revenue.get(choice, 'Bad choice')(sqft=937, visits=465, trend=0.98)" ] @@ -564,7 +564,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -1166,7 +1166,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, diff --git a/book/06-module/lesson-6b.ipynb b/book/06-module/lesson-6b.ipynb index 9de962c..614eb29 100644 --- a/book/06-module/lesson-6b.ipynb +++ b/book/06-module/lesson-6b.ipynb @@ -285,7 +285,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -405,7 +405,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -539,7 +539,7 @@ ], "source": [ "squared_certain_values = [\n", - " number * number for number in range(10) \n", + " number * number for number in range(10)\n", " if number % 2 != 0 and number != 5\n", " ]\n", "\n", @@ -611,7 +611,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -660,7 +660,7 @@ "while not ten_of_a_kind:\n", " # flip coin 10 times\n", " ten_coin_flips = [random.choice(coin) for flip in range(11)]\n", - " \n", + "\n", " # check if there\n", " ten_of_a_kind = len(set(ten_coin_flips)) == 1\n", "\n", @@ -710,7 +710,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -904,7 +904,7 @@ "for col in range(len(df.columns)):\n", " value = df.iloc[:, col].nunique()\n", " unique_values.append(value)\n", - " \n", + "\n", "unique_values" ] }, diff --git a/book/06-module/lesson-6c.ipynb b/book/06-module/lesson-6c.ipynb index e723904..c072fc1 100644 --- a/book/06-module/lesson-6c.ipynb +++ b/book/06-module/lesson-6c.ipynb @@ -76,7 +76,7 @@ "source": [ "# array containing 4 sets of 10 random numbers\n", "x = np.random.random_sample((4, 10))\n", - " \n", + "\n", "x[0] = (x[0] - x[0].min()) / (x[0].max() - x[0].min())\n", "x[1] = (x[1] - x[1].min()) / (x[1].max() - x[1].min())\n", "x[2] = (x[2] - x[2].min()) / (x[1].max() - x[2].min())\n", @@ -119,7 +119,7 @@ "def rescale(array):\n", " for index, vector in enumerate(array):\n", " array[index] = (vector - vector.min()) / (vector.max() - vector.min())\n", - " \n", + "\n", " return(array)\n", "\n", "rescale(x)" @@ -176,7 +176,7 @@ } ], "source": [ - "# method \n", + "# method\n", "x.sum(axis = 0)" ] }, @@ -292,8 +292,8 @@ "def yell(text):\n", " new_text = text.upper()\n", " return new_text\n", - " \n", - "yell('hello world!') " + "\n", + "yell('hello world!')" ] }, { @@ -346,7 +346,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -392,7 +392,7 @@ ], "source": [ "# implicitly computing store sales for store 46 during week 43\n", - "store_sales(df, 46, 43) " + "store_sales(df, 46, 43)" ] }, { @@ -413,7 +413,7 @@ ], "source": [ "# implicitly computing store sales for store 43 (does not exist) during week 46\n", - "store_sales(df, 43, 46) " + "store_sales(df, 43, 46)" ] }, { @@ -445,7 +445,7 @@ ], "source": [ "# explicitly computing store sales for store 46 during week 43\n", - "store_sales(data=df, week=43, store=46) " + "store_sales(data=df, week=43, store=46)" ] }, { @@ -543,7 +543,7 @@ "def yell(*args):\n", " new_text = ' '.join(args).upper()\n", " return new_text\n", - " \n", + "\n", "yell('hello world!', 'I', 'love', 'Python!!')" ] }, @@ -571,7 +571,7 @@ "# **kwargs just creates a dictionary\n", "def students(**kwargs):\n", " print(kwargs)\n", - " \n", + "\n", "students(student1='John', student2='Robert', student3='Sally')" ] }, @@ -595,8 +595,8 @@ "def print_student_names(**kwargs):\n", " for key, value in kwargs.items():\n", " print(f'{key} = {value}')\n", - " \n", - "print_student_names(student1='John', student2='Robert', student3='Sally') " + "\n", + "print_student_names(student1='John', student2='Robert', student3='Sally')" ] }, { @@ -629,7 +629,7 @@ "source": [ "def some_function(name, age):\n", " return f'{name} is {age} years old'\n", - " \n", + "\n", "some_function('Tom', 27)" ] }, @@ -661,7 +661,7 @@ "source": [ "def some_function(name: str, age: int) -> str:\n", " return f'{name} is {age} years old'\n", - " \n", + "\n", "some_function('Tom', 27)" ] }, @@ -741,7 +741,7 @@ " filt = (data['store_id'] == store) & (data['week'] == week)\n", " total_sales = data['sales_value'][filt].sum()\n", " return total_sales\n", - " \n", + "\n", "store_sales(data=df, store=309, week=48)" ] }, @@ -765,7 +765,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -793,11 +793,11 @@ "def store_sales(data: pd.DataFrame, store: int, week: int) -> float:\n", " \"\"\"\n", " Compute total store sales.\n", - " \n", + "\n", " This function computes the total sales for a given\n", " store and week based on a user supplied DataFrame that\n", " contains sales in a column named `sales_value`.\n", - " \n", + "\n", " Parameters\n", " ----------\n", " data : DataFrame\n", @@ -806,16 +806,16 @@ " Integer value representing store number\n", " week : int\n", " Integer value representing week of year\n", - " \n", + "\n", " Returns\n", " -------\n", " float\n", " A float object representing total store sales\n", - " \n", + "\n", " See Also\n", " --------\n", " store_visits : Computes total store visits\n", - " \n", + "\n", " Examples\n", " --------\n", " >>> store_sales(data=df, store=309, week=48)\n", @@ -849,7 +849,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -897,13 +897,13 @@ " if not isinstance(data, pd.DataFrame): raise Exception('`data` should be a Pandas DataFrame')\n", " if not isinstance(store, int): raise Exception('`store` should be an integer')\n", " if not isinstance(week, int): raise Exception('`week` should be an integer')\n", - " \n", + "\n", " # computation\n", " filt = (data['store_id'] == store) & (data['week'] == week)\n", " total_sales = data['sales_value'][filt].sum()\n", " return total_sales\n", - " \n", - "store_sales(data=df, store='309', week=48) " + "\n", + "store_sales(data=df, store='309', week=48)" ] }, { @@ -937,13 +937,13 @@ " if not isinstance(data, pd.DataFrame): raise TypeError('`data` should be a Pandas DataFrame')\n", " if not isinstance(store, int): raise TypeError('`store` should be an integer')\n", " if not isinstance(week, int): raise TypeError('`week` should be an integer')\n", - " \n", + "\n", " # computation\n", " filt = (data['store_id'] == store) & (data['week'] == week)\n", " total_sales = data['sales_value'][filt].sum()\n", " return total_sales\n", - " \n", - "store_sales(data=df, store='309', week=48) " + "\n", + "store_sales(data=df, store='309', week=48)" ] }, { @@ -1004,10 +1004,10 @@ " if not isinstance(data, pd.DataFrame): raise TypeError('`data` should be a Pandas DataFrame')\n", " if not isinstance(store, int): raise TypeError('`store` should be an integer')\n", " if not isinstance(week, int): raise TypeError('`week` should be an integer')\n", - " if store not in data.store_id.unique(): \n", + " if store not in data.store_id.unique():\n", " raise ValueError(f'`store` {store} does not exist in the supplied DataFrame')\n", - " \n", - " \n", + "\n", + "\n", " # computation\n", " filt = (data['store_id'] == store) & (data['week'] == week)\n", " total_sales = data['sales_value'][filt].sum()\n", @@ -1127,8 +1127,8 @@ " price = round(product['price'] * (1.0 - discount), 2)\n", " assert 0 <= price <= product['price'], 'Invalid discount applied'\n", " return price\n", - " \n", - "apply_discount(milk, 2.00) " + "\n", + "apply_discount(milk, 2.00)" ] }, { @@ -1257,7 +1257,7 @@ "metadata": {}, "source": [ "```{admonition} Video 🎥:\n", - "\n", + "\n", "```" ] }, @@ -1300,8 +1300,8 @@ "\n", "def func(x):\n", " return x + 1\n", - " \n", - "func(x = 50) " + "\n", + "func(x = 50)" ] }, { @@ -1359,8 +1359,8 @@ "\n", "def func(x):\n", " return x + ' ' + y\n", - " \n", - "func(x = 'Brad') " + "\n", + "func(x = 'Brad')" ] }, { @@ -1404,7 +1404,7 @@ " def my_paste():\n", " return x + sep + y\n", " return my_paste()\n", - " \n", + "\n", "my_name(sep=' ')" ] }, @@ -1447,7 +1447,7 @@ " y = firstpart + '.' + secondpart\n", " return y\n", "\n", - "convert(8451) " + "convert(8451)" ] }, { diff --git a/docs/_build/.doctrees/01-module/lesson-1a.doctree b/docs/_build/.doctrees/01-module/lesson-1a.doctree index 19b0a9b..f8e667c 100644 Binary files a/docs/_build/.doctrees/01-module/lesson-1a.doctree and b/docs/_build/.doctrees/01-module/lesson-1a.doctree differ diff --git a/docs/_build/.doctrees/01-module/lesson-1b.doctree b/docs/_build/.doctrees/01-module/lesson-1b.doctree index 53a9a49..9e1d507 100644 Binary files a/docs/_build/.doctrees/01-module/lesson-1b.doctree and b/docs/_build/.doctrees/01-module/lesson-1b.doctree differ diff --git a/docs/_build/.doctrees/01-module/lesson-1c.doctree b/docs/_build/.doctrees/01-module/lesson-1c.doctree index 4e5e145..b089721 100644 Binary files a/docs/_build/.doctrees/01-module/lesson-1c.doctree and b/docs/_build/.doctrees/01-module/lesson-1c.doctree differ diff --git a/docs/_build/.doctrees/01-module/lesson-1d.doctree b/docs/_build/.doctrees/01-module/lesson-1d.doctree index 3237613..16e7677 100644 Binary files a/docs/_build/.doctrees/01-module/lesson-1d.doctree and b/docs/_build/.doctrees/01-module/lesson-1d.doctree differ diff --git a/docs/_build/.doctrees/02-module/lesson-2a.doctree b/docs/_build/.doctrees/02-module/lesson-2a.doctree index b9ee543..65e46de 100644 Binary files a/docs/_build/.doctrees/02-module/lesson-2a.doctree and b/docs/_build/.doctrees/02-module/lesson-2a.doctree differ diff --git a/docs/_build/.doctrees/02-module/lesson-2b.doctree b/docs/_build/.doctrees/02-module/lesson-2b.doctree index 52c005b..522077b 100644 Binary files a/docs/_build/.doctrees/02-module/lesson-2b.doctree and b/docs/_build/.doctrees/02-module/lesson-2b.doctree differ diff --git a/docs/_build/.doctrees/02-module/lesson-2c.doctree b/docs/_build/.doctrees/02-module/lesson-2c.doctree index 491de37..3a0cef5 100644 Binary files a/docs/_build/.doctrees/02-module/lesson-2c.doctree and b/docs/_build/.doctrees/02-module/lesson-2c.doctree differ diff --git a/docs/_build/.doctrees/03-module/lesson-3a.doctree b/docs/_build/.doctrees/03-module/lesson-3a.doctree index f2ce579..431b75d 100644 Binary files a/docs/_build/.doctrees/03-module/lesson-3a.doctree and b/docs/_build/.doctrees/03-module/lesson-3a.doctree differ diff --git a/docs/_build/.doctrees/03-module/lesson-3b.doctree b/docs/_build/.doctrees/03-module/lesson-3b.doctree index a024bd2..a07154e 100644 Binary files a/docs/_build/.doctrees/03-module/lesson-3b.doctree and b/docs/_build/.doctrees/03-module/lesson-3b.doctree differ diff --git a/docs/_build/.doctrees/03-module/lesson-3c.doctree b/docs/_build/.doctrees/03-module/lesson-3c.doctree index 11535cb..37dd32a 100644 Binary files a/docs/_build/.doctrees/03-module/lesson-3c.doctree and b/docs/_build/.doctrees/03-module/lesson-3c.doctree differ diff --git a/docs/_build/.doctrees/04-module/lesson-4a.doctree b/docs/_build/.doctrees/04-module/lesson-4a.doctree index ffd833a..c7d5242 100644 Binary files a/docs/_build/.doctrees/04-module/lesson-4a.doctree and b/docs/_build/.doctrees/04-module/lesson-4a.doctree differ diff --git a/docs/_build/.doctrees/04-module/lesson-4b.doctree b/docs/_build/.doctrees/04-module/lesson-4b.doctree index 9d500d1..0a2a88f 100644 Binary files a/docs/_build/.doctrees/04-module/lesson-4b.doctree and b/docs/_build/.doctrees/04-module/lesson-4b.doctree differ diff --git a/docs/_build/.doctrees/04-module/lesson-4c.doctree b/docs/_build/.doctrees/04-module/lesson-4c.doctree index ac5ae4d..ad92da1 100644 Binary files a/docs/_build/.doctrees/04-module/lesson-4c.doctree and b/docs/_build/.doctrees/04-module/lesson-4c.doctree differ diff --git a/docs/_build/.doctrees/06-module/lesson-6a.doctree b/docs/_build/.doctrees/06-module/lesson-6a.doctree index c9d5b4b..6672cc5 100644 Binary files a/docs/_build/.doctrees/06-module/lesson-6a.doctree and b/docs/_build/.doctrees/06-module/lesson-6a.doctree differ diff --git a/docs/_build/.doctrees/06-module/lesson-6b.doctree b/docs/_build/.doctrees/06-module/lesson-6b.doctree index 54af8be..cf98c75 100644 Binary files a/docs/_build/.doctrees/06-module/lesson-6b.doctree and b/docs/_build/.doctrees/06-module/lesson-6b.doctree differ diff --git a/docs/_build/.doctrees/06-module/lesson-6c.doctree b/docs/_build/.doctrees/06-module/lesson-6c.doctree index 8cf688e..f1dd3a5 100644 Binary files a/docs/_build/.doctrees/06-module/lesson-6c.doctree and b/docs/_build/.doctrees/06-module/lesson-6c.doctree differ diff --git a/docs/_build/.doctrees/environment.pickle b/docs/_build/.doctrees/environment.pickle index b916903..632467b 100644 Binary files a/docs/_build/.doctrees/environment.pickle and b/docs/_build/.doctrees/environment.pickle differ diff --git a/docs/_build/html/01-module/lesson-1a.html b/docs/_build/html/01-module/lesson-1a.html index 2989d6c..3c544d7 100644 --- a/docs/_build/html/01-module/lesson-1a.html +++ b/docs/_build/html/01-module/lesson-1a.html @@ -664,7 +664,7 @@
print()
function. The print()
function takes as an argument a string. It then prints that string to the screen. We will learn more about function syntax later, but we can already see the rough syntax with the print()
function.
Video 🎥:
- +SHUTDOWN
next to the console.
Video 🎥:
- +Video 🎥:
- +Python implementation: CPython
Python version : 3.9.12
-IPython version : 8.2.0
+IPython version : 8.4.0
jupyterlab: 3.3.2
Video 🎥:
- +First, we will use Python’s built-in type()
function to determine the type of some variables.
Video 🎥:
- +Video 🎥:
- + diff --git a/docs/_build/html/01-module/lesson-1c.html b/docs/_build/html/01-module/lesson-1c.html index 9e35662..015f8b5 100644 --- a/docs/_build/html/01-module/lesson-1c.html +++ b/docs/_build/html/01-module/lesson-1c.html @@ -1008,7 +1008,7 @@Video 🎥:
- + @@ -1182,7 +1182,7 @@Video 🎥:
- + @@ -1385,7 +1385,7 @@Video 🎥:
- + @@ -1656,7 +1656,7 @@Video 🎥:
- + @@ -1684,7 +1684,7 @@Python implementation: CPython
Python version : 3.9.12
-IPython version : 8.2.0
+IPython version : 8.4.0
jupyterlab: 3.3.2
Video 🎥:
- +Video 🎥:
- +Video 🎥:
- + @@ -1508,7 +1508,7 @@Video 🎥:
- + diff --git a/docs/_build/html/02-module/lesson-2a.html b/docs/_build/html/02-module/lesson-2a.html index e404404..f5c3607 100644 --- a/docs/_build/html/02-module/lesson-2a.html +++ b/docs/_build/html/02-module/lesson-2a.html @@ -646,7 +646,7 @@Video 🎥:
- +People often use the terms “package”, “library”, and “module” synonymously. If you are familiar with the R programming language you’ve probably heard some of these terms before. Although there are some semantical differences between R and Python, here is how you can think of the two terms:
A package generally refers to source code that is bundled up in a way that a package manager can host. PyPI and Anaconda are the two primary public package managers for Python. When you pip install pkg
or conda install pkg
you are installing the pkg
package from PyPI or Anaconda, respectively, to your computer or the server you’re working on.
Package Version
------------------------------ --------------------
-aiohttp 3.8.1
-aiosignal 1.2.0
-alabaster 0.7.12
-anaconda-client 1.9.0
-anaconda-navigator 2.1.4
-anaconda-project 0.10.2
-anyio 3.5.0
-appdirs 1.4.4
-applaunchservices 0.2.1
-appnope 0.1.2
-appscript 1.1.2
-argon2-cffi 21.3.0
-argon2-cffi-bindings 21.2.0
-arrow 1.2.2
-astroid 2.6.6
-astropy 5.0.4
-asttokens 2.0.5
-async-timeout 4.0.1
-atomicwrites 1.4.0
-attrs 20.3.0
-Automat 20.2.0
-autopep8 1.6.0
-Babel 2.9.1
-backcall 0.2.0
-backports.functools-lru-cache 1.6.4
-backports.tempfile 1.0
-backports.weakref 1.0.post1
-bcrypt 3.2.0
-beautifulsoup4 4.11.1
-binaryornot 0.4.4
-bitarray 2.4.1
-bkcharts 0.2
-black 21.12b0
-blackcellmagic 0.0.3
-bleach 4.1.0
-bokeh 2.4.2
-boto3 1.21.32
-botocore 1.24.32
-Bottleneck 1.3.4
-brotlipy 0.7.0
-cachetools 4.2.2
-certifi 2022.5.18.1
-cffi 1.15.0
-cftime 1.5.1.1
-chardet 4.0.0
-charset-normalizer 2.0.4
-click 8.0.4
-click-completion 0.5.2
-click-log 0.3.2
-cloudpickle 2.0.0
-clyent 1.2.2
-colorama 0.4.4
-colorcet 2.0.6
-commonmark 0.9.1
-completejourney-py 0.0.3
-component-logger 1.11.1
-conda 4.12.0
-conda-build 3.21.8
-conda-content-trust 0+unknown
-conda-pack 0.6.0
-conda-package-handling 1.8.1
-conda-repo-cli 1.0.4
-conda-token 0.3.0
-conda-verify 3.4.2
-constantly 15.1.0
-cookiecutter 1.7.3
-cryptography 3.4.8
-cssselect 1.1.0
-cycler 0.11.0
-Cython 0.29.28
-cytoolz 0.11.0
-daal4py 2021.5.0
-dask 2022.2.1
-datashader 0.13.0
-datashape 0.5.4
-dateparser 1.1.1
-debugpy 1.5.1
-decorator 5.1.1
-defusedxml 0.7.1
-diff-match-patch 20200713
-distributed 2022.2.1
-docutils 0.16
-e451-py-security 1.0.57
-effo-cookiecutter 0.4.0
-effo411 0.2.0
-effodata 2.5.0
-entrypoints 0.4
-et-xmlfile 1.1.0
-executing 0.8.3
-fastjsonschema 2.15.1
-filelock 3.6.0
-flake8 3.9.2
-Flask 1.1.2
-fonttools 4.25.0
-frozenlist 1.2.0
-fsspec 2022.2.0
-future 0.18.2
-gensim 4.1.2
-gitdb 4.0.9
-GitPython 3.1.27
-glob2 0.7
-gmpy2 2.1.2
-google-api-core 1.25.1
-google-auth 1.33.0
-google-cloud-core 1.7.1
-google-cloud-storage 1.31.0
-google-crc32c 1.1.2
-google-resumable-media 1.3.1
-googleapis-common-protos 1.53.0
-greenlet 1.1.1
-grpcio 1.42.0
-h5py 3.6.0
-HeapDict 1.0.1
-holoviews 1.14.8
-hvplot 0.7.3
-hyperlink 21.0.0
-hypothesis 6.29.3
-idna 3.3
-imagecodecs 2021.8.26
-imageio 2.9.0
-imagesize 1.3.0
-importlib-metadata 4.11.3
-incremental 21.3.0
-inflection 0.5.1
-iniconfig 1.1.1
-intake 0.6.5
-intervaltree 3.1.0
-ipykernel 6.9.1
-ipython 8.2.0
-ipython-genutils 0.2.0
-ipywidgets 7.6.5
-iqplot 0.2.4
-isort 5.9.3
-itemadapter 0.3.0
-itemloaders 1.0.4
-itsdangerous 2.0.1
-jdcal 1.4.1
-jedi 0.18.1
-Jinja2 2.11.3
-jinja2-time 0.2.0
-jmespath 0.10.0
-joblib 1.1.0
-json5 0.9.6
-jsonschema 3.2.0
-jupyter 1.0.0
-jupyter-bokeh 3.0.4
-jupyter-book 0.12.3
-jupyter-cache 0.4.3
-jupyter-client 6.1.12
-jupyter-console 6.4.0
-jupyter-core 4.9.2
-jupyter-server 1.13.5
-jupyter-server-mathjax 0.2.5
-jupyter-sphinx 0.3.2
-jupyterlab 3.3.2
-jupyterlab-pygments 0.1.2
-jupyterlab-server 2.10.3
-jupyterlab-spellchecker 0.7.2
-jupyterlab-widgets 1.0.0
-jupytext 1.10.3
-kayday 2.0.0
-keyring 23.4.0
-kiwisolver 1.3.2
-kpi-metrics 1.3.4
-latexcodec 2.0.1
-lazy-object-proxy 1.6.0
-libarchive-c 2.9
-linkify-it-py 1.0.3
-llvmlite 0.38.0
-locket 0.2.1
-lxml 4.8.0
-Markdown 3.3.4
-markdown-it-py 1.1.0
-MarkupSafe 2.0.1
-matplotlib 3.5.1
-matplotlib-inline 0.1.2
-mccabe 0.6.1
-mdit-py-plugins 0.2.8
-mistune 0.8.4
-mkl-fft 1.3.1
-mkl-random 1.2.2
-mkl-service 2.4.0
-mock 4.0.3
-mpmath 1.2.1
-msgpack 1.0.2
-multidict 5.2.0
-multipledispatch 0.6.0
-munkres 1.1.4
-mypy-extensions 0.4.3
-myst-nb 0.13.2
-myst-parser 0.15.2
-navigator-updater 0.2.1
-nbclassic 0.3.5
-nbclient 0.5.13
-nbconvert 5.6.1
-nbdime 3.1.1
-nbformat 5.3.0
-nest-asyncio 1.5.5
-nested-lookup 0.2.23
-netCDF4 1.5.7
-networkx 2.7.1
-nltk 3.7
-nose 1.3.7
-notebook 6.4.8
-numba 0.55.1
-numexpr 2.8.1
-numpy 1.21.5
-numpydoc 1.2
-olefile 0.46
-openpyxl 3.0.9
-packaging 21.3
-pandas 1.4.2
-pandocfilters 1.5.0
-panel 0.13.0
-param 1.12.0
-parsel 1.6.0
-parso 0.8.3
-partd 1.2.0
-pathspec 0.9.0
-patsy 0.5.2
-pep8 1.7.1
-pexpect 4.8.0
-pickleshare 0.7.5
-Pillow 9.0.1
-pip 21.2.4
-pkginfo 1.8.2
-platformdirs 2.5.2
-plotly 5.6.0
-pluggy 1.0.0
-poyo 0.5.0
-prometheus-client 0.13.1
-prompt-toolkit 3.0.20
-Protego 0.1.16
-protobuf 3.19.1
-psutil 5.8.0
-ptyprocess 0.7.0
-pure-eval 0.2.2
-py 1.11.0
-py4j 0.10.9.3
-pyarrow 8.0.0
-pyasn1 0.4.8
-pyasn1-modules 0.2.8
-pybtex 0.24.0
-pybtex-docutils 1.0.1
-pycodestyle 2.7.0
-pycosat 0.6.3
-pycparser 2.21
-pyct 0.4.6
-pycurl 7.44.1
-pydata-sphinx-theme 0.7.2
-PyDispatcher 2.0.5
-pydocstyle 6.1.1
-pyerfa 2.0.0
-pyflakes 2.3.1
-Pygments 2.11.2
-PyHamcrest 2.0.2
-PyJWT 2.1.0
-pylint 2.9.6
-pyls-spyder 0.4.0
-pyluach 1.4.2
-pyodbc 4.0.32
-pyOpenSSL 21.0.0
-pyparsing 3.0.4
-pypi-simple 0.9.0
-pyrsistent 0.18.0
-pyserial 3.5
-PySocks 1.7.1
-pyspark 3.2.1
-pytest 7.1.1
-python-dateutil 2.8.2
-python-lsp-black 1.0.0
-python-lsp-jsonrpc 1.0.0
-python-lsp-server 1.2.4
-python-slugify 5.0.2
-python-snappy 0.6.0
-pytz 2021.3
-pyviz-comms 2.0.2
-PyWavelets 1.3.0
-PyYAML 6.0
-pyzmq 22.3.0
-QDarkStyle 3.0.2
-qstylizer 0.1.10
-QtAwesome 1.0.3
-qtconsole 5.3.0
-QtPy 2.0.1
-queuelib 1.5.0
-regex 2022.4.24
-requests 2.27.1
-requests-file 1.5.1
-rich 12.4.3
-rope 0.22.0
-rsa 4.7.2
-Rtree 0.9.7
-ruamel-yaml-conda 0.15.100
-s3transfer 0.5.0
-scikit-image 0.19.2
-scikit-learn 1.0.2
-scikit-learn-intelex 2021.20220215.132722
-scipy 1.7.3
-Scrapy 2.6.1
-seaborn 0.11.2
-Send2Trash 1.8.0
-service-identity 18.1.0
-setuptools 65.2.0
-shellingham 1.4.0
-sip 4.19.13
-six 1.16.0
-smart-open 5.1.0
-smmap 3.0.5
-sniffio 1.2.0
-snowballstemmer 2.2.0
-sortedcollections 2.1.0
-sortedcontainers 2.4.0
-soupsieve 2.3.1
-Sphinx 3.5.3
-sphinx-book-theme 0.1.10
-sphinx-comments 0.0.3
-sphinx-copybutton 0.5.0
-sphinx-external-toc 0.2.4
-sphinx-jupyterbook-latex 0.4.6
-sphinx-multitoc-numbering 0.1.3
-sphinx-panels 0.6.0
-sphinx-thebe 0.1.2
-sphinx-togglebutton 0.3.1
-sphinxcontrib-applehelp 1.0.2
-sphinxcontrib-bibtex 2.4.2
-sphinxcontrib-devhelp 1.0.2
-sphinxcontrib-htmlhelp 2.0.0
-sphinxcontrib-jsmath 1.0.1
-sphinxcontrib-qthelp 1.0.3
-sphinxcontrib-serializinghtml 1.1.5
-spyder 5.1.5
-spyder-kernels 2.1.3
-SQLAlchemy 1.4.32
-sqlparse 0.4.2
-stack-data 0.2.0
-statsmodels 0.13.2
-sympy 1.10.1
-tables 3.6.1
-tabulate 0.8.9
-TBB 0.2
-tblib 1.7.0
-tenacity 8.0.1
-terminado 0.13.1
-testpath 0.5.0
-text-unidecode 1.3
-textdistance 4.2.1
-threadpoolctl 2.2.0
-three-merge 0.1.1
-tifffile 2021.7.2
-tinycss 0.4
-tldextract 3.2.0
-toml 0.10.2
-tomli 1.2.2
-toolz 0.11.2
-tornado 6.1
-tqdm 4.64.0
-traitlets 5.1.1
-Twisted 22.2.0
-typed-ast 1.4.3
-typing_extensions 4.1.1
-tzlocal 2.1
-uc-micro-py 1.0.1
-ujson 5.1.0
-Unidecode 1.2.0
-urllib3 1.26.9
-w3lib 1.21.0
-watchdog 2.1.6
-watermark 2.3.0
-wcwidth 0.2.5
-webencodings 0.5.1
-websocket-client 0.58.0
-Werkzeug 2.0.3
-wheel 0.37.1
-widgetsnbextension 3.5.2
-wrapt 1.12.1
-wurlitzer 3.0.2
-xarray 0.20.1
-xlrd 2.0.1
-XlsxWriter 3.0.3
-xlwings 0.24.9
-yapf 0.31.0
-yarl 1.6.3
-zict 2.0.0
-zipp 3.7.0
-zope.interface 5.4.0
+Package Version Location
+------------------------------ -------------------- ----------------------------------------------------------------
+aiohttp 3.8.1
+aiosignal 1.2.0
+alabaster 0.7.12
+alembic 1.8.1
+anaconda-client 1.9.0
+anaconda-navigator 2.1.4
+anaconda-project 0.10.2
+anyio 3.5.0
+appdirs 1.4.4
+applaunchservices 0.2.1
+appnope 0.1.2
+appscript 1.1.2
+argon2-cffi 21.3.0
+argon2-cffi-bindings 21.2.0
+arrow 1.2.2
+astroid 2.6.6
+astropy 5.0.4
+asttokens 2.0.5
+async-timeout 4.0.1
+atomicwrites 1.4.0
+attrs 20.3.0
+Automat 20.2.0
+autopep8 1.6.0
+azure-core 1.26.0
+azure-identity 1.11.0
+azure-storage-blob 12.14.0
+azure-storage-file-datalake 12.9.0
+Babel 2.9.1
+backcall 0.2.0
+backports.functools-lru-cache 1.6.4
+backports.tempfile 1.0
+backports.weakref 1.0.post1
+bcrypt 3.2.0
+beautifulsoup4 4.11.1
+binaryornot 0.4.4
+bitarray 2.4.1
+bkcharts 0.2
+black 21.12b0
+blackcellmagic 0.0.3
+bleach 4.1.0
+bokeh 2.4.2
+boto3 1.21.32
+botocore 1.24.32
+Bottleneck 1.3.4
+brotlipy 0.7.0
+cachetools 4.2.2
+certifi 2022.5.18.1
+cffi 1.15.0
+cfgv 3.3.1
+cftime 1.5.1.1
+chardet 4.0.0
+charset-normalizer 2.0.4
+click 8.0.4
+click-completion 0.5.2
+click-log 0.3.2
+cloudpickle 2.0.0
+clyent 1.2.2
+colorama 0.4.4
+colorcet 2.0.6
+commonmark 0.9.1
+completejourney-py 0.0.3
+component-logger 1.11.1
+conda 4.12.0
+conda-build 3.21.8
+conda-content-trust 0+unknown
+conda-pack 0.6.0
+conda-package-handling 1.8.1
+conda-repo-cli 1.0.4
+conda-token 0.3.0
+conda-verify 3.4.2
+constantly 15.1.0
+cookiecutter 1.7.3
+cplex 22.1.0.0
+cryptography 38.0.4
+cssselect 1.1.0
+cycler 0.11.0
+Cython 0.29.28
+cytoolz 0.11.0
+daal4py 2021.5.0
+dacite 1.6.0
+dadjokes 1.3.2
+dask 2022.2.1
+datashader 0.13.0
+datashape 0.5.4
+dateparser 1.1.1
+debugpy 1.5.1
+decorator 5.1.1
+defusedxml 0.7.1
+diff-match-patch 20200713
+distlib 0.3.6
+distributed 2022.2.1
+docutils 0.16
+dynamic-positioner 1.5.0a1 /Users/b294776/Desktop/workspace/packages/dynamic-positioner/src
+e451-py-security 1.0.57
+effo-cookiecutter 0.4.0
+effo411 0.2.0
+effodata 2.5.0
+effodata-clickstream-libs 1.1.3
+entrypoints 0.4
+et-xmlfile 1.1.0
+executing 0.8.3
+fastjsonschema 2.15.1
+filelock 3.6.0
+flake8 3.9.2
+flake8-bugbear 22.9.23
+Flask 1.1.2
+flowcate 1.0.2
+fonttools 4.25.0
+frozenlist 1.2.0
+fsopt 0.0.59
+fsspec 2022.2.0
+future 0.18.2
+gensim 4.1.2
+gitdb 4.0.9
+GitPython 3.1.27
+glob2 0.7
+gmpy2 2.1.2
+google-api-core 2.10.2
+google-auth 1.33.0
+google-cloud-appengine-logging 1.1.6
+google-cloud-audit-log 0.2.4
+google-cloud-core 2.3.2
+google-cloud-logging 3.2.5
+google-cloud-storage 2.5.0
+google-crc32c 1.1.2
+google-resumable-media 2.4.0
+googleapis-common-protos 1.56.4
+greenlet 1.1.1
+grpc-google-iam-v1 0.12.4
+grpcio 1.47.2
+grpcio-health-checking 1.47.2
+grpcio-reflection 1.47.2
+grpcio-status 1.49.1
+h5py 3.6.0
+HeapDict 1.0.1
+holoviews 1.14.8
+hvplot 0.7.3
+hyperlink 21.0.0
+hypothesis 6.29.3
+identify 2.5.6
+idna 3.3
+imagecodecs 2021.8.26
+imageio 2.9.0
+imagesize 1.3.0
+importlib-metadata 4.11.3
+incremental 21.3.0
+inflection 0.5.1
+iniconfig 1.1.1
+install 1.3.5
+intake 0.6.5
+intervaltree 3.1.0
+ipykernel 6.9.1
+ipython 8.4.0
+ipython-genutils 0.2.0
+ipywidgets 7.6.5
+iqplot 0.2.4
+isodate 0.6.1
+isort 5.9.3
+itemadapter 0.3.0
+itemloaders 1.0.4
+itsdangerous 2.0.1
+jdcal 1.4.1
+jedi 0.18.1
+Jinja2 2.11.3
+jinja2-time 0.2.0
+jmespath 0.10.0
+joblib 1.1.0
+json5 0.9.6
+jsonschema 3.2.0
+jupyter 1.0.0
+jupyter-bokeh 3.0.4
+jupyter-book 0.12.3
+jupyter-cache 0.4.3
+jupyter-client 6.1.12
+jupyter-console 6.4.0
+jupyter-core 4.9.2
+jupyter-server 1.13.5
+jupyter-server-mathjax 0.2.5
+jupyter-sphinx 0.3.2
+jupyterlab 3.3.2
+jupyterlab-pygments 0.1.2
+jupyterlab-server 2.10.3
+jupyterlab-spellchecker 0.7.2
+jupyterlab-widgets 1.0.0
+jupytext 1.10.3
+kayday 2.0.0
+keyring 23.4.0
+kiwisolver 1.3.2
+kpi-metrics 1.3.4
+latexcodec 2.0.1
+lazy-object-proxy 1.6.0
+libarchive-c 2.9
+linkify-it-py 1.0.3
+llvmlite 0.39.1
+locket 0.2.1
+lxml 4.8.0
+Mako 1.2.4
+Markdown 3.3.4
+markdown-it-py 1.1.0
+MarkupSafe 2.0.1
+matplotlib 3.5.3
+matplotlib-inline 0.1.2
+mccabe 0.6.1
+mdit-py-plugins 0.2.8
+mistune 0.8.4
+mkl-fft 1.3.1
+mkl-random 1.2.2
+mkl-service 2.4.0
+mock 4.0.3
+mpire 2.6.0
+mpmath 1.2.1
+msal 1.20.0
+msal-extensions 1.0.0
+msgpack 1.0.2
+msrest 0.7.1
+multidict 5.2.0
+multipledispatch 0.6.0
+munkres 1.1.4
+mypy 0.982
+mypy-extensions 0.4.3
+myst-nb 0.13.2
+myst-parser 0.15.2
+navigator-updater 0.2.1
+nbclassic 0.3.5
+nbclient 0.5.13
+nbconvert 5.6.1
+nbdime 3.1.1
+nbformat 5.3.0
+nbsphinx 0.8.9
+nest-asyncio 1.5.5
+nested-lookup 0.2.23
+netCDF4 1.5.7
+networkx 2.7.1
+nltk 3.7
+nodeenv 1.7.0
+nose 1.3.7
+notebook 6.4.8
+numba 0.56.4
+numexpr 2.8.1
+numpy 1.22.4
+numpydoc 1.2
+oauthlib 3.2.2
+olefile 0.46
+openpyxl 3.0.9
+packaging 21.3
+pandas 1.4.2
+pandocfilters 1.5.0
+panel 0.13.0
+param 1.12.0
+parsel 1.6.0
+parso 0.8.3
+partd 1.2.0
+pathspec 0.9.0
+patsy 0.5.2
+pep8 1.7.1
+pexpect 4.8.0
+pickleshare 0.7.5
+Pillow 9.0.1
+pip 21.2.4
+piqdata 2.1.20
+pkginfo 1.8.2
+platformdirs 2.5.2
+plotly 5.6.0
+pluggy 1.0.0
+pockets 0.9.1
+poirot 2.6.3
+portalocker 2.5.1
+poyo 0.5.0
+pre-commit 2.20.0
+prometheus-client 0.13.1
+prompt-toolkit 3.0.20
+Protego 0.1.16
+proto-plus 1.22.1
+protobuf 4.21.7
+psutil 5.8.0
+psycopg2-binary 2.9.5
+ptyprocess 0.7.0
+pure-eval 0.2.2
+py 1.11.0
+py4j 0.10.9.3
+pyarrow 8.0.0
+pyasn1 0.4.8
+pyasn1-modules 0.2.8
+pybtex 0.24.0
+pybtex-docutils 1.0.1
+pycodestyle 2.7.0
+pycosat 0.6.3
+pycparser 2.21
+pyct 0.4.6
+pycurl 7.44.1
+pydantic 1.10.2
+pydata-sphinx-theme 0.7.2
+PyDispatcher 2.0.5
+pydocstyle 6.1.1
+pyerfa 2.0.0
+pyflakes 2.3.1
+Pygments 2.11.2
+PyHamcrest 2.0.2
+PyJWT 2.4.0
+pylint 2.9.6
+pyls-spyder 0.4.0
+pyluach 1.4.2
+pyodbc 4.0.32
+pyOpenSSL 21.0.0
+pyparsing 3.0.4
+pypi-simple 0.9.0
+pyrsistent 0.18.0
+pyserial 3.5
+PySocks 1.7.1
+pyspark 3.2.1
+pytest 7.1.1
+python-dateutil 2.8.2
+python-lsp-black 1.0.0
+python-lsp-jsonrpc 1.0.0
+python-lsp-server 1.2.4
+python-slugify 5.0.2
+python-snappy 0.6.0
+pytz 2021.3
+pyviz-comms 2.0.2
+PyWavelets 1.3.0
+PyYAML 6.0
+pyzmq 22.3.0
+QDarkStyle 3.0.2
+qstylizer 0.1.10
+QtAwesome 1.0.3
+qtconsole 5.3.0
+QtPy 2.0.1
+queuelib 1.5.0
+regex 2022.3.2
+requests 2.28.1
+requests-file 1.5.1
+requests-oauthlib 1.3.1
+rich 12.4.3
+rope 0.22.0
+rsa 4.7.2
+Rtree 0.9.7
+ruamel-yaml-conda 0.15.100
+s3transfer 0.5.0
+scikit-image 0.19.2
+scikit-learn 1.0.2
+scikit-learn-intelex 2021.20220215.132722
+scipy 1.9.3
+Scrapy 2.6.1
+seaborn 0.11.2
+Send2Trash 1.8.0
+service-identity 18.1.0
+setuptools 65.2.0
+shellingham 1.4.0
+simpy 4.0.1
+sip 4.19.13
+six 1.16.0
+smart-open 5.1.0
+smmap 3.0.5
+sniffio 1.2.0
+snowballstemmer 2.2.0
+sortedcollections 2.1.0
+sortedcontainers 2.4.0
+soupsieve 2.3.1
+Sphinx 3.5.3
+sphinx-book-theme 0.1.10
+sphinx-comments 0.0.3
+sphinx-copybutton 0.5.0
+sphinx-external-toc 0.2.4
+sphinx-jupyterbook-latex 0.4.6
+sphinx-multitoc-numbering 0.1.3
+sphinx-panels 0.6.0
+sphinx-rtd-theme 1.0.0
+sphinx-thebe 0.1.2
+sphinx-togglebutton 0.3.1
+sphinxcontrib-applehelp 1.0.2
+sphinxcontrib-bibtex 2.4.2
+sphinxcontrib-devhelp 1.0.2
+sphinxcontrib-htmlhelp 2.0.0
+sphinxcontrib-jsmath 1.0.1
+sphinxcontrib-napoleon 0.7
+sphinxcontrib-qthelp 1.0.3
+sphinxcontrib-serializinghtml 1.1.5
+spyder 5.1.5
+spyder-kernels 2.1.3
+SQLAlchemy 1.4.32
+sqlalchemy2-stubs 0.0.2a29
+sqlmodel 0.0.8
+sqlparse 0.4.2
+stack-data 0.2.0
+statsmodels 0.13.2
+sympy 1.10.1
+tables 3.6.1
+tabulate 0.8.9
+TBB 0.2
+tblib 1.7.0
+tenacity 8.0.1
+terminado 0.13.1
+testpath 0.5.0
+text-unidecode 1.3
+textdistance 4.2.1
+threadpoolctl 2.2.0
+three-merge 0.1.1
+tifffile 2021.7.2
+tinycss 0.4
+tldextract 3.2.0
+toml 0.10.2
+tomli 1.2.2
+toolz 0.11.2
+tornado 6.1
+tqdm 4.64.0
+traitlets 5.1.1
+Twisted 22.2.0
+typed-ast 1.4.3
+typing_extensions 4.1.1
+tzlocal 2.1
+uc-micro-py 1.0.1
+ujson 5.1.0
+Unidecode 1.2.0
+urllib3 1.26.9
+virtualenv 20.16.5
+w3lib 1.21.0
+watchdog 2.1.6
+watermark 2.3.0
+wcwidth 0.2.5
+webencodings 0.5.1
+websocket-client 0.58.0
+Werkzeug 2.0.3
+wheel 0.37.1
+widgetsnbextension 3.5.2
+wrapt 1.12.1
+wurlitzer 3.0.2
+xarray 0.20.1
+xlrd 2.0.1
+XlsxWriter 3.0.3
+xlwings 0.24.9
+yapf 0.31.0
+yarl 1.6.3
+zict 2.0.0
+zipp 3.7.0
+zope.interface 5.4.0
Note: you may need to restart the kernel to use updated packages.
@@ -1073,7 +1122,8 @@ Terminologyimport statement. The import
statement allows us to import code from another module. There are a few ways to use the statement, which we will mention briefly here, from most recommended to least recommended.
Video 🎥:
-
+
Explicit module import¶
@@ -1230,7 +1280,7 @@ Implicit import of module contents¶
Video 🎥:
-
+
In the above code we’ve seen a few different libraries installed (math
and numpy
). These libraries represent two of the many readily available libraries at your disposal. However, we refer to the math
library is part of the standard library and the numpy
library is considered a third party library.
So far we’ve seen several data types that Python offers out-of-the-box.
@@ -1290,7 +1340,7 @@
Knowledge check¶
Video 🎥:
-
+
One of the things that makes Python useful, especially within the world of data science, is its ecosystem of third-party modules. These can be imported just as the built-in modules, but first the modules must be installed on your system. As previously mentioned, Python Package Index (PyPI for short) and Anaconda are the two primary public package managers for Python. To install packages from these locations we just use the following:
# install from PyPI
diff --git a/docs/_build/html/02-module/lesson-2b.html b/docs/_build/html/02-module/lesson-2b.html
index b468390..02ec1c0 100644
--- a/docs/_build/html/02-module/lesson-2b.html
+++ b/docs/_build/html/02-module/lesson-2b.html
@@ -618,7 +618,7 @@ Learning objectives¶
Video 🎥:
-
+
Python stores its data in memory - this makes it relatively quickly accessible but can cause size limitations in certain fields. In this class we will mainly work with small to moderate data sets, which means we should not run into any space limitations.
@@ -639,7 +639,7 @@ Data & memory¶
Video 🎥:
-
+
Text files are a popular way to hold and exchange tabular data as almost any data application supports exporting data to the CSV (or other text file) format. Text file formats use delimiters to separate the different elements in a line, and each line of data is in its own line in the text file. Therefore, importing different kinds of text files can follow a fairly consistent process once you’ve identified the delimiter.
Although there are other approaches to importing delimited files, Pandas is often the preferred approach as it greatly simplifies the proess and imports the data directly into a DataFrame – the data structure of choice for tabular data in Python.
@@ -1164,7 +1164,7 @@ Delimited files¶
Video 🎥:
-
+
It’s important to understand where files exist on your computer and how to reference those paths. There are two main approaches:
@@ -1397,7 +1397,7 @@ Metadata¶
Video 🎥:
-
+
We’ve seen that we can use the dot-notation to access functions in libraries (i.e. pd.read_csv()
). We can use this same approach to access things inside of objects. What’s an object? Basically, a variable that contains other data or functionality inside of it that is exposed to users. Consequently, our DataFrame item is an object.
In the above code, we saw that we can make different calls with our DataFrame such as ames.shape
and ames.head()
. An observant reader probably noticed the difference between the two – one has parentheses and the other does not.
@@ -2047,7 +2047,7 @@ Computing environment
Python implementation: CPython
Python version : 3.9.12
-IPython version : 8.2.0
+IPython version : 8.4.0
jupyterlab: 3.3.2
pandas : 1.4.2
diff --git a/docs/_build/html/02-module/lesson-2c.html b/docs/_build/html/02-module/lesson-2c.html
index 85a5843..c38f474 100644
--- a/docs/_build/html/02-module/lesson-2c.html
+++ b/docs/_build/html/02-module/lesson-2c.html
@@ -581,7 +581,7 @@ Learning objectives¶
Video 🎥:
-
+
Accessing an individual column of a DataFrame can be done by passing the column name as a string, in brackets ([]
).
@@ -807,7 +807,7 @@ What Are DataFrames Made of?¶
Video 🎥:
-
+
First, let’s create our own Series object from scratch – they don’t need to come from a DataFrame. Here, we pass a list in as an argument and it will be converted to a Series.
@@ -1038,7 +1038,7 @@ What Can You Do with a Series?¶
Video 🎥:
-
+
It’s not just Series that have indexes! DataFrames have them too. Take a look at the carrier DataFrame again and note the bold numbers on the left.
diff --git a/docs/_build/html/03-module/lesson-3a.html b/docs/_build/html/03-module/lesson-3a.html
index 2f3f01b..a8c5a7a 100644
--- a/docs/_build/html/03-module/lesson-3a.html
+++ b/docs/_build/html/03-module/lesson-3a.html
@@ -743,7 +743,7 @@ Prerequisites¶
Video 🎥:
-
+
We don’t always want all of the data in a DataFrame, so we need to take subsets of the DataFrame. In general, subsetting is extracting a small portion of a DataFrame – making the DataFrame smaller. Since the DataFrame is two-dimensional, there are two dimensions on which to subset.
Dimension 1: We may only want to consider certain variables. For example, we may only care about the year
and engines
variables:
@@ -1172,7 +1172,7 @@ Knowledge check
Video 🎥:
-
+
@@ -2066,7 +2066,7 @@ Knowledge check
Video 🎥:
-
+
@@ -2276,7 +2276,7 @@ Knowledge check
Video 🎥:
-
+
@@ -2365,7 +2365,7 @@ Views vs copies
-/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_97171/2190037627.py:1: SettingWithCopyWarning:
+/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_69390/2190037627.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
@@ -2438,8 +2438,8 @@ Views vs copies
-The id of the original dataframe is: 140606100927728
- The id of the indexed dataframe is: 140606114994256
+The id of the original dataframe is: 140438716342624
+ The id of the indexed dataframe is: 140438730364480
@@ -2537,7 +2537,7 @@ Computing environment
Python implementation: CPython
Python version : 3.9.12
-IPython version : 8.2.0
+IPython version : 8.4.0
jupyterlab: 3.3.2
pandas : 1.4.2
diff --git a/docs/_build/html/03-module/lesson-3b.html b/docs/_build/html/03-module/lesson-3b.html
index 05d792d..c6a58cf 100644
--- a/docs/_build/html/03-module/lesson-3b.html
+++ b/docs/_build/html/03-module/lesson-3b.html
@@ -1411,7 +1411,7 @@ Renaming columns
Video 🎥:
-
+
@@ -1905,7 +1905,7 @@ Knowledge check
Video 🎥:
-
+
@@ -2650,7 +2650,7 @@ Knowledge check
Video 🎥:
-
+
@@ -4219,11 +4219,11 @@ Computing environment
Python implementation: CPython
Python version : 3.9.12
-IPython version : 8.2.0
+IPython version : 8.4.0
jupyterlab: 3.3.2
pandas : 1.4.2
-numpy : 1.21.5
+numpy : 1.22.4
seaborn : 0.11.2
diff --git a/docs/_build/html/03-module/lesson-3c.html b/docs/_build/html/03-module/lesson-3c.html
index a94b1f2..1a09411 100644
--- a/docs/_build/html/03-module/lesson-3c.html
+++ b/docs/_build/html/03-module/lesson-3c.html
@@ -738,7 +738,7 @@ Knowledge check
Video 🎥:
-
+
@@ -1088,7 +1088,7 @@ Knowledge check
Video 🎥:
-
+
Python implementation: CPython
Python version : 3.9.12
-IPython version : 8.2.0
+IPython version : 8.4.0
jupyterlab: 3.3.2
pandas : 1.4.2
diff --git a/docs/_build/html/04-module/lesson-4a.html b/docs/_build/html/04-module/lesson-4a.html
index 9898435..9aba6b8 100644
--- a/docs/_build/html/04-module/lesson-4a.html
+++ b/docs/_build/html/04-module/lesson-4a.html
@@ -567,7 +567,7 @@ Lession 4a: Tidy dataOnce a DataFrame is tidy, it becomes much easier to compute summary statistics, join with other datasets, visualize, apply machine learning models, etc. In this lesson we will focus on ways to reshape DataFrames so that they meet the tidy guidelines.
Video 🎥:
-
+
Learning objectives¶
@@ -801,8 +801,8 @@ Melting wide data
ames_wide.melt(
id_vars='neighborhood',
- value_vars=['2007', '2008', '2009', '2010'],
- var_name='year',
+ value_vars=['2007', '2008', '2009', '2010'],
+ var_name='year',
value_name='homes_sold'
)
@@ -992,7 +992,7 @@ Knowledge check
Video 🎥:
-
+
Video 🎥:
- +Video 🎥:
- + @@ -1871,7 +1871,7 @@Video 🎥:
- + diff --git a/docs/_build/html/04-module/lesson-4c.html b/docs/_build/html/04-module/lesson-4c.html index 54ebe8d..0bfe530 100644 --- a/docs/_build/html/04-module/lesson-4c.html +++ b/docs/_build/html/04-module/lesson-4c.html @@ -1402,7 +1402,7 @@Video 🎥:
- + @@ -2654,7 +2654,7 @@/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_50389/1279328171.py:2: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.
+/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_69791/1279328171.py:2: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.
products['package_size']
@@ -3199,7 +3199,7 @@ Repetition
-/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_50389/3233621946.py:1: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.
+/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_69791/3233621946.py:1: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.
prod_id_8s = products['product_id'].astype(str).str.contains('(8)\\1', na=False)
@@ -3294,7 +3294,7 @@ Repetition
-/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_50389/1949681077.py:1: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.
+/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_69791/1949681077.py:1: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.
prod_id_8s = products['product_id'].astype(str).str.contains('(8)\\1{2}', na=False)
@@ -3410,7 +3410,7 @@ Putting it altogether
-/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_50389/3801605409.py:1: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.
+/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_69791/3801605409.py:1: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.
size_filter = products['package_size'].str.contains('^\d{2,}(\.)?.*lb', case=False, na=False)
@@ -3479,7 +3479,7 @@ Knowledge check
Video 🎥:
-
+
@@ -3507,7 +3507,7 @@ Computing environment
Python implementation: CPython
Python version : 3.9.12
-IPython version : 8.2.0
+IPython version : 8.4.0
jupyterlab : 3.3.2
pandas : 1.4.2
diff --git a/docs/_build/html/06-module/lesson-6a.html b/docs/_build/html/06-module/lesson-6a.html
index ef3cbe5..43b517e 100644
--- a/docs/_build/html/06-module/lesson-6a.html
+++ b/docs/_build/html/06-module/lesson-6a.html
@@ -643,7 +643,7 @@ if statement
-# multiple lines in the statement are fine as long as they have the
+# multiple lines in the statement are fine as long as they have the
# same indentation
if x < 0:
new_value = abs(x)
@@ -740,7 +740,7 @@ Knowledge check
Video 🎥:
-
+
@@ -806,7 +806,7 @@ Knowledge check
Video 🎥:
-
+
@@ -909,18 +909,18 @@ Switch statementsdef produce_revenue(sqft, visits, trend):
total = 9.91 * sqft * visits * trend
return round(total, 2)
-
+
def frozen_revenue(sqft, visits, trend):
prod = produce_revenue(sqft, visits, trend)
- total = 3.28 * sqft * visits * trend - prod * .005
+ total = 3.28 * sqft * visits * trend - prod * .005
return round(total, 2)
-
+
expected_annual_revenue = {
- 'produce': produce_revenue,
- 'frozen': frozen_revenue,
+ 'produce': produce_revenue,
+ 'frozen': frozen_revenue,
'pharmacy': lambda: 16.11 * visits * trend
}
-
+
choice = 'frozen'
expected_annual_revenue.get(choice, 'Bad choice')(sqft=937, visits=465, trend=0.98)
@@ -951,7 +951,7 @@ Knowledge check
Video 🎥:
-
+
@@ -1405,7 +1405,7 @@ Knowledge check
Video 🎥:
-
+
Python implementation: CPython
Python version : 3.9.12
-IPython version : 8.2.0
+IPython version : 8.4.0
pandas : 1.4.2
jupyterlab : 3.3.2
diff --git a/docs/_build/html/06-module/lesson-6b.html b/docs/_build/html/06-module/lesson-6b.html
index d941ac9..f055a83 100644
--- a/docs/_build/html/06-module/lesson-6b.html
+++ b/docs/_build/html/06-module/lesson-6b.html
@@ -786,7 +786,7 @@ Knowledge check
Video 🎥:
-
+
Video 🎥:
- + @@ -937,7 +937,7 @@squared_certain_values = [
- number * number for number in range(10)
+ number * number for number in range(10)
if number % 2 != 0 and number != 5
]
@@ -986,7 +986,7 @@ Knowledge check
Video 🎥:
-
+
whilewhile not ten_of_a_kind:
# flip coin 10 times
ten_coin_flips = [random.choice(coin) for flip in range(11)]
-
+
# check if there
ten_of_a_kind = len(set(ten_coin_flips)) == 1
@@ -1027,7 +1027,7 @@ while
-After 330 flips: ['tails', 'tails', 'tails', 'tails', 'tails', 'tails', 'tails', 'tails', 'tails', 'tails', 'tails']
+After 2335 flips: ['heads', 'heads', 'heads', 'heads', 'heads', 'heads', 'heads', 'heads', 'heads', 'heads', 'heads']
@@ -1060,7 +1060,7 @@ Knowledge check
Video 🎥:
-
+
@@ -1182,7 +1182,7 @@ Iterablesfor col in range(len(df.columns)):
value = df.iloc[:, col].nunique()
unique_values.append(value)
-
+
unique_values
diff --git a/docs/_build/html/06-module/lesson-6c.html b/docs/_build/html/06-module/lesson-6c.html
index 887ce30..2f812a2 100644
--- a/docs/_build/html/06-module/lesson-6c.html
+++ b/docs/_build/html/06-module/lesson-6c.html
@@ -776,7 +776,7 @@ When to write functions
# array containing 4 sets of 10 random numbers
x = np.random.random_sample((4, 10))
-
+
x[0] = (x[0] - x[0].min()) / (x[0].max() - x[0].min())
x[1] = (x[1] - x[1].min()) / (x[1].max() - x[1].min())
x[2] = (x[2] - x[2].min()) / (x[1].max() - x[2].min())
@@ -793,7 +793,7 @@ When to write functionsdef rescale(array):
for index, vector in enumerate(array):
array[index] = (vector - vector.min()) / (vector.max() - vector.min())
-
+
return(array)
rescale(x)
@@ -801,14 +801,14 @@ When to write functions
-array([[0. , 0.25838401, 0.41338666, 0.22670219, 0.14207045,
- 0.6372547 , 1. , 0.66500104, 0.97430082, 0.67975973],
- [0.23875146, 0.25624387, 0.09282163, 0.39901557, 0.65988219,
- 0.08264166, 0.53262924, 0. , 0.98924274, 1. ],
- [0.86209879, 0.83270803, 0.7993648 , 0. , 0.21927493,
- 0.55366273, 0.00574432, 0.98300226, 1. , 0.64223695],
- [0.56997021, 0.76553595, 1. , 0. , 0.64481501,
- 0.68118805, 0.95526039, 0.91795629, 0.39921224, 0.95423523]])
+array([[0.79882196, 0. , 0.63291805, 1. , 0.67628976,
+ 0.85449383, 0.21740158, 0.3928153 , 0.84347625, 0.05630605],
+ [1. , 0.38420133, 0.78614167, 0. , 0.60469202,
+ 0.47085719, 0.39803966, 0.91226131, 0.73877887, 0.9079893 ],
+ [0.09984341, 1. , 0.13157581, 0.40402155, 0.43002542,
+ 0. , 0.00857417, 0.87397615, 0.78929133, 0.4674958 ],
+ [0.65530407, 0.10196804, 0. , 0.83969465, 1. ,
+ 0.68729707, 0.0015783 , 0.354641 , 0.34662782, 0.52565252]])
@@ -826,22 +826,22 @@ Functions vs methods
-array([1.67082046, 2.11287186, 2.30557308, 0.62571776, 1.66604259,
- 1.95474713, 2.49363395, 2.56595959, 3.3627558 , 3.27623192])
+array([2.55396944, 1.48616936, 1.55063553, 2.24371621, 2.7110072 ,
+ 2.01264809, 0.62559371, 2.53369375, 2.71817427, 1.95744367])
-# method
+# method
x.sum(axis = 0)
-array([1.67082046, 2.11287186, 2.30557308, 0.62571776, 1.66604259,
- 1.95474713, 2.49363395, 2.56595959, 3.3627558 , 3.27623192])
+array([2.55396944, 1.48616936, 1.55063553, 2.24371621, 2.7110072 ,
+ 2.01264809, 0.62559371, 2.53369375, 2.71817427, 1.95744367])
@@ -855,7 +855,7 @@ Functions vs methods
-
-array([1.67082046, 2.11287186, 2.30557308, 0.62571776, 1.66604259,
- 1.95474713, 2.49363395, 2.56595959, 3.3627558 , 3.27623192])
+array([2.55396944, 1.48616936, 1.55063553, 2.24371621, 2.7110072 ,
+ 2.01264809, 0.62559371, 2.53369375, 2.71817427, 1.95744367])
@@ -882,7 +882,7 @@ Functions vs methods
-array([4.9968596 , 4.25122836, 5.89809281, 6.88817336])
+array([5.47252277, 6.20296134, 4.20480363, 4.51276347])
@@ -903,8 +903,8 @@ Defining functionsdef yell(text):
new_text = text.upper()
return new_text
-
-yell('hello world!')
+
+yell('hello world!')
@@ -943,7 +943,7 @@ Knowledge check
Video 🎥:
-
+
@@ -961,7 +961,7 @@ Keyword arguments
# implicitly computing store sales for store 46 during week 43
-store_sales(df, 46, 43)
+store_sales(df, 46, 43)
@@ -974,7 +974,7 @@ Keyword arguments
# implicitly computing store sales for store 43 (does not exist) during week 46
-store_sales(df, 43, 46)
+store_sales(df, 43, 46)
@@ -992,7 +992,7 @@ Keyword arguments
# explicitly computing store sales for store 46 during week 43
-store_sales(data=df, week=43, store=46)
+store_sales(data=df, week=43, store=46)
@@ -1055,7 +1055,7 @@ *args and **kwargsdef yell(*args):
new_text = ' '.join(args).upper()
return new_text
-
+
yell('hello world!', 'I', 'love', 'Python!!')
@@ -1072,7 +1072,7 @@ *args and **kwargs# **kwargs just creates a dictionary
def students(**kwargs):
print(kwargs)
-
+
students(student1='John', student2='Robert', student3='Sally')
@@ -1089,8 +1089,8 @@ *args and **kwargsdef print_student_names(**kwargs):
for key, value in kwargs.items():
print(f'{key} = {value}')
-
-print_student_names(student1='John', student2='Robert', student3='Sally')
+
+print_student_names(student1='John', student2='Robert', student3='Sally')
@@ -1111,7 +1111,7 @@ Type hints
def some_function(name, age):
return f'{name} is {age} years old'
-
+
some_function('Tom', 27)
@@ -1128,7 +1128,7 @@ Type hints
def some_function(name: str, age: int) -> str:
return f'{name} is {age} years old'
-
+
some_function('Tom', 27)
@@ -1179,7 +1179,7 @@ Type hintsfilt = (data['store_id'] == store) & (data['week'] == week)
total_sales = data['sales_value'][filt].sum()
return total_sales
-
+
store_sales(data=df, store=309, week=48)
@@ -1203,7 +1203,7 @@ Knowledge check
Video 🎥:
-
+
@@ -1220,11 +1220,11 @@ Docstringsdef store_sales(data: pd.DataFrame, store: int, week: int) -> float:
"""
Compute total store sales.
-
+
This function computes the total sales for a given
store and week based on a user supplied DataFrame that
contains sales in a column named `sales_value`.
-
+
Parameters
----------
data : DataFrame
@@ -1233,16 +1233,16 @@ Docstrings Integer value representing store number
week : int
Integer value representing week of year
-
+
Returns
-------
float
A float object representing total store sales
-
+
See Also
--------
store_visits : Computes total store visits
-
+
Examples
--------
>>> store_sales(data=df, store=309, week=48)
@@ -1269,7 +1269,7 @@ Knowledge check
Video 🎥:
-
+
@@ -1287,13 +1287,13 @@ Validating argumentsif not isinstance(data, pd.DataFrame): raise Exception('`data` should be a Pandas DataFrame')
if not isinstance(store, int): raise Exception('`store` should be an integer')
if not isinstance(week, int): raise Exception('`week` should be an integer')
-
+
# computation
filt = (data['store_id'] == store) & (data['week'] == week)
total_sales = data['sales_value'][filt].sum()
return total_sales
-
-store_sales(data=df, store='309', week=48)
+
+store_sales(data=df, store='309', week=48)
@@ -1326,13 +1326,13 @@ Validating argumentsif not isinstance(data, pd.DataFrame): raise TypeError('`data` should be a Pandas DataFrame')
if not isinstance(store, int): raise TypeError('`store` should be an integer')
if not isinstance(week, int): raise TypeError('`week` should be an integer')
-
+
# computation
filt = (data['store_id'] == store) & (data['week'] == week)
total_sales = data['sales_value'][filt].sum()
return total_sales
-
-store_sales(data=df, store='309', week=48)
+
+store_sales(data=df, store='309', week=48)
@@ -1378,10 +1378,10 @@ Validating argumentsif not isinstance(data, pd.DataFrame): raise TypeError('`data` should be a Pandas DataFrame')
if not isinstance(store, int): raise TypeError('`store` should be an integer')
if not isinstance(week, int): raise TypeError('`week` should be an integer')
- if store not in data.store_id.unique():
+ if store not in data.store_id.unique():
raise ValueError(f'`store` {store} does not exist in the supplied DataFrame')
-
-
+
+
# computation
filt = (data['store_id'] == store) & (data['week'] == week)
total_sales = data['sales_value'][filt].sum()
@@ -1478,8 +1478,8 @@ Assert statementsprice = round(product['price'] * (1.0 - discount), 2)
assert 0 <= price <= product['price'], 'Invalid discount applied'
return price
-
-apply_discount(milk, 2.00)
+
+apply_discount(milk, 2.00)
@@ -1598,7 +1598,7 @@ Knowledge check
Video 🎥:
-
+
@@ -1620,8 +1620,8 @@ Searching for variablesdef func(x):
return x + 1
-
-func(x = 50)
+
+func(x = 50)
@@ -1651,8 +1651,8 @@ Searching for variablesdef func(x):
return x + ' ' + y
-
-func(x = 'Brad')
+
+func(x = 'Brad')
@@ -1683,7 +1683,7 @@ Searching for variablesdef my_paste():
return x + sep + y
return my_paste()
-
+
my_name(sep=' ')
@@ -1713,7 +1713,7 @@ Changing variablesy = firstpart + '.' + secondpart
return y
-convert(8451)
+convert(8451)
diff --git a/docs/_build/html/_images/lesson-3b_72_0.png b/docs/_build/html/_images/lesson-3b_72_0.png
index 01f30db..74f1757 100644
Binary files a/docs/_build/html/_images/lesson-3b_72_0.png and b/docs/_build/html/_images/lesson-3b_72_0.png differ
diff --git a/docs/_build/html/_sources/01-module/lesson-1a.ipynb b/docs/_build/html/_sources/01-module/lesson-1a.ipynb
index ec84763..b99c142 100644
--- a/docs/_build/html/_sources/01-module/lesson-1a.ipynb
+++ b/docs/_build/html/_sources/01-module/lesson-1a.ipynb
@@ -94,7 +94,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -200,7 +200,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -457,7 +457,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/html/_sources/01-module/lesson-1b.ipynb b/docs/_build/html/_sources/01-module/lesson-1b.ipynb
index 7b6198a..ae6afc9 100644
--- a/docs/_build/html/_sources/01-module/lesson-1b.ipynb
+++ b/docs/_build/html/_sources/01-module/lesson-1b.ipynb
@@ -46,7 +46,7 @@
"## Determining the type\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"First, we will use Python's built-in `type()` function to determine the type of some variables."
@@ -1028,7 +1028,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1226,7 +1226,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/html/_sources/01-module/lesson-1c.ipynb b/docs/_build/html/_sources/01-module/lesson-1c.ipynb
index 6cc2f4f..a30e327 100644
--- a/docs/_build/html/_sources/01-module/lesson-1c.ipynb
+++ b/docs/_build/html/_sources/01-module/lesson-1c.ipynb
@@ -613,7 +613,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -905,7 +905,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1177,7 +1177,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1616,7 +1616,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/html/_sources/01-module/lesson-1d.ipynb b/docs/_build/html/_sources/01-module/lesson-1d.ipynb
index f36dfa1..f5ef80a 100644
--- a/docs/_build/html/_sources/01-module/lesson-1d.ipynb
+++ b/docs/_build/html/_sources/01-module/lesson-1d.ipynb
@@ -30,7 +30,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -717,7 +717,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1036,7 +1036,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1353,7 +1353,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/html/_sources/02-module/lesson-2a.ipynb b/docs/_build/html/_sources/02-module/lesson-2a.ipynb
index cc783c0..d343b3e 100644
--- a/docs/_build/html/_sources/02-module/lesson-2a.ipynb
+++ b/docs/_build/html/_sources/02-module/lesson-2a.ipynb
@@ -37,7 +37,7 @@
"## Terminology\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"People often use the terms _\"package\"_, _\"library\"_, and _\"module\"_ synonymously. If you are familiar with the R programming language you've probably heard some of these terms before. Although there are some semantical differences between R and Python, here is how you can think of the two terms:\n",
@@ -422,7 +422,7 @@
"In the code above you saw the `import` statement. The `import` statement allows us to import code from another module. There are a few ways to use the statement, which we will mention briefly here, from most recommended to least recommended.\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"### Explicit module import\n",
@@ -638,7 +638,7 @@
"## Standard library\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"In the above code we've seen a few different libraries installed (`math` and `numpy`). These libraries represent two of the many readily available libraries at your disposal. However, we refer to the `math` library is part of the **standard library** and the `numpy` library is considered a **third party library**.\n",
@@ -769,7 +769,7 @@
"## Third-party modules\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"One of the things that makes Python useful, especially within the world of data science, is its ecosystem of third-party modules. These can be imported just as the built-in modules, but first the modules must be installed on your system. As previously mentioned, [Python Package Index](https://pypi.org/) (PyPI for short) and [Anaconda](https://anaconda.org/anaconda/repo) are the two primary public package managers for Python. To install packages from these locations we just use the following:\n",
diff --git a/docs/_build/html/_sources/02-module/lesson-2b.ipynb b/docs/_build/html/_sources/02-module/lesson-2b.ipynb
index afb1955..4b4caff 100644
--- a/docs/_build/html/_sources/02-module/lesson-2b.ipynb
+++ b/docs/_build/html/_sources/02-module/lesson-2b.ipynb
@@ -30,7 +30,7 @@
"## Data & memory\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"Python stores its data in memory - this makes it relatively quickly accessible but can cause size limitations in certain fields. In this class we will mainly work with small to moderate data sets, which means we should not run into any space limitations. \n",
@@ -59,7 +59,7 @@
"## Delimited files\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"Text files are a popular way to hold and exchange tabular data as almost any data application supports exporting data to the CSV (or other text file) format. Text file formats use delimiters to separate the different elements in a line, and each line of data is in its own line in the text file. Therefore, importing different kinds of text files can follow a fairly consistent process once you’ve identified the delimiter.\n",
@@ -708,7 +708,7 @@
"### File paths\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"It's important to understand where files exist on your computer and how to reference those paths. There are two main approaches:\n",
@@ -1020,7 +1020,7 @@
"### Attributes & methods\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"We've seen that we can use the dot-notation to access functions in libraries (i.e. `pd.read_csv()`). We can use this same approach to access things inside of _objects_. What's an object? Basically, a variable that contains other data or functionality inside of it that is exposed to users. Consequently, our DataFrame item is an object.\n",
diff --git a/docs/_build/html/_sources/02-module/lesson-2c.ipynb b/docs/_build/html/_sources/02-module/lesson-2c.ipynb
index 3fee2cc..d1cc882 100644
--- a/docs/_build/html/_sources/02-module/lesson-2c.ipynb
+++ b/docs/_build/html/_sources/02-module/lesson-2c.ipynb
@@ -114,7 +114,7 @@
"## What Are DataFrames Made of?\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"Accessing an individual column of a DataFrame can be done by passing the column name as a string, in brackets (`[]`)."
@@ -496,7 +496,7 @@
"## What Can You Do with a Series?\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -953,7 +953,7 @@
"## DataFrame Indexes\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"It's not just Series that have indexes! DataFrames have them too. Take a look at the carrier DataFrame again and note the bold numbers on the left."
diff --git a/docs/_build/html/_sources/03-module/lesson-3a.ipynb b/docs/_build/html/_sources/03-module/lesson-3a.ipynb
index 590b6df..09d225e 100644
--- a/docs/_build/html/_sources/03-module/lesson-3a.ipynb
+++ b/docs/_build/html/_sources/03-module/lesson-3a.ipynb
@@ -179,7 +179,7 @@
"## Subsetting dimensions\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"We don't always want all of the data in a DataFrame, so we need to take subsets of the DataFrame. In general, **subsetting** is extracting a small portion of a DataFrame -- making the DataFrame smaller. Since the DataFrame is two-dimensional, there are two dimensions on which to subset.\n",
@@ -903,7 +903,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -2156,7 +2156,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -2491,7 +2491,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/html/_sources/03-module/lesson-3b.ipynb b/docs/_build/html/_sources/03-module/lesson-3b.ipynb
index 38bf044..55b017b 100644
--- a/docs/_build/html/_sources/03-module/lesson-3b.ipynb
+++ b/docs/_build/html/_sources/03-module/lesson-3b.ipynb
@@ -1013,7 +1013,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1720,7 +1720,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -2700,7 +2700,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/html/_sources/03-module/lesson-3c.ipynb b/docs/_build/html/_sources/03-module/lesson-3c.ipynb
index d9e2801..277b602 100644
--- a/docs/_build/html/_sources/03-module/lesson-3c.ipynb
+++ b/docs/_build/html/_sources/03-module/lesson-3c.ipynb
@@ -274,7 +274,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -859,7 +859,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -2318,7 +2318,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/html/_sources/04-module/lesson-4a.ipynb b/docs/_build/html/_sources/04-module/lesson-4a.ipynb
index e4ecee9..2bf07d4 100644
--- a/docs/_build/html/_sources/04-module/lesson-4a.ipynb
+++ b/docs/_build/html/_sources/04-module/lesson-4a.ipynb
@@ -23,7 +23,7 @@
"Once a DataFrame is tidy, it becomes much easier to compute summary statistics, join with other datasets, visualize, apply machine learning models, etc. In this lesson we will focus on ways to reshape DataFrames so that they meet the tidy guidelines.\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -458,8 +458,8 @@
"source": [
"ames_wide.melt(\n",
" id_vars='neighborhood',\n",
- " value_vars=['2007', '2008', '2009', '2010'], \n",
- " var_name='year', \n",
+ " value_vars=['2007', '2008', '2009', '2010'],\n",
+ " var_name='year',\n",
" value_name='homes_sold'\n",
" )"
]
@@ -498,7 +498,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1202,7 +1202,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/html/_sources/04-module/lesson-4b.ipynb b/docs/_build/html/_sources/04-module/lesson-4b.ipynb
index 9f1dc98..f9c3951 100644
--- a/docs/_build/html/_sources/04-module/lesson-4b.ipynb
+++ b/docs/_build/html/_sources/04-module/lesson-4b.ipynb
@@ -1480,7 +1480,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1655,7 +1655,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/html/_sources/04-module/lesson-4c.ipynb b/docs/_build/html/_sources/04-module/lesson-4c.ipynb
index 30e6ab3..c0248f1 100644
--- a/docs/_build/html/_sources/04-module/lesson-4c.ipynb
+++ b/docs/_build/html/_sources/04-module/lesson-4c.ipynb
@@ -1009,7 +1009,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -3761,7 +3761,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/html/_sources/06-module/lesson-6a.ipynb b/docs/_build/html/_sources/06-module/lesson-6a.ipynb
index ad8afaf..ccda7b3 100644
--- a/docs/_build/html/_sources/06-module/lesson-6a.ipynb
+++ b/docs/_build/html/_sources/06-module/lesson-6a.ipynb
@@ -120,7 +120,7 @@
}
],
"source": [
- "# multiple lines in the statement are fine as long as they have the \n",
+ "# multiple lines in the statement are fine as long as they have the\n",
"# same indentation\n",
"if x < 0:\n",
" new_value = abs(x)\n",
@@ -254,7 +254,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -339,7 +339,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -520,18 +520,18 @@
"def produce_revenue(sqft, visits, trend):\n",
" total = 9.91 * sqft * visits * trend\n",
" return round(total, 2)\n",
- " \n",
+ "\n",
"def frozen_revenue(sqft, visits, trend):\n",
" prod = produce_revenue(sqft, visits, trend)\n",
- " total = 3.28 * sqft * visits * trend - prod * .005 \n",
+ " total = 3.28 * sqft * visits * trend - prod * .005\n",
" return round(total, 2)\n",
- " \n",
+ "\n",
"expected_annual_revenue = {\n",
- " 'produce': produce_revenue, \n",
- " 'frozen': frozen_revenue, \n",
+ " 'produce': produce_revenue,\n",
+ " 'frozen': frozen_revenue,\n",
" 'pharmacy': lambda: 16.11 * visits * trend\n",
" }\n",
- " \n",
+ "\n",
"choice = 'frozen'\n",
"expected_annual_revenue.get(choice, 'Bad choice')(sqft=937, visits=465, trend=0.98)"
]
@@ -564,7 +564,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1166,7 +1166,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/html/_sources/06-module/lesson-6b.ipynb b/docs/_build/html/_sources/06-module/lesson-6b.ipynb
index 9de962c..614eb29 100644
--- a/docs/_build/html/_sources/06-module/lesson-6b.ipynb
+++ b/docs/_build/html/_sources/06-module/lesson-6b.ipynb
@@ -285,7 +285,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -405,7 +405,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -539,7 +539,7 @@
],
"source": [
"squared_certain_values = [\n",
- " number * number for number in range(10) \n",
+ " number * number for number in range(10)\n",
" if number % 2 != 0 and number != 5\n",
" ]\n",
"\n",
@@ -611,7 +611,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -660,7 +660,7 @@
"while not ten_of_a_kind:\n",
" # flip coin 10 times\n",
" ten_coin_flips = [random.choice(coin) for flip in range(11)]\n",
- " \n",
+ "\n",
" # check if there\n",
" ten_of_a_kind = len(set(ten_coin_flips)) == 1\n",
"\n",
@@ -710,7 +710,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -904,7 +904,7 @@
"for col in range(len(df.columns)):\n",
" value = df.iloc[:, col].nunique()\n",
" unique_values.append(value)\n",
- " \n",
+ "\n",
"unique_values"
]
},
diff --git a/docs/_build/html/_sources/06-module/lesson-6c.ipynb b/docs/_build/html/_sources/06-module/lesson-6c.ipynb
index e723904..c072fc1 100644
--- a/docs/_build/html/_sources/06-module/lesson-6c.ipynb
+++ b/docs/_build/html/_sources/06-module/lesson-6c.ipynb
@@ -76,7 +76,7 @@
"source": [
"# array containing 4 sets of 10 random numbers\n",
"x = np.random.random_sample((4, 10))\n",
- " \n",
+ "\n",
"x[0] = (x[0] - x[0].min()) / (x[0].max() - x[0].min())\n",
"x[1] = (x[1] - x[1].min()) / (x[1].max() - x[1].min())\n",
"x[2] = (x[2] - x[2].min()) / (x[1].max() - x[2].min())\n",
@@ -119,7 +119,7 @@
"def rescale(array):\n",
" for index, vector in enumerate(array):\n",
" array[index] = (vector - vector.min()) / (vector.max() - vector.min())\n",
- " \n",
+ "\n",
" return(array)\n",
"\n",
"rescale(x)"
@@ -176,7 +176,7 @@
}
],
"source": [
- "# method \n",
+ "# method\n",
"x.sum(axis = 0)"
]
},
@@ -292,8 +292,8 @@
"def yell(text):\n",
" new_text = text.upper()\n",
" return new_text\n",
- " \n",
- "yell('hello world!') "
+ "\n",
+ "yell('hello world!')"
]
},
{
@@ -346,7 +346,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -392,7 +392,7 @@
],
"source": [
"# implicitly computing store sales for store 46 during week 43\n",
- "store_sales(df, 46, 43) "
+ "store_sales(df, 46, 43)"
]
},
{
@@ -413,7 +413,7 @@
],
"source": [
"# implicitly computing store sales for store 43 (does not exist) during week 46\n",
- "store_sales(df, 43, 46) "
+ "store_sales(df, 43, 46)"
]
},
{
@@ -445,7 +445,7 @@
],
"source": [
"# explicitly computing store sales for store 46 during week 43\n",
- "store_sales(data=df, week=43, store=46) "
+ "store_sales(data=df, week=43, store=46)"
]
},
{
@@ -543,7 +543,7 @@
"def yell(*args):\n",
" new_text = ' '.join(args).upper()\n",
" return new_text\n",
- " \n",
+ "\n",
"yell('hello world!', 'I', 'love', 'Python!!')"
]
},
@@ -571,7 +571,7 @@
"# **kwargs just creates a dictionary\n",
"def students(**kwargs):\n",
" print(kwargs)\n",
- " \n",
+ "\n",
"students(student1='John', student2='Robert', student3='Sally')"
]
},
@@ -595,8 +595,8 @@
"def print_student_names(**kwargs):\n",
" for key, value in kwargs.items():\n",
" print(f'{key} = {value}')\n",
- " \n",
- "print_student_names(student1='John', student2='Robert', student3='Sally') "
+ "\n",
+ "print_student_names(student1='John', student2='Robert', student3='Sally')"
]
},
{
@@ -629,7 +629,7 @@
"source": [
"def some_function(name, age):\n",
" return f'{name} is {age} years old'\n",
- " \n",
+ "\n",
"some_function('Tom', 27)"
]
},
@@ -661,7 +661,7 @@
"source": [
"def some_function(name: str, age: int) -> str:\n",
" return f'{name} is {age} years old'\n",
- " \n",
+ "\n",
"some_function('Tom', 27)"
]
},
@@ -741,7 +741,7 @@
" filt = (data['store_id'] == store) & (data['week'] == week)\n",
" total_sales = data['sales_value'][filt].sum()\n",
" return total_sales\n",
- " \n",
+ "\n",
"store_sales(data=df, store=309, week=48)"
]
},
@@ -765,7 +765,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -793,11 +793,11 @@
"def store_sales(data: pd.DataFrame, store: int, week: int) -> float:\n",
" \"\"\"\n",
" Compute total store sales.\n",
- " \n",
+ "\n",
" This function computes the total sales for a given\n",
" store and week based on a user supplied DataFrame that\n",
" contains sales in a column named `sales_value`.\n",
- " \n",
+ "\n",
" Parameters\n",
" ----------\n",
" data : DataFrame\n",
@@ -806,16 +806,16 @@
" Integer value representing store number\n",
" week : int\n",
" Integer value representing week of year\n",
- " \n",
+ "\n",
" Returns\n",
" -------\n",
" float\n",
" A float object representing total store sales\n",
- " \n",
+ "\n",
" See Also\n",
" --------\n",
" store_visits : Computes total store visits\n",
- " \n",
+ "\n",
" Examples\n",
" --------\n",
" >>> store_sales(data=df, store=309, week=48)\n",
@@ -849,7 +849,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -897,13 +897,13 @@
" if not isinstance(data, pd.DataFrame): raise Exception('`data` should be a Pandas DataFrame')\n",
" if not isinstance(store, int): raise Exception('`store` should be an integer')\n",
" if not isinstance(week, int): raise Exception('`week` should be an integer')\n",
- " \n",
+ "\n",
" # computation\n",
" filt = (data['store_id'] == store) & (data['week'] == week)\n",
" total_sales = data['sales_value'][filt].sum()\n",
" return total_sales\n",
- " \n",
- "store_sales(data=df, store='309', week=48) "
+ "\n",
+ "store_sales(data=df, store='309', week=48)"
]
},
{
@@ -937,13 +937,13 @@
" if not isinstance(data, pd.DataFrame): raise TypeError('`data` should be a Pandas DataFrame')\n",
" if not isinstance(store, int): raise TypeError('`store` should be an integer')\n",
" if not isinstance(week, int): raise TypeError('`week` should be an integer')\n",
- " \n",
+ "\n",
" # computation\n",
" filt = (data['store_id'] == store) & (data['week'] == week)\n",
" total_sales = data['sales_value'][filt].sum()\n",
" return total_sales\n",
- " \n",
- "store_sales(data=df, store='309', week=48) "
+ "\n",
+ "store_sales(data=df, store='309', week=48)"
]
},
{
@@ -1004,10 +1004,10 @@
" if not isinstance(data, pd.DataFrame): raise TypeError('`data` should be a Pandas DataFrame')\n",
" if not isinstance(store, int): raise TypeError('`store` should be an integer')\n",
" if not isinstance(week, int): raise TypeError('`week` should be an integer')\n",
- " if store not in data.store_id.unique(): \n",
+ " if store not in data.store_id.unique():\n",
" raise ValueError(f'`store` {store} does not exist in the supplied DataFrame')\n",
- " \n",
- " \n",
+ "\n",
+ "\n",
" # computation\n",
" filt = (data['store_id'] == store) & (data['week'] == week)\n",
" total_sales = data['sales_value'][filt].sum()\n",
@@ -1127,8 +1127,8 @@
" price = round(product['price'] * (1.0 - discount), 2)\n",
" assert 0 <= price <= product['price'], 'Invalid discount applied'\n",
" return price\n",
- " \n",
- "apply_discount(milk, 2.00) "
+ "\n",
+ "apply_discount(milk, 2.00)"
]
},
{
@@ -1257,7 +1257,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1300,8 +1300,8 @@
"\n",
"def func(x):\n",
" return x + 1\n",
- " \n",
- "func(x = 50) "
+ "\n",
+ "func(x = 50)"
]
},
{
@@ -1359,8 +1359,8 @@
"\n",
"def func(x):\n",
" return x + ' ' + y\n",
- " \n",
- "func(x = 'Brad') "
+ "\n",
+ "func(x = 'Brad')"
]
},
{
@@ -1404,7 +1404,7 @@
" def my_paste():\n",
" return x + sep + y\n",
" return my_paste()\n",
- " \n",
+ "\n",
"my_name(sep=' ')"
]
},
@@ -1447,7 +1447,7 @@
" y = firstpart + '.' + secondpart\n",
" return y\n",
"\n",
- "convert(8451) "
+ "convert(8451)"
]
},
{
diff --git a/docs/_build/html/searchindex.js b/docs/_build/html/searchindex.js
index d61f66a..f1bd123 100644
--- a/docs/_build/html/searchindex.js
+++ b/docs/_build/html/searchindex.js
@@ -1 +1 @@
-Search.setIndex({docnames:["00-module/lesson-0b","01-module/lesson-1a","01-module/lesson-1b","01-module/lesson-1c","01-module/lesson-1d","01-module/overview","02-module/lesson-2a","02-module/lesson-2b","02-module/lesson-2c","02-module/overview","03-module/lesson-3a","03-module/lesson-3b","03-module/lesson-3c","03-module/overview","04-module/lesson-4a","04-module/lesson-4b","04-module/lesson-4c","04-module/overview","05-module/lesson-5a","05-module/lesson-5b","05-module/lesson-5c","05-module/overview","06-module/lesson-6a","06-module/lesson-6b","06-module/lesson-6c","06-module/overview","07-module/lesson-7a","07-module/lesson-7b","07-module/lesson-7c","07-module/lesson-7d","07-module/overview","intro"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["00-module/lesson-0b.ipynb","01-module/lesson-1a.ipynb","01-module/lesson-1b.ipynb","01-module/lesson-1c.ipynb","01-module/lesson-1d.ipynb","01-module/overview.md","02-module/lesson-2a.ipynb","02-module/lesson-2b.ipynb","02-module/lesson-2c.ipynb","02-module/overview.md","03-module/lesson-3a.ipynb","03-module/lesson-3b.ipynb","03-module/lesson-3c.ipynb","03-module/overview.md","04-module/lesson-4a.ipynb","04-module/lesson-4b.ipynb","04-module/lesson-4c.ipynb","04-module/overview.md","05-module/lesson-5a.ipynb","05-module/lesson-5b.ipynb","05-module/lesson-5c.ipynb","05-module/overview.md","06-module/lesson-6a.ipynb","06-module/lesson-6b.ipynb","06-module/lesson-6c.ipynb","06-module/overview.md","07-module/lesson-7a.ipynb","07-module/lesson-7b.ipynb","07-module/lesson-7c.ipynb","07-module/lesson-7d.ipynb","07-module/overview.md","intro.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"000":[3,6,7,11,23],"00000":12,"000000":[11,12,18,26,28],"00000000e":[],"000010e":28,"000011":16,"00011423":[],"00021005":29,"00021315":29,"00022817":29,"00023317":29,"00030708":29,"0004468":29,"00046897":29,"00047302":29,"0008657":29,"00091314":29,"0009765625":23,"002048":12,"004":29,"004552":28,"005":22,"00574432":24,"007100e":12,"00845704":[],"011604":12,"01166758":[],"0123456789":16,"01662099":[],"01671126":[],"017759":12,"018564":16,"019000":16,"019058":28,"02121496":29,"02129579":29,"02192521":29,"0222559":29,"02284193":29,"02325082":29,"02332211":29,"02336216":29,"0234158":29,"02420998":29,"025330":11,"026876":16,"026963":16,"02821534":[],"03000427e":28,"030341":16,"030940":26,"031441":26,"03327204":[],"03408696":28,"034354137152878":24,"03492848":29,"037346e":28,"03870031":[],"042267":11,"04288912":29,"04320383":29,"04330611":29,"04380894":29,"04482484":29,"045000":24,"04694151":28,"048333":24,"05126361":[],"05195989":[],"052784":11,"054467":26,"05474412":[],"056944":26,"05786357":[],"059179e":28,"060068":12,"0600682594":12,"067626":28,"06762622":28,"07022987":[],"071110e":28,"071558":26,"071811e":12,"073516":11,"07469469":[],"07530392":[],"077229":26,"07808853":28,"078089":28,"07831103e":[],"080972":26,"082157":26,"08264166":24,"087370":12,"08952764":[],"090909":12,"09282163":24,"092903":11,"094881":12,"09573488":[],"0x7faa33a56b80":[],"0x7fcb6ea59d00":12,"0x7febc2cf4a30":[],"100":[3,4,6,12,15,16,18,19,23,24,27,29],"1000":[2,6,11,12,29],"1001":12,"10010":7,"1002":12,"1003":12,"1004":12,"1005":12,"1006":12,"1007":12,"1008":12,"1009":12,"101":12,"1010":12,"1011":12,"1012":12,"1013":12,"1014":12,"10147":12,"1015":12,"1016":12,"1017":12,"1018":12,"1019":[12,16],"102":[12,28],"1020":12,"1020156":[15,22],"1021":12,"1022":12,"1023":12,"1024":[12,23],"1025":12,"1026":12,"1027":12,"1028":12,"1029":12,"1029743":15,"103":12,"1030":12,"1031":12,"1032":[11,12],"1039":12,"104":12,"1040":12,"1041":12,"1041453":[15,22],"1042":12,"1043":12,"1044":12,"10441":7,"1045":12,"1046":12,"1047":12,"1048":12,"104988":11,"105":[11,12,14,15],"1050":12,"105000":[7,11],"1050000":11,"1051":[12,16],"1052":12,"1053":12,"1053875":[15,22],"1054":12,"1055":12,"1056":12,"105608":12,"1057":12,"1058":12,"1059":12,"106":[7,11,12,15],"1060":12,"106000":12,"1061":12,"1061220":15,"1062":12,"1063":12,"1064":12,"1065":[11,12,16],"1066":12,"106668":16,"1067":12,"1068":12,"1069":12,"107":[12,14,15],"1070":12,"1071":[11,12],"1072":12,"1073":12,"1074":12,"1075":[11,12,16],"1076":12,"1077":12,"1078":12,"1079":[12,28],"108":[11,12,14,15],"1080":12,"1081":12,"1082":12,"1083":12,"1084":12,"1085":12,"1086":12,"1087":12,"10878":26,"1088":12,"1089":12,"109":[12,14,15],"1090":12,"1091":12,"1092":12,"1093":12,"1094":[12,16],"1095":12,"1095275":[15,18,19,22],"1096":12,"1097":12,"1098":12,"1099":12,"10lb":16,"10th":[26,28],"110":[12,14,15],"1100":12,"1101":12,"1102":12,"11025000000":11,"1103":12,"1104":12,"1105":12,"1106":12,"1107":12,"1108":12,"1109":12,"111":[12,14,15],"1110":12,"111003":18,"1111":12,"11110":11,"1112":12,"111279":18,"11128":15,"1113":[12,16],"1114":[12,16],"1115":12,"111537":12,"1116":12,"11160":[7,11],"1117":12,"11170334":7,"1118":12,"1119":12,"112":[11,12,14,15],"1120":12,"1121":12,"1122":12,"1123":12,"1124":12,"1125":12,"11250":20,"1126":12,"112611":12,"1127":12,"1128":12,"11287186":24,"1129":12,"113":[12,15],"1130":12,"1131":12,"1132":12,"1133":12,"1134":12,"1135":12,"1136":12,"1137":12,"1138":12,"1139":12,"114":[12,15],"1140":12,"1141":12,"1142":12,"1143":12,"1144":12,"1145":12,"1146":12,"1147":12,"1148":12,"1149":12,"115":[11,12,15],"1150":12,"1151":12,"1152":12,"1153":[12,16],"1154":12,"1155":12,"11555":12,"1156":12,"1157":12,"11572":11,"1158":12,"1159":12,"115910":11,"116":[11,12,15],"1160":12,"1161":12,"1162":12,"11622":[7,11],"1163":12,"1164":12,"1165":12,"1166":12,"1167":12,"1168":12,"11684397e":6,"11687":26,"1169":12,"117":[11,12,15],"1170":12,"1171":12,"1172":12,"1173":12,"1174":12,"1175":12,"1176":12,"1178":12,"1179":12,"118":[12,15],"1180":12,"1181":12,"1182":12,"1183":12,"1185":12,"1186":12,"1187":12,"1188":12,"1189":12,"119":[12,15],"1190":12,"1191":12,"1197":12,"1198":12,"1199":12,"11th":[26,28],"120":[12,15],"1200":12,"1201":12,"1203":12,"120369":18,"121":[12,15],"1211":14,"1212":14,"1213":14,"1214":14,"1215":14,"1216":14,"1219":12,"122":[12,15],"1220":12,"1221":12,"1222":12,"12265107":[],"1228":[15,22],"123":[11,12,16,27,28,29],"124":12,"124756":12,"12494":18,"125":[12,14],"12500":[7,11],"1251":16,"125146":26,"1254":12,"1255":12,"1257":12,"1258":12,"1259":12,"126":12,"1265":14,"1267":16,"126750":12,"127":[12,16],"1277":16,"12789":12,"1279328171":16,"128":[7,12],"1280":11,"1282":14,"1283":12,"128361":22,"1284":12,"1285":12,"1285396":22,"1286":12,"1287":12,"1288":[12,14],"1289":12,"129":[11,12],"1290":12,"1291":12,"1292":12,"1293":12,"129500":12,"12b0":6,"12th":[26,28],"130":12,"1300":12,"1301033579":4,"130413341399557":[],"130500":12,"1306":14,"131":[11,12],"131000":[7,11],"1310385":18,"132":[11,12],"1320":11,"132000":[7,11],"1327":[12,14],"132722":6,"1328":12,"1329":[12,16],"133":[12,14],"1330":12,"1331":12,"1332":12,"1333":12,"1334":12,"1335":12,"1336":12,"1337":12,"1338":12,"1339":12,"134":[12,14],"1340":12,"1341":12,"1342":[12,14],"1343":12,"1344":12,"1345":12,"1347":15,"1348":[12,15],"1349":[12,15],"135":[12,14],"1350":[12,15],"1351":[12,15],"1352":[12,15],"1353":[12,15],"1354":[12,15],"1355":[12,15],"1356":15,"1357":15,"1358":15,"1359":[12,15],"136":[12,14],"1360":[12,15],"1361":12,"1362":12,"1363":12,"1364":12,"1365":12,"1368":[12,16],"1369":12,"137":[12,14],"1370":12,"1371":12,"1372":12,"1373":12,"1374":12,"1375":12,"1376":12,"1377":12,"1378":[12,16],"13780":11,"1379":12,"1379372":22,"138":[12,14],"1380":12,"1381":12,"1382":12,"1383":12,"13830":[7,11],"1384":12,"1385":12,"1386":12,"1387":12,"1388":12,"1389":[12,26],"139":[12,14],"1390":12,"139059":12,"1391":12,"1392":12,"1393":12,"1394":12,"1395":12,"1396":12,"1397":12,"1398":12,"1399":12,"140":[12,14],"1400":12,"140000":20,"1401":12,"1402":12,"14025548":15,"140262968913200":[],"140262983233200":[],"140284253111536":[],"140284267294928":[],"1403":12,"1404":12,"1405":12,"1406":12,"140606100927728":10,"140606114994256":10,"140680024288368":[],"140680038399040":[],"1407":12,"1408":12,"1409":12,"141":[7,11,12],"1410":12,"1411":12,"1412":12,"1413":[12,14],"141331":12,"1414":12,"1415":12,"1416":12,"1417":12,"1418":12,"1419":12,"142":[11,12,18,20],"1420":12,"14207045":24,"1421":12,"14217":11,"1422":12,"1423":12,"1424":12,"1424042":22,"1425":[12,15],"142500":[7,11],"1426":12,"14260":20,"14267":[7,11],"1427":12,"1428":12,"1429":12,"143":12,"1430":12,"1431":12,"1432":12,"1433":12,"1434":12,"1435":12,"143590":12,"1436":[12,16],"143689":26,"1437":12,"1438":12,"1439":12,"144":[12,16],"1440":12,"1441":12,"1442":12,"144645e":12,"1447":14,"1448":[14,16],"14480353":28,"145":12,"14537686":[],"1457":14,"145lr":10,"145xr":10,"146":[6,12,16],"1465":12,"1466":14,"1469302":[15,24],"1469303":[15,24],"1469304":[15,24],"1469305":[15,24],"1469306":[15,24],"1469307":[15,24],"147":[12,14],"148":[12,14],"1482":14,"1483":14,"1485":12,"1486":12,"1487":[12,14],"1488":12,"1489":12,"149":[12,14],"1490":12,"1491":12,"1492":12,"1493":12,"1494":12,"1495":12,"1496":12,"1497":12,"1498":12,"1499":12,"150":[12,14,19],"1500":12,"15000":18,"1501":12,"1502":12,"15024":27,"1503":[12,14],"1504":12,"1508":[7,11],"151":[11,12,14,16],"15141":18,"1515":12,"1516":12,"1517":12,"1518":12,"15188":18,"1519":12,"152":[12,14],"1520":12,"1521":12,"1522":12,"1523":12,"152330":11,"1524":12,"1525":12,"1526":12,"1527":12,"1528":12,"1529":12,"153":[11,12,16],"1530":12,"1531":12,"1532":12,"15324":15,"1533":12,"1534":12,"1535":12,"1536":12,"1537":12,"1538":12,"1539":12,"154":12,"1540":12,"1541":12,"1542":12,"1543":12,"1544":12,"1545":12,"1546":12,"1547":12,"1548":12,"1549":12,"155":[12,16],"1550":12,"15500":19,"1551":12,"1552":12,"1553":12,"1554":[12,14],"1555":12,"1556":12,"1557":[12,14],"1558":12,"155848":24,"1559":12,"156":[12,16,18],"1560":12,"1561":12,"1562":12,"15627646e":[],"1563":12,"1564":12,"1565":12,"1566":12,"1567":12,"1568":12,"1569":12,"157":[12,18],"1570":12,"1571":12,"1572":12,"1573":12,"1574":12,"1575":12,"1576":12,"1577":[12,14],"1578":12,"15784":26,"1579":12,"158":12,"1580":12,"1581":12,"1582":12,"1583":12,"1584":12,"1585":12,"1586":12,"1587":12,"1588":12,"1589":12,"159":12,"1590":[12,26,27],"15900":19,"1591":12,"1592":12,"1593":12,"1594":12,"1595":12,"1596":12,"1597":12,"1598":12,"1599":12,"160":12,"1600":12,"16000":18,"160000":12,"1601":[12,26],"1602":12,"1603":12,"1604":12,"1605":12,"1606":12,"1607":12,"1608":12,"1609":12,"161":[12,16],"1610":12,"1615":12,"1616":12,"16167":18,"1617":12,"1618":12,"1619":12,"16192":26,"162":12,"1620":12,"1621":12,"1622":12,"1623":12,"1624":12,"1625":12,"1626":12,"1627":12,"1628":12,"1629":12,"163":12,"1630":12,"1631":12,"1632":[12,14],"1633":12,"1634":12,"1635":12,"1636":12,"1637":12,"1638":12,"1639":12,"164":12,"1640":12,"1641":12,"1642":12,"1643":12,"1644":12,"1645":12,"1646":12,"1647":12,"1648":12,"1649":12,"16490846":[],"165":[12,16],"1650":12,"1651":12,"1652":12,"1653":12,"1654":12,"1655":12,"1656":12,"1657":12,"1658":12,"1659":12,"166":12,"1660":12,"16601":18,"1661":12,"1666":14,"167":[12,15],"1671":14,"1675":12,"1676":12,"1677":12,"1678":12,"1679":12,"168":12,"1680":12,"1681":12,"1682":12,"1684":12,"1685":12,"1686":12,"1687":12,"1688":12,"1689":12,"169":12,"1690":12,"169014":18,"1691":12,"1692":12,"170":[11,12],"17000":12,"170000":[7,11],"1704":[14,16],"1705":14,"171":[12,16],"1711":14,"171271e":28,"171988":11,"172":[11,12],"172000":[7,11],"1720000":11,"1727":12,"1728":12,"173":12,"1735":14,"174":12,"1740":14,"174000":12,"1741":12,"1742":12,"1743":12,"1744":[12,16],"1747":16,"17480":16,"175":12,"1753":14,"175900":12,"176":12,"1760":12,"176000":12,"1761":12,"1762":12,"1763":12,"1764":12,"1765":12,"1766":12,"176614":15,"1767":12,"1768":12,"1769":12,"177":12,"1770":12,"1771":12,"1772":12,"177266":12,"1773":12,"1774":12,"1779":14,"178":12,"179":12,"1798":18,"180":12,"18056453":16,"1806":12,"1807":12,"180796":12,"1808":12,"1809":12,"181":12,"1810":12,"18107338":16,"18107424":16,"1811":12,"1812":[12,26],"1813":12,"1814":12,"181452e":28,"18147446":16,"18148186":16,"18148548":16,"1815":12,"181500":20,"1816":12,"1817":12,"181709":11,"1818":12,"18185766":16,"18186504":16,"18186637":16,"1819":12,"18193059":16,"182":[10,12],"1820":12,"1821":12,"1822":12,"1823":12,"1823234":11,"1824":12,"1825":12,"1826":12,"1827":12,"1828":12,"1829":12,"18293142":16,"18293439":16,"18293696":16,"18294080":16,"183":12,"1830":12,"1831":12,"18316298":16,"1832":12,"1833":12,"184":12,"185":[11,12],"1853":12,"1854":12,"1855":12,"1856":12,"1857":12,"1858":12,"1859":12,"186":[12,19],"1860":12,"1861":12,"1863":12,"1864":12,"1865":12,"1866":12,"1867":12,"187":12,"1872":12,"187500":11,"188":[11,12],"188000":[7,11],"189":[11,12,14],"1891":14,"189888":11,"189900":[7,11],"1899000":11,"18996":18,"190":12,"1901":12,"1902":12,"1903":12,"1904":12,"190714":12,"191":[12,14],"191500":12,"1916":16,"192":[12,14],"192000":12,"192500":12,"193":12,"193353e":28,"1935637":[],"193993":18,"194":[12,14],"1942":14,"1943":[14,16],"194671":12,"1947":16,"1949681077":16,"195":[12,14],"1950":12,"1954":12,"1958":11,"196":[11,12],"1960":11,"1961":11,"1965":12,"196661":12,"1968":11,"197":12,"1971":12,"19725323e":[],"19725891":28,"1973":12,"1975":11,"197500":12,"197687315":4,"198":[7,11,12],"1983":11,"1984":[11,12],"198790e":28,"199":[12,16],"1993":[11,12],"1994":26,"1997":11,"1998":10,"1999":[7,10],"1st":[7,11,26,28],"1st_flr_sf":11,"1xc2345g":7,"200":[0,4,7,12,18,24,29],"2000":14,"200000":[7,11],"2001":[12,28],"2002":10,"2003":10,"2004":[10,12],"2005":12,"2006":[7,12,14,20],"2007":[12,14,20],"2008":[12,14,20],"2009":[12,14],"201":12,"2010":[7,11,12,14,20],"2011":12,"2012":12,"2013":[7,12],"2014":[1,12],"2015":12,"2016":12,"2017":[12,15,16,18,19,22],"2018":[12,14,15,18,19,23],"2019":[12,14,23],"202":12,"2020":[2,12,14,23],"20200713":6,"2021":[6,23],"2022":[4,6,12,23],"20220215":6,"2023":[12,23],"2024":12,"2025":12,"203":12,"2030":12,"2031":12,"2032":12,"2033":12,"203340":11,"2034":12,"2035":[12,14],"2036":12,"2037":12,"2038":12,"2039":12,"204":[12,16],"2043":12,"2044":12,"20442794":[],"2045":12,"2047":12,"2048":12,"2049":12,"205":12,"2050":12,"2051":12,"2052":12,"2053":12,"2054":12,"2055":12,"2056":12,"205662":7,"2057":12,"206":[6,12],"2061":26,"206667":24,"207":12,"2070":15,"2071":12,"2072":12,"2073":12,"2077":12,"208":12,"2080":12,"208500":20,"208662":12,"2089":12,"209":12,"2090":12,"2091":12,"2092":12,"210":[12,18],"210337":18,"2104":14,"211":12,"2110":[],"2114":16,"2115":12,"2116":12,"2117":12,"2118":12,"212":[12,29],"213":12,"21320432":[],"2135":14,"213500":12,"21394141":28,"214":[10,12],"2142":15,"214424":12,"214988":11,"215":[11,12],"215000":[7,11,18],"2150000":11,"215245":12,"216":12,"2160":3,"216041":12,"217":12,"2171271":28,"218":12,"2186":14,"219":12,"2190037627":10,"21927493":24,"2194":12,"2195":12,"2196":12,"2197":12,"2198":12,"2199":12,"220":12,"2200":12,"2201":12,"2202":12,"2203":12,"2204":12,"22048":18,"2205":12,"2206":12,"2207":12,"2208":12,"2209":12,"221":[12,18],"2210":12,"2211":12,"2212":12,"2213":12,"2214":12,"2215":12,"22153859":[],"2216":12,"2217":12,"22173441e":[],"2218":12,"2219":12,"222":12,"2220":12,"2221":12,"2222":12,"2223":12,"2224":12,"2225":12,"2226":12,"2227":12,"2228":12,"2229":12,"223":12,"2230":12,"2231":12,"2232":12,"2233":12,"2234":12,"2235":12,"223500":20,"2236":12,"2237":12,"2238":12,"2239":12,"224":12,"2240":12,"2241":12,"2242":12,"2243":12,"2244":12,"2245":12,"224590":12,"2246":12,"2247":12,"2248":[12,14],"2249":12,"224947":12,"225":12,"2250":12,"2251":12,"2252":12,"2253":12,"2254":12,"2255":12,"2256":12,"2257":12,"2258":12,"2259":12,"225928":12,"226":12,"2260":12,"2261":12,"2262":12,"2263":12,"2264":12,"2265":12,"2266":12,"2267":12,"22670219":24,"2268":12,"2269":12,"227":12,"2270":12,"2271":12,"2272":12,"2273":12,"2274":12,"2275":12,"2276":12,"2277":12,"2278":12,"2279":12,"228":12,"2280":12,"2281":12,"2282":12,"2283":12,"2284":12,"2285":12,"2286":12,"2287":12,"2288":12,"2289":12,"229":12,"2290":12,"2291":12,"2292":12,"2293":12,"2294":12,"2295":12,"2296":12,"2297":12,"2298":12,"2299":12,"230":12,"2300":12,"2301":12,"2302":12,"2303":12,"2304":[12,24],"230619":7,"231":12,"23124505e":[],"232":12,"2322":12,"2326":[12,15],"2327":12,"2328":12,"2329":12,"233":12,"2330":12,"2331":12,"2332":12,"2333":12,"2334":12,"2335":12,"2336":12,"2339":12,"234":12,"2340":12,"2341":12,"235":12,"236":12,"23600674":[],"2364":12,"2365":12,"2366":12,"2367":12,"2368":12,"2369":12,"237":12,"2370":12,"2371":12,"2372":12,"2373":12,"2376":12,"2377":12,"238":12,"23875146":24,"2389":14,"239":12,"23913172e":28,"23959983":[],"240":12,"241":12,"241088":11,"2412":14,"2413":12,"24143768":[],"2419":12,"242":12,"2420":12,"2421":12,"2422":12,"2423":12,"2424":12,"2425":12,"2426":12,"2427":12,"2428":12,"2429":12,"243":[12,16],"243345":12,"243988":11,"244":[11,12],"2440":[7,11,12],"244000":[7,11],"2440000":11,"2442":12,"2443":12,"2444":12,"2445":12,"2446":12,"2447":12,"2448":12,"2449":12,"245":12,"2450":12,"2451":12,"2452":12,"2453":12,"245361":12,"24554053":[],"246":12,"2463":14,"2467":16,"247":[12,26],"2475":16,"248":12,"249":12,"2498":12,"2499":12,"250":[0,12,16],"2500":12,"25000":12,"250000":[12,20,24],"2501":12,"2502":12,"2503":12,"251":12,"25122836":24,"2516":12,"2517":12,"2518":12,"2519":12,"252":12,"2520":12,"252051":7,"2521":12,"2522":12,"25276445":[],"25280979":[],"253":12,"253577":12,"2536":12,"253962":12,"254":12,"255":12,"2554":12,"2555":12,"2556":12,"2557":12,"25590877":[],"256":[3,12],"2560":14,"25624387":24,"25671":16,"257":12,"258":12,"25838401":24,"259":12,"25th":22,"260":12,"26081":16,"26093":16,"261":12,"261000000000001":2,"26190":16,"262":12,"263":12,"263011e":12,"2633":12,"26355":16,"264":12,"26426":16,"26441719":[],"265":12,"265000":18,"26540":16,"2657":26,"26586246":[],"266":12,"26601":16,"266553":12,"2669":12,"267":12,"2670":12,"2671":12,"2672":12,"2673":12,"2675":12,"2676":12,"2677":12,"268":12,"2685369145":2,"26889":16,"269":12,"2690":12,"2691":12,"2692":12,"2693":12,"2694":12,"2695":12,"2696":12,"2697":12,"270":12,"270000":12,"2701":12,"2701405":11,"2703":12,"2704":12,"271":12,"272":12,"2725":12,"2726":12,"2727":12,"273":12,"2730":12,"2731":12,"274":[12,16],"275":[0,12],"27503":16,"276":12,"27623192":24,"2764":12,"2765":12,"27657":16,"2766":12,"2767":12,"27695":16,"277":12,"2771":[7,11],"2773":[7,11],"27754":16,"27767":16,"278":12,"27812":16,"2783512":[],"2785":16,"2788":12,"279":12,"27925":16,"27960":16,"280":[12,18],"281":[12,16],"28116":16,"28117":16,"28143":16,"28192":16,"282":12,"28208":16,"283":12,"28358511":[],"28377":16,"284":12,"2842":12,"2845":12,"2846":12,"2847":[7,11,12],"284770e":12,"2848":12,"2849":[7,11,12],"285":12,"2850":[7,11,12],"2851":12,"2852":12,"2853":12,"2854":12,"2855":12,"285556":24,"2856":12,"2857":12,"2858":12,"2859":[12,29],"286":12,"2860":12,"28603":16,"2861":12,"2862":12,"2863":12,"2864":12,"2865":12,"2866":12,"2867":12,"2868":12,"2869":12,"28696366e":[],"287":12,"2870":12,"2872":12,"2873":12,"2874":12,"2875":12,"2876":12,"2877":12,"2878":12,"2879":12,"288":12,"2880":12,"2881":12,"2882":12,"2885":12,"2886":12,"2887":12,"2888":12,"28889":16,"2889":12,"28892":16,"28897":16,"289":[12,16],"2890":12,"2891":12,"2892":12,"2893":12,"2894":12,"2895":12,"2896":12,"2897":12,"2898":12,"2899":12,"290":12,"2900":12,"2901":12,"2902":12,"29023343e":[],"2903":12,"2904":12,"2905":12,"2907":[7,11,12],"29077389e":[],"2908":12,"2909":12,"291":12,"2910":12,"2913":12,"29132":16,"2914":12,"2916":12,"2917":12,"2918":12,"2919":12,"292":12,"2920":12,"2920717387":4,"2925":[7,11],"2926":[7,11],"2927":[7,11],"2928":[7,11],"2929":[7,11],"2929663160":2,"293":12,"2930":[7,11,12],"294":12,"294458e":28,"2946":11,"295":12,"29584000000":11,"296":12,"297":12,"298":12,"299":12,"2min":29,"2nd":[7,11],"2nd_flr_sf":11,"300":[12,16,19],"300000000000001":2,"30003":16,"30008233":[],"301":[11,12],"30130928e":[],"30179":16,"302":12,"303":[12,16],"303397e":28,"30367773e":6,"304":12,"305":12,"30557308":24,"306":12,"307":[12,15],"308":12,"309":[12,24],"310":12,"311":[12,15],"31198437603":24,"31198445400":24,"31198445429":24,"31198445465":24,"31198452527":24,"31198570044":[15,18,19,22],"31198570047":[15,22],"31198655051":[15,22],"31198705046":[15,22],"312":[11,12],"313":12,"313880":11,"314":12,"31426853":[],"31493":16,"315":12,"31541475196":[18,19],"316":12,"316613":12,"31672350129":[18,19],"317":12,"31720":11,"31770":[7,11],"318":12,"3182":12,"31883555076":[18,19],"319":[12,15,16,22],"31944515097":[18,19],"320":[12,18],"3203":12,"321":12,"322":[12,16],"32265":16,"323":12,"3233621946":16,"324":12,"325":12,"32597983e":[],"326":12,"32603992":[],"32650":26,"327":12,"327438e":28,"328":12,"32841381":[],"32888":16,"329":12,"330":[12,15,18,19,22,23],"33048":16,"3307568":11,"331":12,"3317":10,"3318":10,"3319":10,"332":12,"3320":10,"3321":10,"3322":10,"333":12,"333333":12,"33379301":[],"334":12,"33457437":[],"335":[12,16],"33568138":[],"336":12,"337":[11,12,18],"337458":18,"338":12,"3380102":11,"338987":11,"339":12,"340":12,"341":12,"342":12,"34214":16,"342562":7,"343":12,"343719":7,"344":[12,16],"344288":12,"345":12,"34549264":[],"346":12,"347":12,"34743670e":[],"348":12,"34846205":[],"349":12,"34997":16,"350":[3,12,20],"35085315e":[],"351":[12,29],"352":12,"35215":16,"353":12,"3534964":[],"35379898":[],"354":12,"354536e":12,"355":[12,18],"355073":11,"356":12,"356314":12,"356992":18,"357":[12,29],"35779":18,"358":12,"359":12,"360":12,"36062010000":11,"3607":16,"361":12,"361562":12,"362":12,"3621933347":2,"3627558":24,"363":12,"3635":12,"364":12,"36406":16,"36421":18,"365":12,"365335":12,"36561":16,"366":12,"367":12,"368":12,"3684":12,"369":12,"370":[6,12],"37073":16,"371":12,"37103696e":28,"37155":26,"372":12,"373":12,"374":12,"375":12,"375418":7,"37543":16,"376":12,"377":12,"378":12,"379":12,"380":12,"3801605409":16,"381":12,"382":12,"383":12,"38328":18,"384":12,"3840":3,"3840x2160":3,"385":12,"38524204e":[],"38592242":[],"386":12,"38692881":[],"386950":11,"387":12,"387372":12,"38786197940297423":29,"388":12,"389":12,"38917282":[],"390":12,"391":12,"391444":28,"392":12,"393":12,"394":12,"395":[12,24],"396":12,"397":[12,16],"39757527":[],"398":12,"399":12,"39901557":24,"3990994":7,"39921224":24,"3min":29,"3ssn":[7,11,12],"3ssn_porch":11,"3x3":6,"400":12,"400000":12,"401":12,"402":12,"403":[12,28],"404":12,"405":12,"406":[12,15,22],"407":12,"408":12,"408696e":28,"409":12,"4096":3,"410":12,"41007503":[],"41012764":[],"411":12,"411026":12,"4114":14,"4115":14,"4116":14,"41180837":28,"412":12,"413":12,"41338666":24,"414":12,"41453083334":15,"41453103606":15,"41480008448":24,"41480013048":24,"41480018446":24,"41481252623":24,"41481282915":24,"415":12,"4153":14,"4154":14,"4155":14,"4157":14,"416":12,"417":12,"418":[11,12],"419":12,"41933527":28,"41945159460331":[],"420":12,"420617":11,"4207":18,"421":12,"422":12,"422382":28,"42238238":28,"423":12,"424":12,"425":12,"426":12,"427":12,"4277480":11,"428":12,"42895409":[],"429":12,"430":[12,14],"431":[12,14],"43119703":[],"432":[12,14],"43233":18,"433":[12,14],"4331779":7,"43361":16,"434":[12,14],"435":[12,14,16],"4356":28,"436":12,"437":12,"43713849e":[],"438":12,"439":12,"440":12,"441":[12,24],"442":12,"443":[12,19],"444":12,"4440733300753526":29,"44482601":[],"445":12,"44523688e":[],"44599":16,"446":12,"447":[12,15],"448":12,"448035e":28,"449":12,"450":12,"451":12,"45159783":[],"45194277e":28,"452":12,"45208":4,"45218":16,"4523764416":4,"45265":22,"453":12,"4537275440":4,"4537277616":4,"45385":4,"454":12,"454545":12,"455":12,"456":12,"45607":16,"45665299e":[],"457":[12,15],"45769391":[],"458":12,"459":12,"460":12,"46005403":[],"4604":19,"46064982":[],"461":12,"462":12,"46225000000":11,"463":12,"464":12,"465":[12,22],"4654":7,"466":[12,29],"467":12,"46730":22,"46790":18,"468":[11,12],"468087":11,"46871185":29,"469":[12,15],"46947885":29,"470":12,"471":12,"472":12,"473":12,"47327805":29,"47338025e":[],"474":12,"475":12,"475502e":28,"476":12,"47673547":[],"477":12,"478":12,"479":12,"480":12,"481":12,"48153345":[],"482":[11,12],"483":12,"483400":12,"484":[11,12],"485":12,"48534298":29,"48562898":[],"486":12,"48677206":29,"487":12,"4875":16,"488":12,"48837":[27,28],"48838":[27,28],"48839":[27,28],"48840":[27,28],"48841":[27,28],"48842":[26,27,28],"489":[12,14],"490":[11,12,14],"49076104":29,"491":[12,14],"492":[12,14],"493":[12,14],"49363395":24,"494":[12,14],"495":[12,14,18],"495000":24,"495366":11,"496":[12,14],"49621201":29,"497":12,"498":12,"499":12,"49930":16,"49930501":29,"49k":[18,19],"4g0":8,"4th":[8,19,26,28],"500":[3,12,28,29],"5000":26,"50000":12,"500000":[11,12],"50082432":[],"501":12,"502":12,"50231358":28,"502314":28,"503":12,"504":12,"505":12,"505912437858434":[],"506":12,"50666094":29,"50691006":[],"507":12,"50776":16,"508":12,"50809":15,"509":[12,26],"50k":[26,27],"50th":22,"510":12,"51061606":29,"511":12,"511163":29,"512":12,"51279712":29,"51290982":[],"513":12,"514":12,"51475096":29,"515":12,"51552533":[],"516":12,"517":12,"5177494254132934":29,"518":[12,14],"519":[12,14],"51963961e":[],"520":[12,14],"521":12,"52101973e":[],"522":[11,12],"523":12,"52304196":29,"524":12,"525":12,"526":12,"526301100":[7,11],"526350040":[7,11],"526351010":[7,11],"526353030":[7,11],"527":[12,16],"52703":15,"527105010":[7,11],"528":[11,12],"528228285":12,"528228290":12,"528228295":12,"528228435":12,"528228440":12,"529":12,"529732456":12,"530":12,"53070":16,"5309":4,"531":12,"531030e":28,"53172027":[],"532":12,"53262924":24,"533":12,"533447":12,"533810":24,"53397067e":[],"534":12,"535":12,"536":12,"537":12,"538":12,"539":12,"53s":29,"540":12,"541":12,"54183793":29,"542":12,"543":12,"544":12,"54460":16,"545":12,"546":12,"547":12,"548":12,"549":12,"550":12,"551":12,"5510424":7,"552":12,"553":[12,18],"55366273":24,"554":12,"55414971":[],"555":12,"556":12,"5568":8,"5569":8,"557":12,"5570":8,"5571":8,"5572":8,"5573":8,"5574":8,"5575":8,"558":12,"559":12,"560":12,"561":12,"562":12,"563":12,"563140":12,"564":12,"565":12,"56595959":24,"566":12,"567":12,"568":12,"569":[12,29],"56997021":24,"570":12,"57094644e":28,"570973":28,"571":12,"571429":12,"572":[7,11,12],"573":12,"574":12,"574586":11,"575":12,"576":12,"577":[12,29],"578":12,"57801142":[],"578629e":28,"579":12,"580":12,"581":12,"5819":16,"582":12,"5820":16,"58266445":[],"583":12,"584":12,"584958e":28,"585":12,"58522071":[],"586":12,"587":12,"588":[11,12],"588536":18,"589":12,"590":[12,16],"591":12,"592":12,"592491":12,"593":12,"594":[12,26],"594573e":28,"595":12,"59536000000":11,"596":12,"597":12,"597181":12,"59796822":[],"598":12,"5987":18,"599":12,"5gb":0,"5th":[26,28],"600":[12,18],"601":[12,18],"602":12,"60273701e":[],"603":12,"604":12,"6043":[0,4,6,7,24,31],"605":12,"606":12,"607":12,"608":12,"609":12,"60924":16,"610":[12,16],"611":12,"61168440e":6,"612":12,"613":[12,18],"614":12,"615":12,"616":12,"617":12,"617582e":28,"618":12,"619":12,"61955664":[],"620":[12,18],"621":12,"622":12,"62298604":[],"623":12,"624":12,"6244":18,"625":16,"625000":12,"62571776":24,"626964":11,"62888":16,"6290521":7,"633":16,"635154":12,"63547457":[],"6372547":24,"638025":12,"6384":16,"639":11,"6393":16,"639810":11,"640":15,"640457":15,"6406":16,"64223695":24,"643585":28,"64358544":28,"6442":16,"64481501":24,"64583":16,"64623":16,"64812038":28,"6488":19,"650":[11,12],"65051358":[],"651":16,"65343888":[],"654":12,"655":12,"656":12,"65625":2,"657":[12,26],"658":12,"6581":18,"65832708":[],"659":12,"65988219":24,"660":12,"661":12,"662":12,"663":12,"664":12,"665":12,"66500104":24,"66604259":24,"6666666666666666":2,"666667":12,"6698":18,"67082046":24,"67346176":[],"6764":18,"67799293":[],"678":15,"67801721e":[],"678571":12,"679":15,"67975973":24,"680":15,"680000":24,"68118805":24,"682":15,"684":15,"685":15,"6856":19,"6894":19,"6903987680657":29,"690444":12,"691":12,"692":12,"69235666493":12,"692357":12,"693":[12,15,16],"693486":18,"694":12,"694214e":28,"695":12,"696":12,"697":12,"698":12,"699":12,"6th":[26,28],"700":[7,12,20],"7000000000000001":2,"701":12,"702":12,"703":12,"704":12,"705":12,"706":12,"70647352":[],"707":12,"708":12,"7087":19,"709":12,"710":12,"710510":28,"711":12,"712":[12,18],"713":12,"714":12,"71432":16,"714492":12,"7146":16,"715":12,"716":12,"717":12,"718":12,"719":12,"720":12,"720000":18,"720000000000001":2,"721":12,"722":12,"723":12,"724":[12,18],"72496667":29,"725":12,"72575612":[],"725961":11,"726":12,"727":12,"72700439e":[],"727312e":28,"728":12,"729":12,"72nd":19,"730":[11,12],"731":12,"73191621":[],"732":[11,12],"732031":11,"733":12,"734":12,"735":12,"736":12,"737":12,"738":12,"739":12,"740":12,"740000":18,"741":12,"742":12,"74241047739471":2,"743":12,"744":12,"7440":12,"74461546":[],"74479073e":[],"745":12,"7452":28,"745808e":28,"746":12,"747":12,"74755018":28,"748":12,"74843539":[],"749":12,"750":12,"75000":12,"751":12,"751877":12,"752":12,"753":12,"75314323":[],"754":12,"755":12,"755000":12,"75536478":[],"756":[12,26],"757":12,"758":[11,12],"75888":16,"759":12,"75th":22,"760":12,"761":12,"762":12,"763":12,"763164e":28,"764":[12,16],"765":12,"76553595":24,"766":12,"76606614e":[],"767":12,"768":12,"7688":[26,27],"769":12,"770":12,"771":12,"772":[12,16],"77292975":28,"773":12,"773210":24,"774":12,"775":12,"776":12,"77631645":28,"77636602":[],"777":12,"777778":12,"778":12,"779":12,"779246":11,"780":12,"7805":16,"781":12,"782":12,"783":12,"784":12,"785":[12,18],"786":12,"787":12,"7871":14,"7872":14,"78727272":[],"7873":14,"7874":14,"7876":14,"788":12,"7880":12,"78888":16,"789":12,"790":12,"790444":12,"791":[11,12],"792":12,"793":12,"7937":7,"794":12,"795":12,"796":12,"797":12,"798":12,"798005":11,"798506":11,"79886":12,"799":12,"7993648":24,"79994174":[],"7th":[26,28],"800":[4,12,18],"801":12,"801951":11,"802":[12,16],"8025":26,"803":12,"804":12,"805":12,"806":12,"806000":11,"807":12,"808":12,"809":12,"80920443":[],"810":12,"811":12,"812":12,"813":12,"8135287855212513":28,"814":12,"815":12,"816":12,"817":12,"818":12,"819":[11,12],"819190":11,"820":[11,12],"821":12,"822":12,"823":12,"824":12,"824334e":28,"825":12,"826":12,"827":12,"828":12,"829":[12,15],"830":12,"83020334":[],"830918":11,"831":12,"832":12,"83270803":24,"83284370e":[],"833":12,"833454":11,"834":[12,26],"835":12,"836":12,"837":12,"838":12,"839":12,"840":12,"841":12,"842":12,"843":12,"844":12,"845":12,"8450":20,"8451":[4,24],"8452":4,"84548185":29,"846":12,"8461":18,"8467":16,"847":12,"847368":11,"8479791982310306":27,"848":12,"849":12,"850":12,"8503808041929408":[28,29],"85094185":29,"851":12,"851539":29,"85183458":[],"85191757":29,"852":[12,29],"85208198e":[],"853":12,"854":12,"855":12,"85558286":29,"856":12,"857":12,"85790336":29,"858":12,"859":12,"860":[12,15],"860286":12,"861":12,"862":12,"86209879":24,"863":12,"86380":18,"864":12,"865":12,"866":[12,16],"867":[4,12],"86754508":[],"868":12,"869":[12,16],"870":12,"871":12,"87131501":28,"872":12,"873":12,"87315597e":[],"87352712e":[],"874":12,"875":12,"8754":18,"876":[12,16],"87604445":[],"877":12,"878":12,"879":12,"880":12,"881":12,"881784197001252e":2,"882":12,"8820":22,"883":12,"883160":11,"884":12,"884200e":28,"885":12,"886":12,"887":12,"887308e":12,"888":12,"88817336":24,"8885":7,"8888":0,"889":[11,12],"890":12,"891":12,"892":12,"89227408":[],"893":12,"8936630646924394":29,"894":12,"895":12,"896":[12,16],"896801":12,"897":12,"898":12,"89809281":24,"899":12,"8999999999999999":2,"8th":[26,28],"900":[12,15,18,19,22],"90016302":[],"90055592":[],"90079956":29,"901":12,"902":12,"903":12,"90326931":29,"904":12,"90485472":29,"905":[12,18],"90553186":29,"906":[12,15,22],"907":12,"908":12,"90816178":29,"909":12,"909894":15,"910":12,"911":12,"91160689":[],"912":12,"913":12,"91316978":29,"91387354e":[],"914":12,"915":12,"916":12,"91614":16,"9167993399776069":29,"917":12,"91795629":24,"918":12,"919":12,"920":12,"921":12,"92140":16,"921843":12,"92199":16,"922":12,"92201":16,"92237":16,"92253":16,"92261":16,"92287":16,"92289":16,"92290":16,"92295":16,"923":[11,12],"92326":16,"92327":16,"923275080":7,"923276100":7,"92328":16,"92329":16,"92330":16,"92331":16,"923400125":7,"924":12,"924100070":7,"924151050":7,"925":[11,12],"926":12,"927":12,"9276":18,"928":12,"929":12,"92993":7,"930":[7,12],"930000e":12,"931":12,"932":12,"9326":15,"9327":15,"9328":15,"933":12,"933067":15,"934":12,"9341":15,"9342":15,"9343":15,"9345":15,"9346":15,"9347":15,"9348":15,"9349":15,"935":12,"9350":15,"9351":15,"9352":15,"9353":15,"9354":15,"9355":15,"9356":15,"9357":15,"9358":15,"9359":15,"936":12,"93630901":[],"937":[12,22],"9374":18,"938":12,"939":12,"93924":7,"940":12,"941":12,"942":12,"94263356e":[],"94272":7,"94299":7,"943":12,"9436":12,"944":12,"945":12,"94594":7,"946":12,"94633383":29,"947":12,"948":12,"9487528482967953":29,"949":12,"950":12,"951":12,"951207":24,"952":12,"953":12,"954":12,"95423523":24,"9543760900586651":29,"95474713":24,"955":[12,26],"9550":20,"95526039":24,"956":12,"957":12,"958":12,"959":12,"9595782073813708":29,"960":12,"9600":20,"961":12,"96179203":[],"962":12,"96247":12,"9627":7,"963":12,"964":12,"965":[11,12],"965052":11,"966":12,"967":12,"968":12,"968011126564673":29,"969":12,"970":12,"971":12,"97101427":[],"972":12,"973":12,"974":12,"97418341":28,"97430082":24,"975":12,"976":12,"977":12,"978":12,"97806829":[],"979":12,"980":12,"981":12,"982":12,"983":12,"98300226":24,"984":12,"985":12,"985736":11,"986":12,"987":12,"9878513":[15,22],"988":12,"98924274":24,"99090":16,"99172":16,"992":12,"993":12,"994":12,"995":12,"99512893":28,"996":12,"99608":18,"9968596":24,"997":12,"99724987e":[],"998":12,"999":12,"9999":16,"99992041":[],"99999":28,"9th":[26,28],"abstract":10,"boolean":[4,7,11,16],"break":[10,23],"byte":7,"case":[1,3,4,6,8,10,11,12,14,15,19,22,24,27,28,31],"class":[0,1,2,3,4,6,7,11,12,18,19,20,24,26,27,28,29],"default":[0,2,8,11,12,15,18,19,20,22,23,28,29],"export":[7,31],"final":[2,3,4,6,20,23,24,28,29,30,31],"float":[3,4,7,8,12,24,29],"function":[0,2,3,4,6,7,8,12,14,15,16,18,19,20,22,23,25,27,28,31],"import":[0,1,2,3,4,8,9,10,11,12,13,14,15,16,17,18,22,23,24,25,26,27,28,29,31],"int":[2,3,4,6,12,24,29],"long":[0,3,6,12,22,23],"new":[0,1,2,3,4,6,8,10,11,14,15,17,19,22,24,26,27,28,29,30,31],"null":[7,11],"public":[1,6,19,20],"return":[1,3,4,8,10,11,12,14,15,16,19,22,23,24,27,28,29],"short":[2,3,6,8,22,24,31],"switch":[1,20,24],"throw":[16,24],"true":[4,7,10,11,14,15,16,18,19,22,23,24,27,29],"try":[1,2,3,4,6,10,14,26,29],"var":[2,4,10,16,24,26],"while":[0,1,2,3,7,10,11,12,15,24,27,28,29],AND:[3,12,16,26],AWS:0,Adding:[2,28],Ames:[7,11,12,20],And:[1,2,6,7,8,9,10,12,16,23,24,26,27,28,29],Are:[3,11,18],Being:[3,21,24],But:[2,3,4,8,10,11,15,16,18,19,22,24,29],Eve:19,For:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,22,23,24,26,27,28,29,31],Going:24,Has:20,ICE:16,IDEs:24,Into:10,Its:[22,24],MXS:16,Mas:[7,11,12],NOT:3,Not:[8,12],One:[0,1,3,4,6,10,11,16,19,28],Such:[6,11],That:[0,1,2,3,20],The:[2,4,5,6,7,8,9,10,11,13,14,15,16,17,19,21,22,23,24,25,26,27,28,29,30,31],Their:22,Then:[2,7,19,23,24,30],There:[0,1,2,3,4,6,7,8,11,12,15,16,18,19,20,22,23,24,26,28,29,31],These:[1,3,4,6,7,8,9,15,18,19,24,26,31],Use:[0,4,6,11,12,14,15,16,18,19,23,24,25,29],Using:[0,1,8,10,11,12,15,16,19,20,22,24,26,29],Wes:11,With:[3,4,6,7,15,20],Yes:2,___:[3,22],____:[3,22],_____:[3,12,22,23],______:[10,12,23,27],_______:[7,23],________:22,__________:27,__class__:27,__getattr__:8,__getattribute__:8,__init__:[14,15,29],__iter__:23,__main__:24,__name__:27,_accessor:8,_can_hold_identifiers_and_holds_nam:8,_constructor_expanddim:14,_constructor_sl:14,_distribut:29,_info_axi:8,_internal_names_set:8,_make_selector:14,_merg:15,_merge_doc:15,_mergeoper:15,_metadata:8,_shared_doc:14,_subplot:19,_unstack:14,_unstack_extension_seri:14,_validate_specif:15,_valu:14,a320:10,a330:7,a_dict:4,a_list:4,a_tupl:4,abc:4,abcd:11,abil:[1,19,31],abl:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31],abnorm:[11,30],abnorml:20,about:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31],abov:[0,1,2,3,6,7,8,10,11,12,14,16,18,19,20,22,23,24,26,29],abs:[22,29],absenc:16,absolut:[7,22,29],absolute_path:7,abspath:7,abvgr:[7,11,12],abvgrd:[7,11,12],accept:[11,24,28],access:[3,4,6,7,8,11,12,15,16,18,19,20,23,24],accessor:[8,11,16],accessori:16,accomplish:[1,2,18,20,23,24],accord:26,accordingli:[3,11],account:[0,27],accur:[11,15],accuraci:[27,29],acdm:[26,28],achiev:[12,23,26,29],acquaint:[5,15],across:[1,6,11,12,13,14,15,18,19,23,26,28,29,30],action:[1,2,3,22,24],activ:[0,1,13,15,17,24,31],actual:[1,2,3,4,8,10,11,16,18,19,23,24,26,27,29],adapt:29,add:[1,2,3,4,7,11,12,15,16,18,19,20,23,24,27,29],add_layout:0,add_tool:20,added:[2,15,24],adding:[1,2,11,12,15,18,19,20,23],addit:[0,2,3,11,12,15,16,18,19,20,22,23,24,27,28,31],address:[0,2,4,31],aden:14,adher:20,adjust:[18,19,20,24],admit:6,adopt:[16,25],adult:[16,18,19,27,28,29],adult_censu:[26,27,28,29],advanc:[0,18,20,23,31],advantag:[0,10,18,20],aeiou:16,aeosa:6,affect:[7,29],after:[0,1,4,6,12,18,20,23,24],afterward:[20,26,27],again:[0,1,2,3,4,6,8,19,20,24,29],age:[10,11,15,18,19,24,26,27,28],age_limit:26,agg:[12,15,16,18,19],aggfunc:14,aggreg:[6,13,14,29],agnost:1,agre:27,ahead:[0,10,19,28],aid:24,aim:[25,31],aiohttp:6,aiosign:6,air:[7,8,11,20],airbu:[7,10],airlin:8,airlinedetail:7,airport:8,airwai:8,aka:[0,2,10,11,16,26,29],alabast:6,alaska:8,albumid:7,algebra:6,algorithm:[6,26,27,28,29,30],alia:[19,24],align:[7,14,15,22,28,29],all:[0,1,2,3,4,6,7,10,11,12,14,15,16,18,19,20,22,23,24,27,28,31],allei:[7,11,12,20],alloc:11,allow:[0,1,2,3,4,6,7,10,14,15,18,20,22,23,24,27,28,29],allpub:[11,20],alma_mat:4,almost:[0,3,7,16,20],alon:[6,24],along:[0,1,4,7,14,15,17,19,20,22,24,26,31],alpha:[20,26],alphabet:28,alphanumer:16,alpo:16,alq:11,alreadi:[0,1,2,3,15,16,20,24,26,28],also:[0,1,2,3,4,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,29],alt:1,altair:19,alter:16,altern:[1,7,16,18,22,23,24,27,28,29],although:[4,6,7,8,15,18,20,23,24,25,26,29],altitud:8,alwai:[0,1,2,3,7,8,10,12,19,22,23,24,27,28,29,31],american:8,ames2:14,ames2_reshap:14,ames:[7,11,12],ames_clean:[20,26,28],ames_grp:12,ames_melt:14,ames_miss:11,ames_pivot:14,ames_raw:[7,11,12],ames_sale_price_vs_living_area:20,ames_wid:14,ames_wide2:14,ammonia:16,among:6,amount:[7,11,16,18,24,25],amp:[7,15,16,28],anaconda3:[6,8,14,15,20],anaconda:6,analges:16,analog:8,analys:24,analysi:[1,6,10,11,12,15,16,17,18,20,21,24,31],analyst:[11,25],analyt:4,analyz:[18,24,30],andi:25,angu:7,ani:[1,2,3,4,6,7,8,10,11,16,18,19,20,22,24,26,28,29],annot:[19,26],anonym:18,anoth:[0,1,2,3,4,6,7,10,11,14,15,16,18,19,20,23,24,26,27,31],answer:[14,15,16,17],anti:14,anticip:24,anyio:6,anyon:1,anyth:[0,4,6,16],anywher:23,apart:27,api:[6,19,20,24,27,29,31],app:0,appar:3,appdir:6,appear:[1,7,11,15,19,20],append:[7,10,14,15,16,23],appet:16,appl:[4,16],applaunchservic:6,applehelp:6,appli:[2,3,4,6,12,14,15,16,17,18,21,23,24,28,29,30,31],applic:[0,1,7,11,22,24],apply_discount:24,applymap:[11,22],appnop:6,approach:[6,7,10,11,16,18,19,22,23,24,29],appropri:[14,15,20],approxim:[19,27,28,29],appscript:6,apr:11,apt:0,arang:6,arbitrari:28,arbitrarili:11,area:[2,7,11,12,18,20,29],aren:12,arg:29,argon2:6,argument:[1,7,8,11,12,14,15,18,20,23,28,29],aris:26,arithmet:[2,3,6],arm:14,around:[2,3,12,14,18,19,22],arrai:[4,6,8,11,19,20,24,27,28,29],arrang:6,arrow:[6,19],arrowprop:19,as_index:[12,15,16,18,19],ascend:[15,18],asid:2,ask:[1,3,6,15,16],aspect:3,assertionerror:24,assess:[3,7,18,19,26,27,29],asset:7,assign:[1,3,4,5,8,10,11,18,19,20,22,23,24,29],assist:6,assoc:[26,28],associ:[0,2,3,4,7,22,28,29,31],assum:[4,10,12,23,24,28,31],assumpt:[18,28],ast:6,asterisk:[16,24],astrai:19,astroid:6,astronomi:6,astrophys:6,astropi:6,asttoken:6,astyp:[16,29],async:6,asyncio:6,atomicwrit:6,attach:[11,24],attchd:11,attent:26,attr:6,attribut:[6,8,9,11,20,26,28],attributeerror:8,auc:29,aug:11,australia:23,auth:6,author:1,authorit:[1,25],autocomplet:6,autom:26,automat:[0,1,6,20,23,24,26,27,29],autopep8:6,avail:[0,1,6,7,11,15,16,18,19,23,26,27,29,31],averag:[12,18,24,27,29],avg:29,avoid:1,awai:[4,8],awar:[10,26,27],ax1:19,ax2:19,ax3:19,ax4:19,ax_arrai:19,axes:20,axessubplot:[18,19],axhlin:26,axi:[15,18,19,20,22,24],axvlin:26,azur:0,b294776:[6,7,24],babel:6,bachelor:[26,28],back:[2,3,8,11,14,16,20,24],backcal:6,backend:20,background:[],background_gradi:26,backgroundcolor:19,backport:6,backrefer:16,backslash:16,backward:[11,23],bacon:[15,22],bad:22,bag:[15,16],bagel:[15,18,19],balanc:29,ball:7,balt:7,bana6043:31,bana:[0,4,6,7,24,31],banana:16,bar:[0,16,18,19,20],barh:18,base:[0,4,6,8,12,15,18,19,20,22,24,26,27,29],baselin:[15,18],basenam:23,bash:0,basic:[0,2,4,7,8,9,13,17,18,19,20,22,23,24,25,29,30,31],basket:24,basket_id:[15,18,19,22,24],basketbal:3,bath:[7,11],batteri:6,bcrypt:6,bear:7,beauti:[1,20],beautifi:18,beautifulsoup4:6,becam:28,becaus:[0,1,2,3,4,6,8,10,11,12,14,15,16,17,18,20,24,26,27,28,29],becom:[0,11,12,14,15,16,22,25,27,31],bedroom:[7,11,12,14],bedroom_abvgr:11,beef:15,been:[8,11,15,19,22,24,25,26,28],befor:[0,1,6,10,18,19,23,24,26,28],began:6,begin:[1,2,4,16,19,22],beginn:24,behav:[3,4,10,11,24],behavior:[3,11,12],behind:[24,25],being:[0,1,4,7,11,18,19,24],believ:26,belong:[3,28],below:[0,1,3,6,8,12,14,16,18,19,22,23,24,27],benefici:29,benefit:[1,5,23,28,31],best:[2,16,18,19,22,24,26,29],best_params_:29,best_score_:29,better:[1,3,8,11,20,24,27,28,29],between:[3,4,6,7,8,10,11,12,15,16,18,20,24,26,28,29],beuzen:31,beyond:[0,3,4,6,19],bfill:11,bias:29,bibtex:6,big:7,bin:[18,19,26],binari:[0,2,3,26,27],binaryornot:6,bind:6,biolog:31,biscuit:15,bit:[1,2,3,7,10,11,16,18,22,23],bitarrai:6,bite:4,bitwis:[2,3],bivari:18,bkchart:6,bkd:16,black:[0,6,20,26],blackcellmag:[0,6],blank:[3,10,12,22,27],bldg:[7,11],bldg_type:11,bleach:6,blmngtn:[12,14],block:[1,22,24],blog:[3,4,20],blood_transfus:29,bloomington:12,blq:11,blt:[7,11],blue:[1,19,20,26,29],bluest:[12,14],bob:4,bodi:[23,24],boe:10,boehmk:[4,19,24],boi:31,bokeh:[0,1,6],bokehj:[0,20],bold:[8,31],book:[1,6,7,11,16,24,25],bookstor:16,bool:[3,10,24,27],boost:29,bootcamp:31,bootstrap:29,born:1,boss:16,both:[1,3,6,10,11,14,15,16,18,19,20,21,22,23,28,31],bother:16,boto3:6,botocor:6,bottleneck:6,bottom:[26,28],bound:19,boundari:[16,19],bouquet:16,box:[0,6,16,18,19,28],boxplot:[18,19],brace:[4,16,20,22],bracket:[4,8,10,11,12,16,23],brad:[4,6,24],bradlei:4,bradleyboehmk:[7,31],brain:10,brand:[15,16],brand_ti:7,brdale:[12,14],bread:16,breiman:28,brian:[1,7],briefli:6,bring:[1,3,10],brkface:11,brkside:[12,14],broad:6,broader:24,broard:6,broccoli:22,brotlipi:6,browser:[0,20],bsmt:[7,11],bsmt_cond:11,bsmt_exposur:11,bsmt_full_bath:11,bsmt_half_bath:11,bsmt_qual:11,bsmt_unf_sf:11,bsmtfin:[7,11],bsmtfin_sf_1:11,bsmtfin_sf_2:11,bsmtfin_type_1:11,bsmtfin_type_2:11,bug:[24,31],bui:[3,15],buie:14,build:[0,1,6,13,15,16,17,18,20,21,23,24,26,27,29,30,31],built:[1,2,3,4,5,6,7,9,11,12,15,16,19,20,24,29],bulb:16,bulk:[16,31],bundl:6,busi:[4,18,29],c06lv6q17tjbyjv2nkt0_s4s1sh0tg:[2,4,10,16],cach:[3,6],cachetool:6,cake:24,calcul:[1,2,5,12],call:[1,2,3,4,6,7,8,10,11,12,14,15,16,17,18,20,23,24,26,27,28],caltech:[0,31],came:[0,15],campaign:15,campaign_descript:15,can:[0,1,2,3,4,6,7,9,10,11,12,14,15,16,18,19,20,22,23,24,25,26,27,28,29,30],candi:[15,16],candid:[8,29],cannot:[2,3,4,14,20,24,26],canva:[20,31],cap:26,capabl:[4,6,11,16,18,20,31],capit:[1,23,26,27,28],captial:8,captur:[16,24,29],car:[7,11,12],card:16,cardin:28,care:[10,16,28,29],career:7,caret:16,carri:[2,15,28],carrier:8,carrier_column:8,cat:[16,19],categor:[16,19,20,26,29],categori:[4,12,14,15,16,18,19,22],categorical_column:[26,28,29],categorical_columns_selector:[28,29],categorical_featur:28,categorical_features_encod:28,categorical_preprocessor:[28,29],categories_:28,caus:[4,7,8,11,24,26,28],caution:31,caveat:10,cbar:11,cdn:20,cell:[0,4,5,6,7,8,10,14,15,19,23,24,27,28,31],censu:[27,28,29],center:[0,19],central:[1,6,7,11,20],central_air:11,centralair:20,ceo:4,certain:[3,4,7,10,16,18,19,23,24,26,29],certifi:6,cffi:6,cftime:6,ch0000063:24,ch0000070:24,chain:[11,20,28,29],challeng:[3,24],chanc:24,chang:[1,2,3,4,6,8,10,11,12,15,16,18,19,20,25],chapek:4,charact:[2,3,4,11,12,17,23,24],character:15,characterist:29,chardet:6,charli:25,charset:6,chart:[18,20],check:[1,26,28,31],checklan:16,chees:16,chest_pain:10,chew:15,chick:16,chicken:15,child:26,children:16,chinook:7,chip:[15,16],choc:16,chocol:24,choic:[7,8,12,19,20,22,23,28],chol:[10,11],choos:[3,6,19,20,29],chose:[0,8,26],chosen:[15,19],christma:19,chunk:[16,18,22,23,24,31],circl:[20,26],citru:16,civ:26,cj_data:[15,16,18,19],clarifi:9,class_id:4,classic:1,classif:[26,27,29],classifi:[22,27,28,29],classification_report:29,classroom:31,claus:[3,24],clean:[11,15,16,17,20],cleaner:20,cleang:16,clear:[3,20],clearcr:[12,14],clearli:[3,10,14],clf:29,cli:6,click:[0,1,6,20],client:6,close:[0,2,15,20,24,26,28],closest:27,cloud:[0,6],cloudpickl:6,cluster:20,clutter:1,clyent:6,cmap:[11,26],cmath:6,cmd:1,cocktail:16,code:[0,2,3,4,5,6,7,8,10,11,12,15,18,19,22,23,24,25,31],coerc:11,coers:2,coffe:16,coherc:2,coin:23,col1:23,col2:23,col3:23,col:[10,12,19,23],col_index:10,colab:0,collabor:[0,1,10,20],collaps:12,colleagu:20,collect:[4,6,12,15,16,17,24,26,29],colleg:[26,28],collgcr:[12,14],colon:[4,24],color:[0,15,18,19,26],color_mapp:20,colorama:6,colorcet:6,colum:19,column:[6,7,8,10,12,13,14,15,16,18,19,20,22,23,24,26,27,28,29],columndatasourc:20,columns_encod:28,columns_listlik:14,columntransfom:28,columntransform:[28,29],columntransformercolumntransform:28,columnwis:12,com:[7,18,31],combin:[1,10,11,15,16,17,19,21,26,28,29,30],combo:[4,16],combo_2:4,come:[2,3,4,6,8,18,19,23,26,27],comfort:18,comm:6,comma:[4,18,20,26],command:[1,6,7,15,31],comment:[1,6,14,16,26],commmand:0,commod:7,common:[3,4,6,7,8,10,11,13,15,18,19,22,23,24,27,28,29],common_col:15,commonli:[6,15,16,20,24,26,27,29],commonmark:6,commun:[23,24,31],comp_index:14,compani:[4,24],company_nam:4,compar:[3,18,26,27,29],comparison:3,compil:1,complet:[0,1,2,3,6,7,12,18,19,20,22,31],completejournei:[6,15,16],completejourney_pi:[0,15,16,18,19,22,23,24],complex:[1,4,6,7,10,16,20,22,23,24,29,31],complic:[1,6,22,26],compon:[6,9,20,23,26],compos:[7,28,29],comprehens:[19,24],comput:[13,25],computation:29,con:7,concaten:[2,4,11,28],concep:14,concept:[2,4,9,10,17,19,22,23,24,29,31],conceptu:7,concern:[2,16,26,27],concis:[3,24],conclus:16,concret:20,cond:[7,10,11,12],conda:[6,7],condens:[18,23],condit:[4,7,10,11,12,18,23,24],condition_1:11,condition_2:11,condition_hold:23,conduc:31,cone:16,confer:19,config:[7,11],configur:[7,19,20],confirm:10,conflict:0,conform:29,confus:[1,10,11,19,24],conjunct:[18,23],connect:[3,7,15,24,28],consequ:[1,7,11,15,16,18,19,22,24,26,27,28,29],consid:[2,4,6,10,11,12,14,15,16,18,20,23,24,28,29],consider:[0,26],consist:[1,7,9,16,18,20,24,29],consol:[0,1,6],constant:6,constantli:[6,24],constrained_layout:19,construct:[2,3,6,20],constructor:14,contain:[0,1,2,3,4,6,7,8,11,14,16,18,19,22,24,26,27,28,29,31],content:[1,31],context:[12,16,19,23],continu:[0,7,8,10,18,20,23,24,28,31],contour:[7,11,12],contrast:[1,7],contribut:28,control:[3,18,20,22,24,25,29,31],conveni:[1,3,4,6,12,16,20],convent:[6,19,24,28],converg:28,convers:[3,4],convert:[2,4,8,11,12,14,18,22,24,28,31],convert_to_sq_met:11,convolut:24,cook:4,cooki:16,cookiecutt:6,coolwarm:26,coordin:20,copi:[7,11,15,24,25],copybutton:6,core:[6,7,8,10,11,12,14,15,19,31],corei:[7,19,31],corr:26,correct:[15,24,27,29],correctli:29,correl:26,correspond:[8,11,15,26,28],cos:[0,6],cosin:6,cost:[2,24],could:[2,4,10,11,12,14,15,16,18,19,20,22,24,26,28,29,31],count:[7,11,12,18,19,28],counter:23,counterintuit:3,countri:[26,28],country_:28,coupl:[18,22,28],coupon:15,coupon_disc:[15,18,19,22],coupon_match_disc:[15,18,19,22],coupon_redempt:15,courier:19,cours:[0,3,6,7,11,14,18,24,31],covari:26,cover:[0,2,3,7,11,15,18,22,23,24,28,31],covid:23,cpu:29,cpython:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,22,23,26,27,28,29],cracker:16,cranberri:16,crawfor:[12,14],crc32c:6,creat:[1,2,3,4,5,6,8,11,12,13,18,19,20,21,22,23,24,25,27,28,29,31],create_engin:7,creativ:31,creator:[11,24],credit:4,criteria:16,critic:24,cross:[2,14,15],cross_col:15,cross_val_scor:29,cross_valid:29,crosstab:26,crouton:16,crush:16,cryptographi:6,cssselect:6,csv:[6,7,8,10,11,12,14,20,22,23,24,26,27,28,29],ctn:16,ctrl:1,cube:[2,16],cubic:6,curli:[4,16],current:[1,6,7,8,11,14,18,19,23,24],currentairlin:7,cursor:[0,6],curv:[6,29],custom:[0,15,18,19,20,29],cut:25,cv_result:29,cycler:6,cython:6,cytoolz:6,daal4pi:6,dai:[2,10,15,18,19,24],daili:[16,18,19],daily_sal:19,dairi:[15,16],dame:4,dash:19,dashboard:20,dask:6,data:[0,1,2,3,5,8,9,13,17,18,21,22,23,24,25,30,31],databas:[6,8,24],databras:7,datafram:[6,7,9,10,11,13,14,15,16,19,22,23,24,28,31],dataframegroupbi:12,dataset:[6,9,11,12,14,17,20,27,28,29],datashad:6,datashap:6,date:[0,7,16,18,19,28,31],datepars:6,datetim:[7,19],dateutil:6,daunt:18,dave:25,dawn:7,day_nam:[18,24],day_ord:18,dci:3,deaffi:7,deal:[2,3,16,27,28],debat:3,debug:24,debugpi:6,dec:11,decid:[3,18,19,20,26,27],decim:[3,7,16,24],decimal_ounc:16,decimal_ounces_or_lb:16,deciph:24,decis:[28,29],deck:[7,11,12],declar:[16,24],decompos:29,decomposit:6,decor:[6,16],decreas:[18,29],dedic:0,deep:29,deeper:[6,29],def:[4,6,11,14,15,22,24,29],defacto:19,defin:[3,11,14,16,20,27,28,29],definit:[2,4,18,24],defusedxml:6,degre:19,del:2,delet:[1,28],deli:18,delimit:[4,22],delta:[7,8],delv:24,demand:23,demograph:[15,18,19],demonstr:[16,24],denisti:18,denot:[1,2,11],dens:6,densiti:18,depart:[7,15,16,18],depend:[2,3,4,6,7,12,14,15,16,22,28,29],deploi:26,deploy:26,dept_sal:18,dept_tot:18,depth:[1,29],derail:24,descent:28,describ:[3,4,7,11,14,17,18,27,28],descript:[4,7,15,16,18,19,24,26,30,31],desert:23,design:[8,31],desir:19,desktop:[2,6,7,24],dessert:16,detach:11,detail:[6,11,20,24,27,28,31],detchd:11,deter:29,determin:[4,6,8,10,19,22,23],determinist:27,develop:[0,1,19,20,25],devhelp:6,deviat:[12,28,29],diag_kind:26,diag_kw:26,diagon:26,diagram:[6,27,28],dialect:7,diamandi:10,dict:[4,7,12,20,22,23,24],dict_kei:[4,15],dict_valu:4,dictionari:[8,11,12,15,20,22,23,24,29],did:[1,2,3,10,11,12,14,18,19,20,24,26],didact:28,didn:[4,10,11,15,16],diego:12,diesel:7,diff:6,differ:[1,2,3,4,6,7,8,9,10,11,12,14,16,17,18,19,23,24,26,27,28,29,30,31],differenti:[10,26],difficult:[6,12,18],dig:[9,18,20],digest:[18,23],digit:[16,24],dimens:[6,7,8,26],dimension:[6,7,8,10],dimes:7,dinner:16,direct:[3,31],directli:[0,1,2,6,7,8,18,19,20,22,27],directori:[0,6,7,19],dirkscneid:7,disc_rat:22,discard:15,discount:[18,22,24],discov:[11,30],discret:[20,28],discuss:[0,1,6,8,9,13,14,15,16,17,18,21,23,24,28,29,31],diseas:10,dish:16,disk:[6,7,20],disnei:4,dispers:19,displai:[0,3,7,15,16,19,20,27,28],display_loc:15,dispos:[6,16],distanc:28,distinct:[7,29],distinguish:24,distribt:18,distribut:[6,7,18,26,28,29],dive:1,divid:[2,11,28,29],divis:2,dl1:14,dnr:[15,16],doc:[0,1,6,10,11,16],doctor:[26,28],document:[0,1,6,7,10,11,16,18,19,20,24,27],docutil:6,doe:[1,2,3,4,7,8,12,14,16,19,22,24,26,27,28,29],doesn:[8,12,14,15,22,24],dog:[16,19],doing:[0,1,3,4,6,8,10,11],dollar:[16,18,20],domain:6,domin:1,don:[3,4,6,7,8,10,11,12,14,15,22,24,25,29],done:[2,6,8,19,24,27,31],dorsal:14,dot:[6,7,16,20,29],doubl:[2,3,16,24],doubt:10,dough:15,down:[0,1,7,18,24],downgrad:0,download:[6,7,26],downstream:28,downward:11,dplyr:10,draw:29,drawback:12,drawn:19,dri:16,drink:16,drive:[0,7,11,29],driver:7,drnk:15,drop:[11,13,14,16,18,26,27,28,29],drop_duplc:11,dropna:11,drosophila:14,drug:[15,16,18],dry:[16,25],dsh:16,dtype:[6,7,8,10,11,12,14,15,16,18,19,22,24,26,27,28],dtype_exclud:[28,29],dtype_includ:[28,29],due:[2,7,24,29,31],duplic:[8,11,14,25,28,29],dure:[0,11,12,24,26],dynload:6,e451:6,each:[1,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29,31],earli:1,earlier:[0,7,8,16,19],earn:26,easi:[0,20,24,28],easier:[3,10,14,20,23,28],easiest:12,easili:[0,7,11,14,15,16,18,26,27,28],easter:16,econom:2,economi:16,ecosystem:[6,9,18,21,31],ed_level:28,edg:0,edit:[1,25],editor:1,educ:[0,1,26,27,28,29],education_:28,education_column:28,education_encod:28,education_num:28,edward:[12,14],effect:29,effici:[3,6,7,22,25,28,31],effo411:6,effo:6,effodata:6,effort:24,eger:4,egg:[16,22],eigenvalu:6,eight:[6,15],eigval:6,either:[0,1,2,3,7,11,18,19,22,23,27],electr:[7,11,16],eleg:21,element:[4,6,7,8,10,11,12,14,16,19,23,24,27,28],elementari:23,elif:[3,22,24],elimin:7,els:[4,8,11,14,18,22,24],email:[0,20,31],emb:10,embed:[4,16,24],embraer:10,embryo:14,emeritu:12,emp:28,emphas:16,emphasi:[10,31],emploi:3,employ:[4,26,31],empti:[1,19,22,23],empty_list:22,enabl:[0,20],enclos:[2,7,11,12,16,20,24],enclosed_porch:11,encod:[3,15,29],encount:[1,3,4,7,10,23],encourag:0,end:[0,1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31],endeavor:8,ends_with_fruit:16,energy_consumpt:7,engin:[7,10,26,31],english:[3,4],enhanc:1,enough:[0,2,8],ensembl:29,ensur:[23,24,28],enter:[0,1,3],entir:[1,4,10,11,12,16,23,29],entireti:6,entre:16,entri:[6,7,11,14,20,29],entropi:29,entrypoint:6,enumer:[23,24],environ:[25,31],eol:2,epsilon_1:29,epsilon_2:29,epsilon_k:29,equal:[2,10,11,15,22,23,24,28,29],equat:22,equip:30,equival:[2,3,10,15,16,22,24,26],error:[2,4,8,10,11,14,15,16,25,29,31],esc:1,especi:[1,6,12,18,24],essenti:[2,24],establish:[7,24,28,31],estim:18,etc:[0,2,8,11,14,15,18,19,26,29,31],ethan:[4,31],eval:6,evalu:[1,2,3,5,22,23,24,25,27,31],even:[0,3,4,6,7,10,11,13,16,19,20,23,24,27,28,29],eventu:[10,24],ever:1,everi:[1,4,6,8,10,11,16,18,19,25,29],everyth:[0,2,6,19,22],evolv:1,exact:[6,16,19,24],exactli:[3,16,24],examin:[3,12],exampl:[0,1,2,3,4,6,7,8,10,11,12,14,16,18,19,20,22,23,24,26,29],exce:23,exceeds_100:23,excel:19,excelfil:7,except:[2,4,23],exception:18,exchang:7,exclud:26,exclus:[4,8],exectut:22,execut:[1,2,3,5,6,7,10,22,23,24,29],exercis:[0,31],exist:[1,4,7,10,11,15,23,24,29],exit:[1,23],exot:15,expand:[1,16,24],expect:[2,3,4,6,11,24,28,29],expected_annual_revenu:22,expected_result:14,experi:[1,10,31],explain:[1,4,5,6,8,9,17,23,24,27,30],explanatori:8,explicit:[1,20,24,27],explicitli:[1,2,7,15,19,24,28],explod:[19,28],explor:[1,2,6,15,18,20,21,28,29,30],exploratori:[1,12,20],explos:4,exponenti:[2,11,19],export_svg:20,expos:[1,6,7,16,20,31],exposur:[7,11],express:[1,2,3,7,11,17,22,23,24],extend:[2,12,18,19],extens:[1,2,6,7,23],exter:[7,11],exter_cond:11,exter_qu:11,exterior:[7,11],exterior_1st:11,exterior_2nd:11,extern:6,extra:11,extract:[4,8,10,18,19,21,31],extrem:[4,6,20,26,29],eye:26,f1_score:29,faa:8,fabric:16,face:[6,19,28],facial:[15,16],fact:[0,1,2,3,6,8,12,16,18,19,22,28,29],facto:0,factor:20,factor_cmap:20,fair:26,fairlearn:26,fairli:[7,8,11,19,20],fall:[16,24,28],fall_product:16,fals:[4,7,10,11,12,15,16,18,19,22,23,24,27,28],famili:[15,26,28],familiar:[0,6,7,8,11,18,29],fan:10,far:[2,3,4,6,7,11,15,19,24,25,29],farm:26,fashion:[1,19,24,28],fast:[6,7],faster:[8,22,26,28],fastest:12,fastjsonschema:6,fat:25,favorit:19,feat:23,featur:[0,1,6,7,11,12,16,18,19,20,31],feature_col:27,feature_nam:28,feb:11,fed:27,feder:28,feed:25,feedback:24,feel:[3,6,11,12],feet:[11,12,20],femal:[10,26],fenc:[7,11,12,20],fetch:8,few:[0,1,3,6,7,9,10,11,12,16,18,19,22,26,28,29,30],ffill:11,fft:6,fftpack:6,fibanacci:23,fibonacci:23,field:[6,7,20,26],fifth:[7,8],fig:19,figsiz:[11,18,19,26],figur:[0,6,11,18,20],file:[0,2,6,8,14,15,19,22,23,24,26,31],file_nam:23,filelock:6,filenam:20,fill:[3,10,11,12,14,15,16,22,23,27],fill_color:20,fill_lin:20,fill_valu:14,fillet:16,fillna:11,filt:24,filter:[8,13,15,16,22,26],fin:[7,11],find:[0,1,4,6,7,10,11,12,15,16,19,24,26,27,28,29,31],find_stack_level:15,fine:[0,21,22],finegrain:24,finger:[2,7,25],finish:[7,11],finit:[2,28],firebrick:19,fireplac:[7,11],fireplace_qu:11,first:[0,1,2,3,4,6,7,8,9,10,11,15,16,17,18,19,22,23,24,25,28,29,30],first_25:10,first_init:4,first_nam:4,first_row:8,firstpart:24,fish:26,fit:[18,28,29,30],fit_tim:29,fit_transform:28,five:[10,27],fivethirtyeight:18,fix:[10,11,16],flag:[1,22],flake8:6,flask:6,flat:3,flatten:[14,18],flavor:[6,15],flesh:16,flexibl:[4,7,8,12,16,19,20,29],flip:[15,23],float128:7,float64:[7,10,11,12,16,18,24],floor:2,floral:18,flow:[3,24,25],flr:[7,11],fluid:15,fly:[11,24],focu:[2,5,6,10,11,12,14,16,19,24,26],focus:[0,4,9,18,29],foilwar:16,folder:[0,2,4,6,7,10,16,23,24],follow:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,27,28,29,31],font:[19,20],fontnam:19,fontsiz:[19,26],fonttool:6,food:[7,16],foot:11,footag:[11,12],forc:[3,18,19,29],foreign:15,forest:[28,29],forgot:24,form:[6,7,14,15,19,22,23,28],formal:29,format:[1,6,7,8,14,18,20],formatt:20,former:[26,28],formul:25,forthcom:3,fortran:[1,6],fortun:22,forward:[11,16],found:[16,19,23,24],foundat:[5,7,8,11,16,19,28,30,31],founder:10,four:[1,2,4,19,20,23,24],fourier:6,fourth:[7,23],fowl:15,foxtrot:25,frac:[2,11,23,24],fraction:[11,19],frame:[7,10,11,14,15,16,24,28],frame_height:20,frame_width:20,free:0,french:16,freq:[12,18],frequenc:[7,18],frequent:[7,12,15],fresh:[0,15],fridai:18,from:[1,2,3,4,6,7,8,9,10,11,12,14,15,16,18,20,22,23,24,26,28,29,31],front:15,frontag:[7,11,12],frown:6,frozen:[16,22],frozen_revenu:22,frozenlist:6,frozenset:24,fruit:16,fruit_product:16,frustrat:1,frz:16,frzn:16,frzn_product:16,fsspec:6,fuel:18,full:[2,6,7,8,11,31],full_bath:11,fulli:[1,6,7],func:[6,24],functool:6,fundament:[5,8,9,12,19,28,31],further:[0,1,4,23,26,31],furthermor:0,futur:[0,2,3,6,8,11,20,25,26,27],futurewarn:15,fyi:24,gain:[2,6,19,26,27,28,30,31],gal:16,galleri:6,game:15,gar2:[7,11],garag:[7,11,12],garage_area:11,garage_car:11,garage_cond:11,garage_finish:11,garage_qu:11,garage_typ:11,garage_yr_blt:11,garrick:14,gaug:31,gave:29,gbm:29,gdprv:[7,11],gelatin:16,gener:[0,1,3,4,6,7,8,10,11,12,13,14,15,16,17,20,22,23,24,27,28,29,31],generaliz:[26,29],genotyp:14,genreid:7,gensim:6,genutil:6,get:[0,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,18,20,22,23,24,26,27,28,29],get_data:[15,16,18,19,22,24],get_feature_names_out:28,get_group:12,get_result:[14,15],get_titl:19,get_xlim:19,get_xtick:19,get_xticklabel:19,get_ylim:19,get_ytick:19,getcwd:6,gfp:14,ggplot:6,gilbert:[11,12,14],gitdb:6,github:31,githubusercont:7,gitpython:6,give:[1,2,3,4,6,7,14,16,19,24,26,29,30,31],given:[3,4,12,14,16,18,20,24,28,29],glanc:4,glob2:6,glob:23,global:[24,25],glq:11,glut:12,glyph:20,gmpy2:6,goal:26,goe:11,going:[4,7,8,10,11,12,14,15,20,29],good:[3,7,8,10,15,22,24,26,27,28,29],goodi:0,googl:[0,6,12],googleapi:6,got:[4,23,24],gov:[26,28],gpu:0,gr_liv_area:11,grab:4,grad:[26,28],gradient:[14,28,29],grai:[19,29],grander:25,grape:16,graph:[6,19],graphic:[0,20,21,28],great:[1,2,3,4,7,11,12,15,18,24,31],greater:[3,7,16,19,24],greatest:[3,15,16],greatli:[1,7],green:[12,14],greenlet:6,greet:16,grei:15,grid:[6,19,20],grid_search:29,gridlin:19,gridsearchcv:29,grill:16,grlivarea:[20,28],grnhill:[12,14],groceri:[7,15,16,18],ground:[11,12,16],group:[2,6,14,15,16,18,19,24,29],group_index:14,groupbi:[6,12,15,16,18,19,22,24],grown:6,growth:16,grpcio:6,grvl:12,guarante:[6,24],guid:[15,24,31],guidelin:[13,14,17],gum:15,h5py:6,had:[6,11,15],hair:16,half:[7,11],half_bath:11,ham:22,hand:[3,11,15,19,22,24,31],handi:[8,11,16,18,22],handk:15,handl:[6,14,17,24,29,31],handle_unknown:[28,29],handler:24,hang:3,happen:[0,1,2,3,4,6,7,10,11,14,15,18,19,22,24,26],happi:18,hard:[0,10,26],has:[0,1,2,3,4,6,7,8,9,11,12,14,15,16,19,20,22,24,25,26,28,29,31],hat:29,haunt:3,have:[0,1,2,3,4,6,7,8,9,10,11,12,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,31],haven:[0,14],havoc:25,head:[6,7,8,10,11,12,14,15,16,18,19,20,22,23,26,28],header:[1,14,23,24],heapdict:6,hear:6,heard:6,heart:[7,10,11],hearts_data_dictionari:7,heat:[7,11],heating_qc:11,heatmap:11,heaviest:18,heavili:18,height:[0,3,19,26],held:27,hello:[2,3,6,24],hello_world:6,help:[0,1,3,6,7,8,9,11,14,16,18,20,22,24,26,28,31],helper:[27,28],henceforth:2,herb:16,here:[0,1,2,3,4,6,7,8,10,11,14,15,16,18,19,20,22,23,24,27,28,29],heterogen:[4,26],hexbin:18,hierarch:[14,24],hierarchi:19,hig:22,high:[6,9,18,20,22,24,26,28,29],higher:[0,6,18,19,20,21,24,31],highest:19,highli:[4,8,18,24,26,29,31],highlight:[10,27,31],hint:[3,12,22,23],his:[1,11],hist:[18,19,26],histogram:[18,19,20,26],histor:4,hit:[0,1,6],hold:[1,6,7,8,9,20,22,23,24,27,28],holder:16,holoview:[1,6],home:[0,11,12,14,20,26],home_ownership:[18,19],homeown:[18,19],homepag:0,homes_sold:14,homogen:8,hood:[2,11,23],hoorai:1,hope:1,horizont:18,host:[1,6,7,29,31],hot:[28,29],hour:[5,9,13,17,18,19,21,25,26,27,28,30],hours_per_week_limit:26,hous:[7,11,12,20],house_styl:11,household:[15,16,18],household_comp:[18,19],household_id:[15,18,19,22],household_s:[18,19],hover:[20,24],hovertool:20,how:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31],howev:[1,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],hpc:0,href:24,hshd_id:15,html:[1,10,20,24,27,28],htmlhelp:6,http:[0,6,7,10,26,27,28,31],hue:26,human:[1,10,26],hung:14,hunner:20,hunt:25,husband:26,hvplot:6,hyper_grid:29,hypercub:29,hyperlink:[1,6],hypertrophi:11,hypothesi:6,ice:16,icon:[0,1,20],id_a:15,id_b:15,id_var:14,idea:[2,6,8,26,29],ident:[4,6],identifi:[3,6,7,11,12,13,14,15,16,17,18,19,20,24,26,28,30],idna:6,idotrr:[12,14],idx:18,iger:4,ignor:[1,16,20,28,29],iinfo:14,illustr:[6,7,8,10,11,12,14,15,16,18,20,22,23,24,27,28,29],iloc:[10,23],imag:[1,6,19,29],imagecodec:6,imageio:6,images:6,imagin:4,imbal:26,imbalanc:[26,27],immedi:[2,6,8],immut:[3,4],impact:[16,26,28],implement:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,22,23,24,26,27,28,29],impli:[7,23,25],implicit:[1,3,24],implicitli:[20,24],importantli:[1,6,31],imported_json:7,imported_pickl:7,importlib:6,imporv:19,impos:20,imposs:24,improp:24,improv:[24,25,26,28],imput:11,inadvis:8,inc:[8,24,28],incept:4,inch:[2,19],includ:[0,1,2,4,6,7,8,10,11,12,13,14,15,16,18,19,20,22,23,24,26,28,29,31],includes_dot:16,inclus:[4,8,10,15],incom:[15,18,19,26],incomplet:[6,23],incopor:29,incorpor:[3,16,23,29],incorrectli:10,increas:[18,28,29],increment:[6,19,23],inde:[1,19,26,27],indent:[3,15,20,22,23],independ:10,index:[6,7,10,11,14,15,16,18,19,22,23,24,26,28,29],indexerror:4,indic:[2,3,19,24,26,28,31],indigo:19,individu:[4,7,8,15,17,18,19,26],industri:10,ineffici:[25,28],inflect:6,influenc:31,influenti:26,info:[7,11,15],inform:[1,2,4,6,7,11,12,15,16,18,20,24,26,28],ing:4,iniconfig:6,initi:[1,2,4,12,15,16],inlin:[6,31],inner:[16,18,19],inplac:11,input:[2,4,6,8,14,15,16,19,22,23,24,27,28],input_featur:28,inria:31,insert:[1,24],insid:[0,1,4,6,7,19],insight:[12,18,21,26,29,31],inspct:26,inspect:[28,29],instal:[6,7,20],instanc:[0,7,16,20,24,26,28],instanti:[2,20],instead:[4,7,10,12,16,18,19,23,27,28,29],instruct:[0,1,3],instructor:4,int32:14,int64:[7,8,10,11,16,22,26,28],intak:6,integ:[3,4,6,7,8,11,23,24,28,29],integr:[0,6,22],intelex:6,intend:[6,24],intens:[29,31],intent:[3,24],inter:23,interact:[1,6,7,17,19,20,26,31],interest:[3,4,7,8,10,11,12,13,15,16,17,18,25,26,27,28,29,31],interfac:[0,5,6],intern:[3,24,28],interp1d:6,interpol:6,interpret:[2,3,4,5,16],interquartil:18,intersect:15,interupt:1,intervaltre:6,intervent:26,intrins:20,intro:[22,31],introduc:[1,7,9,16,18,22,27,28,29,31],introduct:[9,15,19,22,23,24,29,31],intuit:[2,20,27,28],invalid:[4,22,24],invari:25,inventor:1,inventori:15,invers:11,investig:[3,29],invok:1,involv:[15,17,19,20,26],ionari:7,iowa:[7,20],ipykernel:6,ipykernel_14538:2,ipykernel_17769:[],ipykernel_24203:[],ipykernel_32272:[],ipykernel_34439:[],ipykernel_40532:[],ipykernel_40601:[],ipykernel_50389:16,ipykernel_97171:10,ipykernel_97208:[],ipykernel_98564:4,ipynb:[7,24],ipython:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,22,23,26,27,28,29],ipywidget:6,iqplot:[0,6],iqr:18,ir1:[7,11,20],irwin:23,is_1d_only_ea_dtyp:14,is_incorpor:24,is_luxery_hom:11,is_uniqu:15,isin:18,isin_top10:18,isinst:24,isn:[10,19,24],isnul:11,isol:[11,14,19],isort:6,issu:[2,26,31],isupp:23,ital:31,italian:16,item:[4,6,7,16,19,23,24],itemadapt:6,itemload:6,iter:[6,24,25,28,29,31],itert:23,itertool:6,ith:[23,28],its:[0,1,2,4,6,7,8,11,14,15,16,18,19,20,24,27,28,29,31],itsdanger:6,itself:[0,1,19],jame:3,jan:11,javascript:[0,20],jdcal:6,jedi:6,jetblu:8,jinja2:6,jmespath:6,job:[23,28,31],joblib:6,joel:14,john:[23,24],johnson:7,join:[6,14,16,17,18,24,26,31],jordan:3,journei:[18,19,22],jsmath:6,json5:6,json:6,json_exampl:7,jsonrpc:6,jsonschema:6,juic:15,jul:11,julia:1,jump:[1,23],jun:11,jupyer:1,jupyt:[0,2,5,6,7,31],jupyter_bokeh:0,jupyterbook:6,jupyterlab:[2,3,4,5,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29,31],jupytext:6,just:[0,1,2,3,4,6,7,8,10,11,12,15,16,17,18,19,22,23,24,25,26,29],justin:31,kangaroo:23,kaufman:7,kaydai:6,kde:18,keep:[0,4,6,14,15,24,26],kei:[4,7,8,12,21,22,23,24,31],kernel:[1,6,18],kernighan:1,kevin:31,keyerror:4,keyr:6,keyword:[3,20],kickstart:1,kid:[18,19],kids_count:[18,19],kind:[2,3,6,7,8,12,18,20,26,28],kitchen:[7,11],kitchen_abvgr:11,kitchen_qu:11,kiwisolv:6,kneighborsclassifi:[27,29],kneighborsclassifierkneighborsclassifi:27,knew:2,knn:29,knn__n_neighbor:29,knob:29,know:[0,1,2,3,6,8,14,15,16,18,23,24,31],knowledg:[1,25,31],known:[1,6,7,12,14,16,22],koala:23,kpi:6,kwarg:[20,29],lab:[0,1,31],label:[0,6,8,14,20,28],lai:19,lamb:15,lambda:[11,18,22,24],land:[0,7,11,12],land_contour:11,land_slop:11,landcontour:20,landmrk:[12,14],landscap:6,languag:[1,2,3,4,5,6,7,22,24,31],laptop:0,larg:[0,1,6,16,22,31],larger:[3,4,15,24,29],largest:[12,18,24],last:[1,2,3,4,6,7,8,10,13,14,15,16,17,18,19,23,24,29],last_nam:4,lastli:[20,24],lastpurchas:7,latenc:0,later:[1,2,3,4,6,8,12,19,20,24,26,27],latex:6,latexcodec:6,latin:29,latter:[0,26,28],launch:[2,5],launchabl:1,launcher:[0,1],laundri:16,layout:[1,7,19],lazi:6,lead:[19,26,28],leaf:29,leakag:29,learn:20,learner:31,least:[3,6,15,16,22],leav:[11,18,27],lebron:3,lectur:31,left:[0,1,8,11,19,26,29],left_col:15,left_index:15,left_on:15,left_onli:15,legaci:2,legal:3,legb:24,legend:[18,19,20],legend_field:20,legibl:22,len:[3,11,14,15,16,23,24],length:[4,7,10,11,15,16,18,24,27],lengthen:25,leo:28,less:[3,6,12,22,24,25],lesson:[5,9,13,14,17,18,21,22,25,30,31],let:[0,1,2,3,4,6,8,10,11,14,15,16,18,19,20,23,24,26,27,28,29],letter:[4,8,16,23],letters_in_my_nam:4,level:[1,3,6,9,12,14,15,18,19,20,21,24,28,31],leverag:[16,23,31],lexic:24,lexicograph:28,lib:[6,8,14,15,20],libarch:6,liblinear:29,librari:[0,3,7,9,10,11,15,16,18,19,20,21,24,28,31],lies:3,life:[26,31],lightweight:1,like:[0,1,2,3,4,6,7,8,10,12,14,16,18,19,20,22,23,24,26,28],lili:16,limit:[6,7,22,24,29],linalg:6,line:[1,2,3,4,6,7,8,10,11,14,15,18,20,22,23,24,25,28,29,31],line_color:20,line_width:0,linear:[6,28,29],linear_model:[27,28,29],linearregress:[28,29],linestyl:[19,26],linewidth:19,link:[14,15],linkifi:6,linspac:[0,6],liquid:16,list:[0,1,3,6,7,8,10,11,12,14,16,18,19,20,22,24,28],liter:[2,16,19,31],literal_count:16,litter:16,littl:[1,8,15,18,19,23,25],liv:[7,11,12],live:[11,14,20,28],llvmlite:6,load:[0,1,2,6,7,8,10,11,15,16,18,20,22,24],load_breast_canc:29,load_diabet:29,load_ext:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],lobal:24,loc:[8,10,18],local:[6,7,24,26,28],localhost:0,locat:[1,3,4,6,7,8],locket:6,log:[6,18,19,29],logger:6,logi:18,logic:[10,18,23],logist:[27,28],logisticregress:[27,28,29],logisticregressionlogisticregress:28,loguniform:29,loguniform_int:29,logx:18,long_track:7,longer:[4,6,10,14,19,20,23,28],longest:16,look:[0,1,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,24,26,27,28,29],lookup:[6,24],loop:[6,24,25],lose:26,loss:[26,27,28,29],lot:[1,4,6,7,8,11,12,15,16,18,19,20],lot_area:11,lot_config:11,lot_frontag:11,lot_shap:11,lotarea:20,lotfrontag:20,lotshap:20,love:[1,3,24],low:[7,11,16,18,22,24,26],low_qual_fin_sf:11,lower:[6,11,16,18,19,20,21,24,31],lowercas:16,lru:6,lsp:6,lunch:16,lunchmeat:[15,16],luxeri:11,lvh:11,lvl:[7,11,12,20],lwq:11,lxml:6,mac:0,machin:[1,6,14,26,27,28,29,30,31],maco:1,macro:29,made:[4,7,10,11,14,19,24,27],mae:29,magazin:16,magic:[1,2,6],mai:[0,1,3,6,7,10,11,12,14,16,18,19,23,24,26,28,29],main:[0,1,7,9,10,14,15,18,19,20,23,24,28,29],mainli:[7,16,18,26],maintain:6,major:[1,19,27],make:[0,1,2,3,4,6,7,8,10,11,12,14,18,19,20,23,24,26,28],make_column_selector:[28,29],make_pipelin:[28,29],makeup:16,malcolm:7,male:[10,26],malfunct:26,manag:[4,6,7,15,25,31],mani:[0,1,2,3,4,6,8,10,11,14,15,16,17,18,19,20,22,23,24,26,27,28,29],manipul:[1,6,8,9,12,13,16,17,19,21,31],manner:[4,6,24,28],manual:[4,27],manufactur:[7,10,12],manufacturer_id:[15,16],manufacturerdetail:7,map:[2,4,11,12,20,22,23,24,28],mapper:20,mar:11,marit:[26,28],marital_statu:[18,19],mark:[16,18,19],markdown:[1,5,6],marker:20,markham:31,markup:1,markupsaf:6,marri:[18,19,26],mas:11,mas_vnr_area:11,mas_vnr_typ:11,mask:14,master:[26,28],match:[6,15,16,22],math:[6,11],mathemat:[2,6,11,12],mathjax:6,matl:[7,11],matlab:19,matplotlib:[0,20,26],matric:[6,28],matrix:[6,28],matter:[3,6,12,24],matur:18,max:[12,14,18,24,28],max_depth:29,max_featur:29,max_hr:[10,11],max_it:[28,29],max_sampl:29,maxim:29,maximum:[12,29],mayb:[8,20,26],mccabe:6,mckinnei:11,mdit:6,meadowv:[12,14],mean:[1,2,3,4,6,7,8,11,12,14,16,18,19,24,26,27,28,29],mean_:28,mean_absolute_percentage_error:29,mean_squared_error:29,meaning:[8,21,28],meaningless:28,meant:[1,15,16,25],measur:[7,14,16,26,29],meat:[15,16,18],meat_product:16,mechan:[27,28],med:22,media:6,median:[12,18],median_sales_by_weekdai:18,mediatypeid:7,medium:22,meet:[14,16,22,24],member:4,membership:[3,4],memori:[3,4,10,11,24],mental:31,mention:[1,2,3,6,8],menu:[0,1],merg:[6,16,18,19],mergeerror:15,merit:25,mess:2,messag:[2,11,24],metadata:[6,15],meter:11,method:[4,6,8,10,11,14,15,16,18,20,22,26,27,28],metric:[6,27],mexican:16,michael:3,micro:6,microsoft:[0,4],might:[1,2,3,6,7,10,20,24,28,29],mike:14,milk:[15,24],millisecond:[7,12],mimic:19,min:[12,18,24,28],min_samples_leaf:29,mind:[4,20],mine:[6,22],miner:16,minim:[24,25,29],minimum:[12,29],minu:23,minut:[2,3,4,6,14,28,29],misc:[7,11,12,15,16],misc_featur:11,misc_val:11,miscellan:[15,16,18],miscfeatur:20,miscval:20,misinterpret:25,mislead:28,misord:28,miss:[7,12,13,16,17,26],mistak:[4,24,25,27],mistun:6,mitchel:[11,12,14],mitig:26,mix:[3,8,16,26],mkl:6,mnprv:[7,11,12],mo_sold:11,mock:[6,7],mode:[11,12,20],model:[0,6,7,10,11,12,14,20,26,30,31],model_select:[27,28,29],moder:7,modern:[6,20],modifi:[11,16,19,23],modul:[1,2,3,4,5,8,9,13,17,18,21,22,24,25,27,28,29,30,31],modulo:2,moment:[3,19],momentarili:1,mondai:18,monitor:3,monospac:31,monoton:29,monroevil:8,month:[11,12,18,22,23],monthly_data:23,monthly_data_fil:23,mooc:31,more:[0,1,2,4,6,7,8,10,12,15,16,18,20,22,23,24,25,26,27,28,29,31],moreov:[17,22,26],morphogen:14,mosold:20,most:[0,1,2,3,4,6,7,8,9,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29,31],mostli:11,motiv:1,mous:20,move:[1,3,6,23,24,30],movi:16,mpmath:6,ms_subclass:11,ms_zone:11,mse:29,msg:15,msgpack:6,mssubclass:20,mszone:20,mtick:18,much:[2,3,4,6,10,14,19,20,22,24,25,26,31],mud:3,multi:[2,6,10,11,16,22,24],multidict:6,multiindex:14,multipl:[2,3,4,7,8,10,14,15,17,18,22,23,29,31],multipledispatch:6,multipli:2,multitoc:6,munkr:6,must:[3,6,11,15,17,19,20,23,25],mutabl:3,mutlti:14,my_data:7,my_dict:4,my_int:2,my_list:4,my_monitor:3,my_nam:[4,24],my_notebook:7,my_past:24,my_str:[2,4],my_tupl:4,mypi:6,myst:6,n10156:10,n102uw:10,n103u:10,n104uw:10,n10575:10,n105uw:10,n107u:10,n109uw:10,n11106:10,n11107:10,n11109:10,n11121:10,n11127:10,n11137:10,n11140:10,n11150:10,n_estim:29,n_iter:29,n_job:29,n_neighbor:29,n_outlier:19,n_samples_to_plot:26,n_tri:23,nadella:4,naiv:26,name:[1,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29,31],name_as_list:4,name_as_str:4,name_as_tupl:4,namespac:6,nan:[7,10,11,12,14,15,16,20],nanosecond:7,napkin:[15,16],narrowest:14,nation:[15,16],nativ:[7,26,28],natur:[16,20,27],navig:[0,6,19],nbclassic:6,nbclient:6,nbconvert:6,nbdime:6,nbformat:6,nbsp:[16,26],nclose:24,ndarrai:[6,8,19],ndframe:8,ndsu:4,nearest:[11,24,27,28,29],nearli:19,necessari:[0,1,20,22,23,24,26],necessarili:[3,4],need:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,23,24,26,28,29],neg:[3,22],neg_:29,neg_mean_squared_error:29,neg_root_mean_squared_error:29,negat:[3,29],neighbhorhood:12,neighbor:[27,28,29],neighborhood:[7,11,12,14,28],nest:[3,4,6,22,24],nested_list:4,netcdf4:6,networkx:6,neuro:6,never:[1,3,20,26,28],new_column_nam:11,new_column_seri:11,new_name1:11,new_name2:11,new_text:24,new_valu:22,newer:6,newli:15,next:[0,1,2,18,23,24,28],nice:[1,2,3,7,12,15,19,27,28],nicer:8,nipi:6,nlargest:[16,18],nleft:15,nltk:6,node:29,nois:29,non:[0,4,6,7,8,14,15,16,22,24,28,29,31],non_empty_list:22,none:[7,11,14,15,16,22,24],nonempti:22,nonetheless:24,nonloc:24,nonsens:11,nonzero:22,nor:[3,15],noridg:[12,14],normal:[4,6,7,11,12,16,19,20,24,28],nose:6,not_a_tupl:4,notat:[2,4,7,10,12],note:[1,3,4,6,7,8,10,11,12,15,16,20,23,24,26,27,31],notebook1:7,notebook2:7,notebook3:7,notebook:[0,2,5,6,7,19,20,24,26,27,28,29,31],noth:[1,3,11,22,24],notic:[1,3,6,7,8,10,12,14,15,16,18,19,20,22,24,28,31],notr:4,nov:11,now:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,23,24,27,28,29,30],npkvill:[12,14],nridght:[12,14],num:[24,26,27,28,29],num_cel:14,numba:6,number:[1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,22,23,24,26,27,28,29],numberofflight:7,numer:[6,8,16,18,19,23,24,26,27,29],numeraltickformatt:20,numeric_column:26,numerical_column:[28,29],numerical_columns_selector:[28,29],numerical_featur:28,numerical_features_sc:28,numerical_preprocessor:[28,29],numexpr:6,numpi:[0,8,11,19,22,24,26,27,28,29],numpydoc:6,nuniqu:[12,23],nutrit:[16,18],nwame:[12,14],obj:14,object:20,observ:[6,7,10,11,12,14,15,16,19,20,22,26,27],obtain:[27,28],obviou:[19,26],ocal:24,occasion:15,occup:[26,28],occupi:3,occur:[24,25],occurs:24,oct:11,odd:23,off:[6,24,26,29],offer:[0,4,6,11,19,23,29],offici:[0,2],often:[1,3,6,7,8,9,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],okai:10,old:[11,14,24],old_name1:11,old_name2:11,older:10,oldtown:[12,14],olefil:6,omit:14,onc:[0,1,3,4,6,7,10,14,16,18,19,24,28,29],one:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,22,23,24,26,27,28,29],onehotencod:[28,29],onehotencoderonehotencod:28,ones:[1,6,11,16,20,23],onli:[1,4,6,7,8,10,11,12,15,16,17,18,19,20,22,23,24,26,27,28,31],onlin:[1,6,7,24,31],onto:[16,19],open:[0,1,6,7,11,12,18],open_porch_sf:11,openml:[26,27],openpyxl:[6,7],oper:[0,6,7,8,12,14,15,17,19,22,24,28],operand:[2,3,4,6],opt:[6,8,14,15,20],optim:[1,6,8,28,29],optimist:27,option:[0,1,3,4,10,11,15,16,18,19,22,24,28],orang:26,ord:3,order:[1,3,4,7,11,12,18,24,26,28,29],ordinalencod:28,org:[6,10,26,27,28],organ:[1,6,7,16,20],orient:[19,24],origin:[1,10,11,14,15,19,23,24,27,28],orindalencod:28,other:[0,1,2,4,8,10,11,12,14,15,16,18,22,23,24,25,26,28,29,31],otherwis:[0,1,2,3,19,22],ounc:16,ouput:2,our:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22,23,24,26,27,28,29],out:[0,1,2,4,6,7,10,11,12,18,19,22,23,24,26,27,28],outermost:19,outlier:[18,20],output:[1,2,3,4,7,11,12,15,16,18,19,20,22,23,24,28,29],output_backend:20,output_fil:20,output_notebook:[0,20],outsid:[0,6,16,19,24],over:[1,2,3,15,16,18,19,20,22,23,24,26,31],overal:[7,11,12,19,24,31],overall_cond:11,overall_qu:11,overcrowd:18,overfit:29,overlap:15,overli:6,overplot:20,overs:2,overview:[1,7,19,20,31],overwhelm:3,overwrit:6,own:[4,7,8,11,15,19,20,24,26,29,30],pack:[6,16],packag:[1,8,9,10,14,15,16,19,20,29,31],package_s:[15,16,18,19],page:[0,6,7,19,20],pai:28,paint:20,pair:[4,7,15,23,28],pairplot:26,palett:20,pan:20,panda:[0,4,7,8,9,10,11,12,13,14,15,16,19,20,23,24,26,27,28,29],pandocfilt:6,pane:0,panel:6,paper:[14,15,16,19,20],paperback:16,param:6,param_distribut:29,param_rang:29,paramet:[7,12,18,19,27,28],parametr:29,paranthes:4,parenthes:[2,4,7,10,16,24],parenthesi:[16,20],parsel:6,parser:[6,23],parso:6,part:[0,1,3,6,8,10,19,22,24,25,26,28,29,31],partd:6,parti:[7,9,16],particular:[1,6,7,10,16,18,19,22,23,26,27,28,29],particularli:[3,6,8],pass:[4,7,8,10,11,12,16,18,19,20,24,28,29],password:7,past:[0,20,24,25],pasta:16,pastri:[15,16,18],patch:6,path:[6,22,23],path_fil:22,path_to_db:7,pathspec:6,patrick:23,patsi:6,patter:23,pattern:[6,11,13,16,17,18,19,23,29,31],paus:1,pave:[7,11,12,20],paved_dr:11,pckgd:[15,16,18],peach:16,peak:[18,26],pear:16,peculiar:26,pedagogi:1,peopl:[0,1,6,7,12,24,26],pep8:6,pep:6,per:[2,11,12,14,24,26,27,28],perc_valu:22,percentag:29,percentil:[19,22],perfectli:19,perform:[0,5,9,10,11,12,13,15,16,17,18,20,22,23,24,26,27,28,29,31],performancewarn:14,perhap:[6,11],period:[0,1,16],perman:11,persist:6,person:[10,26],perspect:[11,28],perus:16,pet:7,peter:[1,10],pexpect:6,pharmaci:22,philosophi:6,phrase:16,physic:[4,19,23],pick:[20,26],pickl:6,pickle_exampl:7,pickleshar:6,pictur:6,pid:[7,11,12],pie:[18,19],piec:[0,24,25,26],pillow:6,pineappl:16,pip:[0,6,7],pipelin:[0,29],pipelinepipelin:28,pitfal:29,pittsburgh:8,pivot_t:14,pixel:[3,19],pixesl:3,pizza:[2,16,18,19],pkg:[6,16],pkg_name:6,pkginfo:6,place:[3,4,16,19,20,23,24,26,31],placement:24,plain:[8,16,19],plane:[10,12],planeid:7,planes_df:10,planes_df_filt:10,planes_df_filtered_and_select:10,platform:0,platformdir:6,player:3,playlist:31,pleas:[27,28,31],plenti:[0,1,25],plot:[0,1,6,26,31],plot_kw:26,plotli:6,plt:[6,18,19,26],plu:[2,10,16,18,19,22],pluggi:6,plugin:6,plung:28,plural:19,png:20,point:[1,2,3,6,8,14,18,19,20,23,26,29],pointer:2,polynomi:29,pool:[7,11,12],pool_area:11,pool_qc:11,poolarea:20,poolqc:20,popul:[7,20],popular:[6,7,10,18,19],porch:[7,11,12],pork:15,port:7,portfolio:31,portion:10,portug:28,pose:24,posit:[3,4,20,24],possibl:[3,7,8,10,11,15,19,22,24,26,28],post1:6,post:[3,4,20,22,31],potato:[15,16],potenti:[25,26,31],pound:16,pow:6,power:[0,1,2,6,12,20,22,30],power_r:22,power_rat:22,powershel:0,poyo:6,ppsi:2,practic:[2,3,6,8,10,15,22,24,26,27,29],pragmat:25,pre:[0,7,24,28],preced:[1,2,3,16,20],precis:[2,3,7,29],predefin:[28,29],predict:[10,26,28,29],predictor:28,prefer:[0,7,15,16,18,22,27,29],premium:16,prepar:[0,11,16,31],preprocess:[26,29],preprocessor:[28,29],preschool:[26,28],presenc:16,present:[1,20,26,27,28],preserv:[6,14],press:[0,1,6],pretti:[2,3,7,8,18],preview:31,previou:[3,6,8,10,11,12,15,16,19,20,23,24,26,27,29],previous:[0,1,6,10,12,16],previousairlin:7,price:[11,12,20,24],price_per_sqft:[11,12],price_per_total_sqft:11,primari:[2,6,8,15,16,18,19,27,29,31],primarili:[0,10,23,24],princess:7,principl:[14,25],print:[0,2,3,4,6,8,10,11,12,16,19,22,23,24,26,27,29],print_student_nam:24,prior:[3,12,24,26,31],privat:[7,15,16,26,28],prize:10,pro:0,probabl:[0,1,6,7,10,11,12,16,18,19,22,23],problem:[1,2,3,6,11,12,24,26,29,31],procdur:24,proce:[0,2,3,19,28],procedur:[15,23,24,29],proceed:19,process:[1,3,4,7,10,11,12,15,16,18,23,25,26,28,29,30],processor:29,prod:22,prod_id_8:16,produc:[6,14,16,18,22,23],produce_revenu:22,product:[6,7,15,16,18,19,24],product_categori:[15,16,18,19],product_id:[15,16,18,19,22],product_num:7,product_typ:[15,16,18,19],production:1,products_excel:7,proess:7,prof:[26,28],professor:12,program:[0,1,2,3,4,5,6,7,8,10,22,24,30,31],programm:[1,3,25],programmat:[3,20],progress:[3,23,31],project:[1,6,7,31],prometheu:6,promot:15,prompt:[0,1,6],prone:29,proper:[15,19,24],properli:[0,1,14,25],properti:[1,2,7,11,19],propon:6,proport:27,protect:26,protego:6,proto:6,protobuf:6,proven:29,provid:[0,1,6,7,9,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29,31],proxi:6,pseudorandom:6,psutil:6,ptyprocess:6,pud:16,puerto:28,pull:[4,18],pulldown:1,punctuat:16,pur:16,purchas:[18,19,22,24],purchase_flag:22,pure:[6,15],purpos:[6,14,18,19,20,22,28],push:1,put:[2,7,14,19,20,28,31],puzzl:24,py4j:6,pyarrow:6,pyasn1:6,pybtex:6,pycodestyl:6,pycosat:6,pycpars:6,pyct:6,pycurl:6,pydata:[6,10],pydispatch:6,pydocstyl:6,pyerfa:6,pyflak:6,pygment:6,pyhamcrest:6,pyjwt:6,pyl:6,pylint:6,pyluach:6,pyodbc:6,pyopenssl:6,pypars:6,pypi:6,pyplot:[6,18,26],pyrsist:6,pyseri:6,pysock:6,pyspark:[6,7],pytest:6,python39:6,python3:[6,8,14,15,20],python:[0,2,3,4,5,6,7,8,9,10,11,12,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31],pytz:6,pyviz:[6,18],pywavelet:6,pyyaml:6,pyzmq:6,qdarkstyl:6,qstyliz:6,qtawesom:6,qtconsol:6,qthelp:6,qtpy:6,qty_greater_than:24,qual:[7,11,12],quantifi:26,quantil:[18,19,22],quantit:12,quantiti:[2,15,16,18,19,22,24,28],queri:[7,15,18],question:17,queuelib:6,quick:[0,20],quickli:[4,7,18,19,24],quit:[1,3,7,8,11,12,16,19,23,27],quiz:31,quizz:31,quot:[2,11,12],r4d:14,race:[26,28],rais:[2,4,10,14,15,24],raisin:16,ram:2,ran:[24,29],randint:3,random:[3,6,23,24,27,28],random_sampl:24,random_search:29,random_st:[27,28,29],random_valu:23,randomforestclassifi:29,randomizedsearchcv:29,randomli:[23,29],rang:[4,6,8,16,18,20,23,24,28,29],rangeindex:[7,8,11],rapidli:8,rare:[6,8,10,15,17,19,24,28,29],rate:[22,27],rather:[1,4,6,10,11,12,15,16,18,23,24,29],ratio:24,raw:[7,16,28],reach:15,reaction:16,read:[0,1,2,3,4,6,7,10,15,18,20,22,26,31],read_csv:[7,8,10,11,12,14,20,23,26,27,28,29],read_excel:7,read_sql:7,read_xxx:7,readabl:[6,26],reader:[1,7,26],readi:7,readili:[6,31],real:[0,2,4,6,9,26,27,28,31],real_lot_area:11,realist:29,realiz:[3,4,6,11,16,18,24],realli:[1,2,3,7,10,12,14,20,28],rearrang:11,reason:[0,2,3,6,11,14,15,16,19,22,24,28],reassign:[3,4,8],rec:11,recal:[3,10,11,12,19,29],recalcul:11,receiv:15,recent:[2,4,6,8,14,15,23,24],recod:11,recommend:[6,11,18,24,26,28,31],record:[10,11,14,16,31],recreat:19,red:[0,16,18,20],redempt:15,reduc:[10,18,24,25],redund:26,reev:14,reeves_gradient_width_various_method:14,refer:[0,1,6,7,8,9,10,11,14,16,19,20,24,26,28,29],referenc:[7,8,19],refiger:16,refin:[18,20],reflect:4,refrain:3,refrgratd:15,refriger:[15,16],reg:[7,11,12,20,29],regard:[18,24,28],regex:6,regex_count:16,region:26,regress:[27,28,29],regressor:[27,28,29],regular:[7,8,15,17,29],reindex:18,reinforc:31,reiter:[23,24],rel:7,relat:[6,7,8,17,24,26],relationship:[15,20,26,28,30,31],relaunch:0,relev:[3,24,28,29],reli:[7,26,28],reload:2,reload_ext:2,remain:[4,12,16,19,29],rememb:[2,4,10,16,19,22,26],remind:[1,7],remod:[7,11,12],remov:[0,7,10,14,18,23,24,25,26],renam:[18,19],render:[1,20],repeat:[16,23,25,29],repeatedli:29,repetit:[23,25,29],repl:31,replac:[6,8,24,28],replic:[4,29],repo:6,report:[11,31],repositori:31,repr:[15,27,28],repres:[2,3,4,6,7,8,11,12,14,15,16,19,20,23,24,26,27,28],represent:[6,7,20,21,25,27,28],request:6,requir:[0,8,10,11,15,20,22,24,26,28,29,31],rerun:[27,28],res_bp:11,resampl:[18,19],rescal:24,research:1,resembl:7,reserv:19,reset:[8,14],reset_index:[8,14,18,19],reshap:[6,15,17,31],resid:6,residenti:7,resolut:3,resort:7,resourc:[0,18,20,26,31],respect:[2,3,6,19,20,28,29],respons:[3,16,22,27],rest:[0,23],rest_ecg:11,restart:[1,6],restless:7,restrict:[15,24],result:[1,2,3,4,6,8,10,12,14,15,16,18,19,20,22,23,24,25,27,28,29,30],resum:6,retail_disc:[15,18,19,22],retain:[15,16],retir:26,retriev:19,return_x_i:29,reus:1,reusabl:1,reveal:26,revenu:26,review:[11,29],rewrit:24,rf__max_depth:29,rf__max_featur:29,rf__max_sampl:29,rf__min_samples_leaf:29,rf__n_estim:29,rfn:11,rich:[1,6],rico:28,ride:15,right:[1,3,8,11,18,19,20,26,29],right_col:15,right_index:15,right_on:15,right_onli:15,risk:[11,29],rmse:29,road:24,robert:[23,24],robust:[24,29],roc:29,roc_auc:29,roc_auc_scor:29,rock:7,role:2,roll:[0,2,15,18,19],roman:19,roof:[7,11],roof_matl:11,roof_styl:11,room:12,root:[0,7,29],rope:6,rose:16,rotat:[19,26],rough:1,roughli:20,round:[2,3,11,16,22,24,27],routin:[6,18,24],row:[7,8,11,12,13,14,15,16,18,19,20,24,27,28],row_index:10,rowwis:12,rsa:6,rtree:6,ruamel:6,rule:[3,24,27,29],run:[0,1,3,6,7,12,19,20,24,29],russet:16,rvs:29,s3transfer:6,safari:0,sai:[0,1,2,3,4,7,10,11,14,15,16,18,19,20,22,23,24,29],said:[1,4,28],sake:27,salad:16,sale:[7,11,12,15,16,18,19,20,24],sale_condit:11,sale_pric:11,sale_price_k:11,sale_typ:11,salecondit:20,saledpric:20,salepric:[7,11,12,20,26,28],sales_by_stor:18,sales_valu:[15,16,18,19,22,24],saletyp:20,salli:24,salut:7,same:[0,1,2,3,4,6,7,9,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],sampl:[6,26,27,28,29],san:12,sandi:23,sandybrown:19,saturdai:18,satya:4,sauc:16,save:[1,2,6,7,10,23,25],saw:[2,6,7,8,16,18,19,28],sawyer:[12,14],sawyerw:[12,14],scalar:[8,11],scale:[18,28,29],scale_:28,scaler:28,scan:2,scatter:[18,19,20],scatterplot:[18,26],schafer:[7,19,31],schema:15,scheme:[3,4],school:[4,26,28,31],scienc:[0,1,7,8,9,31],scientif:[0,1,2,6],scientist:[6,24,31],scikit:[0,6,28,29,30,31],scipi:[0,19,29],score:[27,28],score_tim:29,scotland:28,scrapi:6,scratch:[8,28],screen:[0,1,7,11,12,19,29],screen_porch:11,script:[1,6,24,31],scroll:15,seaborn:[0,1,6,11,19,26],seafood:[15,16,18],searborn:11,search:[0,6,12,16],season:16,seat:[10,12],second:[1,3,4,9,10,15,20,23,24,25,29],secondpart:24,section:[0,3,4,7,10,12,14,16,18,19,24,31],secur:6,see:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,22,23,24,26,27,28,31],seed:3,seek:19,seem:[1,2,3,4,22,24,26],seen:[6,7,11,16,18,24,29],seldom:27,select:[1,6,7,8,12,13,14,18,31],select_dtyp:[26,27],selector:[14,28,29],self:[8,14,15,24,28,29,31],seller:16,semant:[6,14],send2trash:6,send:[24,28],sens:[2,8,10,29],sensit:[4,16],sensor:26,sep:[11,24],separ:[1,3,4,6,7,10,11,15,19,22,24,26,28,29],sequenc:[4,10,11,16,18,22],sequenti:[4,23,28],seri:[9,10,11,13,14,15,16,19,23,24],serializinghtml:6,serv:[16,20,26],server:[6,7],servic:[0,6],session:[0,5,6,7],set:[0,1,3,6,7,8,9,10,11,12,14,15,16,17,20,23,24,26,27,28,29,31],set_config:[27,28],set_facecolor:19,set_index:[8,18,19],set_major_formatt:18,set_tick:19,set_titl:19,set_xlabel:19,set_xlim:19,set_xscal:19,set_xtick:19,set_xticklabel:19,set_ylabel:19,set_ylim:19,set_ytick:19,set_yticklabel:19,settingwithcopywarn:10,setuptool:6,sever:[0,1,2,6,11,15,16,18,19,22,23,29],sex:[10,26,28],shape:[7,8,11,12,15,16,19,26,27],share:[0,1,6,20],shark:7,shed:[7,11,12],sheet:7,sheet_nam:7,shelf:[15,16],shell:6,shellingham:6,shift:[0,1],shop:18,shopper:15,shorter:[6,11],shortest:16,shorthand:[12,23,28],shortli:16,should:[0,1,2,4,5,6,7,8,9,10,11,13,15,17,20,21,23,24,25,26,28,30],shouldn:4,show:[0,1,7,14,19,20,22,24,26,27,28,31],shown:[1,16,26],shuck:4,shuffl:27,shut:[0,1,7],shutdown:1,side:11,sign:[1,2,16,20],signal:[23,24],signatur:6,signifi:[20,31],signific:[11,26,28],significantli:[22,28],similar:[2,3,4,7,8,10,11,12,14,15,16,18,20,23,24,27,28,29],similarli:26,simpl:[0,1,3,4,6,9,10,15,16,20,22,23,24,26],simpler:6,simplest:[6,15,19],simpli:[2,7,8,10,11,14,15,16,18,19,20,23,24],simplic:[11,27],simplifi:[7,16,25],simultan:1,sin:[0,6],sinc:[2,7,9,10,11,15,16,18,19,20,22,24,26,28,29,31],sine:6,singl:[1,2,3,4,8,10,11,12,15,16,17,18,19,22,23,24,25,26,28,29],sip:6,sit:7,site:[6,8,14,15,19,20],situat:[3,11,22,24],six:[2,6],size:[7,15,16,18,20,22,28,29],size_adj:19,size_filt:16,skew:18,skill:[1,15,31],skillet:16,skip:[0,23,24],skip_these_numb:23,sklearn:[27,28,29],skyblu:19,slice:16,slight:25,slightli:26,slope:[7,11],slugifi:6,small:[7,10,15,18,19,22,24,26,29],smaller:[10,19],smaller_s:16,smallest:12,smart:[0,6],smith:7,smmap:6,smoke:15,smooth:[6,18],snack:[15,16],snake:19,snappi:6,sniffio:6,snowballstemm:6,sns:[11,26],soft:16,soften:16,softwar:[0,7,25],sold:[7,11,12,14,15,18,19],sole:18,solut:11,solv:[6,24,26],solver:[28,29],some:[0,1,2,3,4,5,6,7,8,10,11,12,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,31],some_funct:24,some_packag:6,someon:[24,26],somerst:[12,14],someth:[3,6,8,16,24,26],sometim:[3,4,6,7,11,12,14,16,24],somewher:[16,18,24],soon:22,sophist:[0,6,22],sort:[15,16,20],sort_valu:[12,15,16,18],sortedcollect:6,sortedcontain:6,soupsiev:6,sourc:[1,6,7,8,9,14,15,18,19,20],south:28,southwest:7,space:[0,1,3,7,11,16,20],spam:22,span:28,sparingli:[3,6],spars:[6,28],speak:2,special:[1,2,4,6,15,16,20,24,26],specialti:16,specif:[6,7,8,10,12,14,16,24,27,28],specifi:[0,1,3,4,7,8,11,14,15,16,18,19,20,23,24,28,29],speed:[10,29],spellcheck:[0,6],spend:[0,6,8,17,20,28],spent:[11,18,28],sphinx:[6,24],sphinxcontrib:6,spice:16,split:[17,28,29],sply:16,spot:24,spous:26,spreadsheet:[7,14],spring:16,sprinkl:31,spyder:6,sqft:[20,22],sql:[10,11],sql_queri:7,sqlalchemi:[0,6,7],sqlalechmi:7,sqlite:7,sqlpars:6,sqrt:2,squar:[2,6,11,12,16,20,23,24,29],squared_certain_valu:23,squared_odd_valu:23,squared_valu:23,squared_values_dict:23,stabl:[10,15,16,28],stack:6,stacklevel:15,stage:26,stai:[8,11],stakehold:20,stall:12,stand:[1,2,6,19,24],standalon:[6,20,24],standard:[0,3,7,9,12,16,19,24,26,28,29],standard_scal:[28,29],standardscal:[28,29],standardscalerstandardscal:28,star:24,start:[0,1,3,4,6,7,8,9,11,12,16,18,19,21,23,24,26,28,29,30,31],starts_or_ends_with_fruit:16,starts_with_digit:16,starts_with_fruit:16,starts_with_nondigit:16,stat:[6,29],state:[4,8,10,12,14,23,25,26,27,28,29],statement:[1,3,6,7,11,12,16,19,25,31],statement_1:22,statement_2:22,statement_3:22,statist:[1,6,12,13,14,18,26,28,30],statsmodel:6,statu:[26,28],std:[12,18,28,29],steelblu:19,step:[1,7,8,10,11,16,20,21,23,24,26,27,28,29,31],steve:23,still:[2,3,4,7,10,14,18,20,28,29],stone:[11,16],stonebr:[12,14],stop:[8,22,23,24],stopiter:23,storag:6,store:[0,1,2,3,4,6,7,15,18,19,20,23,24,28],store_count:19,store_id:[15,18,19,22,24],store_sal:24,store_visit:24,str:[2,3,4,6,11,15,16,23,24],straight:16,straightforward:[8,20,26],strang:2,strategi:[27,29],stratifi:27,stream:20,street:[7,11,12,20],strict:10,strictli:8,stride:4,strike:7,string:[1,3,4,6,7,8,11,12,17,19,23,24,28,29],string_object:16,strmethodformatt:18,strong:[19,28,31],stronger:8,strongli:23,structur:[5,6,7,8,10,14,23,24,28,29],stt_wav_abn:11,student1:24,student2:24,student3:24,student:[1,24,31],studi:31,stuff:23,style:[6,7,11,16,18,26],styliz:19,sub:[14,18,19],subclass:[7,11,12],subcompon:29,subdirectori:7,subject:[3,31],submiss:31,submodul:[6,19,20],subplot:19,subset:[11,12,13,16,26,27,28,31],substanti:28,substitut:[14,15],substr:24,subtract:[2,11,23],success:[1,15,27,28],successfulli:31,succinct:[10,16],succinctli:3,suffer:28,suffix:[1,15],suggest:[1,15,24,26,31],suitabl:29,sum:[6,11,12,14,15,16,18,19,22,23,24,26],summar:15,summari:[12,13,14,18,24,30,31],summer:16,summer_or_fal:16,summer_product:16,sundai:18,sunset:2,suppli:[15,20,22,24,29],support:[0,1,4,6,7,8,11,23,24,29],suppos:[2,3,11,28],supppli:16,suptitl:19,sure:[0,1,6,11,19,24,28,31],surfac:[19,28],svg:20,swan:[4,31],swisu:[12,14],sydnei:23,syllabu:31,symbol:[2,6,16,20,24],sympi:6,synonym:[6,24],syntax:[1,3,4,6,11,12,16,19,20,23,24],syntaxerror:2,synthes:1,sys:[6,29],system:[0,6,25,26],systemat:11,tab:[0,1,6,20],tabl:[2,3,6,7,8,14,15,16,17],tabul:6,tabular:[6,7,27],tach:11,tad:16,tail:[7,23],tailnum:10,tailnum_of_interest:10,taiwan:28,take:[0,1,2,3,6,7,8,10,11,12,15,16,18,19,20,23,24,26,27,28,29],takeawai:10,taken:[23,24,28],talk:[1,2,11,12,14,15,18],target:[26,28,29],target_col:27,target_column:26,target_predict:27,task:[3,5,9,10,11,12,13,15,17,19,26,28,29,31],tbb:6,tblib:6,tchd:11,tea:16,teach:[1,7,20],team:[11,12],technic:[7,24],techniqu:[26,28,30],tediou:[11,16,25],tell:[2,3,4,6,7,11,15,16,26],temperatur:12,tempfil:6,tempt:2,ten_coin_flip:23,ten_of_a_kind:23,tenac:6,tend:[6,15],term:[6,9,10,16,19,24,26,31],termin:[1,6,7,23],terminado:6,test2:22,test:[0,1,3,6,10,19,22,24,28,29],test_1:22,test_accuraci:29,test_express:22,test_roc_auc:29,test_scor:29,test_siz:27,testpath:6,text:[0,1,2,6,7,8,11,17,24,29,31],text_align:0,textdist:6,thailand:28,than:[0,1,3,4,6,7,8,10,11,12,15,16,18,19,22,23,24,25,27,28,29],the_truth:3,thebe:6,thei:[0,1,2,3,4,6,8,14,15,18,19,20,22,24,26,28,29,31],them:[1,2,3,4,6,7,8,11,12,14,15,16,17,18,19,20,23,24,28],theme:[6,18],themselv:3,therefor:[0,7,29],thi:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30],thing:[0,1,2,4,6,7,8,9,10,11,12,16,18,24,26,28,29],think:[1,2,3,4,6,9,10,11,12,16,20,23,24,26,29],third:[7,9,10,19,23,24,27],thoma:25,thorough:[14,22],thoroughli:6,those:[0,1,4,7,10,11,12,13,15,16,17,18,19,20,24,28],though:[1,2,3,4,8,10],thought:[1,10],thousand:11,threadpoolctl:6,three:[2,3,4,6,7,9,10,14,15,16,23,24,28,29],three_digit:16,threshold:24,through:[0,1,2,3,4,5,6,9,11,13,15,17,19,20,21,23,24,25,30,31],throughoug:18,throughout:[0,3,6,7,8,15,31],throught:[],thrown:[23,24],thu:[12,19,25,29],thursdai:18,tick:18,tick_format:18,tick_label:19,ticker:18,tidi:[17,31],tidy_reeves_gradi:14,tiffani:14,tifffil:6,tim:[1,4],timber:[12,14],time:[0,1,2,3,6,7,8,10,11,12,15,16,18,19,20,22,23,24,26,28,29,31],timeout:6,timestamp:[18,24],tinycss:6,tip:[28,31],tiss:[15,16],tissu:15,titl:[18,20,22,24],tldextract:6,to_fram:19,to_list:8,tobago:28,toc:6,todai:12,togeth:[2,3,11,12,15,20,27,29],togglebutton:6,toi:[0,11,22,29],token:6,told:2,tom:[14,24],toma:31,toml:6,tomli:6,too:[4,8,10,27],tool:[0,1,6,7,16,18,20,21,23,24,30,31],toolbar:[1,20],toolbox:30,toolkit:6,tooltip:20,toolz:6,top10:18,top:[1,6,12,16,18,19,26],topic:31,tornado:6,tortilla:16,total:[3,7,11,12,15,16,18,19,20,22,24,29],total_bsmt_sf:11,total_daily_discount:18,total_disc:22,total_sal:[16,24],total_sales_by_weekdai:18,totals_by_stor:19,totrm:[7,11,12],totrms_abvgrd:11,touch:29,towel:16,tqdm:6,traceback:[2,4,6,8,14,15,23,24],track:[7,23],trackid:7,trade:29,tradeoff:29,tradit:16,tradition:1,trai:16,train:[6,7,16,19,24,26,28,29],train_test_split:[27,28,29],traitlet:6,transact:[15,16,18,19,22,24],transaction_timestamp:[15,16,18,19,22,24],transfer:19,transform:[6,11,17,18,20,21,27,28,29,31],translat:[1,2],transpar:20,transpos:6,treat:[6,16,29],treatment:16,tree:[26,28,29],trei:20,trend:22,tri:[4,10,18,23,24],trinadad:28,tripl:2,tropic:16,troubl:3,truli:16,truncat:31,trust:[6,15,27,28],trustworthi:22,truth:3,truthi:22,tuesdai:18,tuna:15,tune:21,tupl:[19,20,23,24],turbo:10,turkei:15,turn:[10,26,28,31],tutori:[2,24,31],twice:24,twiddl:29,twist:6,two:[0,1,2,3,4,6,7,8,9,10,11,12,14,15,16,19,20,22,23,24,26,27,28,29,31],type:[0,1,3,4,5,6,8,10,11,12,14,15,16,19,20,26,27,29,31],typeerror:[2,4,6,24],typic:[1,6,7,8,11,15,16,17,19,24,28,29],typing_extens:6,typograph:31,tzlocal:6,ugli:1,uhd:3,uilt:24,ujson:6,ultim:1,umbrella:24,unambigu:25,uncommon:3,under:[1,2,6,11,14,16,22,24,29],undergrad:4,underli:[28,29],underneath:[18,23],underpin:6,underscor:[11,28],understand:[1,2,3,5,6,7,9,16,18,19,24,25,28,29,30,31],undert:29,undetermin:23,unexpect:8,unf:[7,11],unfold:23,unfortun:[18,19,28,29],unidecod:6,unifi:29,uniform:29,unind:20,uniqu:[3,4,7,8,12,14,15,16,18,20,23,24,28,29,31],unique_valu:23,unit:[14,18,19,26,28],unitpric:7,univari:18,univers:[0,4,12,31],unix:1,unknown:6,unleash:1,unless:[0,4],unlik:6,unmarri:[18,19],unnecessari:25,unord:1,unpack:[19,23],unpredict:[3,10],unrecover:24,unseen:[26,29],unstack:[14,18],unsupport:[2,4,6],until:[23,24,29],unwieldi:20,upc:15,upcom:[22,26],updat:[0,2,3,4,6,11,19,20],upon:[0,2,6,15,16,23,24,31],upper:[16,18,24],uppercas:16,upward:11,url:7,urllib3:6,urllib:6,usag:[0,7,11,24],use:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,21,22,23,24,26,27,28,29,31],used:[0,1,2,3,4,6,7,8,9,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],useful:[1,4,6,7,10,12,19,20,22,23,24,26,27],user:[6,7,8,11,18,24,29,31],user_guid:10,usernam:7,userwarn:[16,20],uses:[3,4,11,15,22,24,27,28,29],using:[0,1,2,3,4,5,6,7,8,10,12,14,15,16,18,19,20,23,24,26,27,28,29,30,31],usual:[1,3,6,10,11,18,24],util:[7,11,20],utility_spac:11,val:[6,7,11,12],val_a:15,val_b:15,val_i:15,val_x:15,valid:[4,15,18,19],valu:[0,1,2,4,6,7,8,10,12,13,14,15,17,18,19,20,22,23,24,26,27,28,29],valuabl:16,value_column:14,value_count:[16,18,26],value_map:11,value_nam:14,value_var:14,valueerror:[14,24],vanilla:1,var_nam:14,varada:14,vari:[2,14],variabl:[1,3,4,7,11,14,15,16,18,19,20,22,23,27,29,30],variablenam:12,variant:1,variat:23,varieti:[9,16,19,20,24,25,31],variou:[1,5,6,7,10,11,12,13,14,15,16,17,20,21,24,31],vast:[18,19],veal:15,vector:[6,11,22,24],veenker:[12,14],veg:16,veget:16,ventricular:11,venu:14,verbos:[6,12,22,29],veri:[0,1,2,3,4,6,10,15,18,19,20,22,23,24,26,27,29],verifi:[6,7,19],verison:1,vernor:12,versatil:[6,18],version:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,22,23,26,27,28,29],versu:[3,9,10,18,19,24],vert:19,vertic:[16,18],veteran:4,via:[0,6,7,11,14,15,29,31],video:[],vietnam:28,view:[1,7,15,18,19,20,28,31],viewabl:20,viewer:19,ving:12,violat:28,viridi:11,visibl:1,visit:[3,22,24,31],visual:[1,6,7,11,14,18,19,20,21,28,30,31],vitamin:16,vnr:[7,11,12],voc:[26,28],vocabulari:31,vowel:16,vscode:24,w3lib:6,wai:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,23,24,26,28,29,31],wait:[2,3,4,11,16],walk:23,wall:[7,29],want:[0,1,2,3,4,6,8,10,11,12,13,14,15,16,17,18,19,20,22,23,24,26,27,28,29],warn:[2,10,11,14,15,16,20,31],watch:[1,2,4,6,14,15,31],watchdog:6,watermark:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],wave:11,wcwidth:6,weakref:6,web:[0,6,20],webencod:6,webinar:[1,14],webpag:[26,31],websit:[1,18,31],websocket:6,wednesdai:18,week:[15,18,19,22,24,26,27,28,31],weekdai:[18,24],weekend:[18,24],weekli:18,weigh:[3,16],weight:29,welcom:[5,9,31],well:[1,6,7,11,16,18,19,20,23,29],went:28,were:[1,2,6,14,15,16,19,20,28],werkzeug:6,what:[0,2,3,4,6,7,9,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],wheel:6,when:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,25,26,27,28,29,31],whenev:[1,8,15,19,24],where:[0,1,2,3,4,6,7,8,10,11,14,15,16,18,19,20,22,23,24,26,29,31],wherea:[8,15,28],whether:[2,3,10,16,18,19,20,24,26,28],which:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,25,26,27,28,29,31],white:[1,11,15,16,26],who:15,whoa:[3,11],whole:7,wholemount:14,why:[4,18,24,29],wide:[0,6,16,19,25,31],wider:14,widget:6,widgetsnbextens:6,width:[0,3,14,19],wild:[7,14],wildcard:16,window:[1,12],wing:10,wise:[6,11,16,19],wish:[0,4,6,15],within:[0,1,2,6,7,8,9,11,12,14,15,16,18,19,20,22,23,24,25,26,29,30,31],withing:0,without:[4,6,7,11,19,20,22,23,24,26,28],won:[11,14,22,24,28],wood:[7,11,12],wood_deck_sf:11,word:[1,3,4,6,10,15,23,24],work:[0,1,2,3,4,5,6,7,8,10,12,14,15,16,17,18,19,20,22,24,26,28,29,31],workbook:7,workclass:[26,28],workclass_:28,workflow:[8,11,26,30],worksheet:7,workshop:28,workspac:[6,7,19,24],world:[2,3,6,24,30,31],worri:[0,3,4,6,7,11,18,22,29],worst:2,worth:[1,11,14,16],would:[1,2,4,6,7,8,11,12,14,15,16,18,19,20,24,26,28,29],wra:16,wrangl:[9,11,13,30,31],wrap:[10,16],wrapper:6,wrapt:6,wreck:25,write:[0,1,3,11,20,22,23,25,31],written:[1,2,3,15,24,26],wrongli:27,wurlitz:6,www:[26,27],x27:28,x2a:16,x_axis_label:20,x_cancer:29,x_diabet:29,x_interp:6,x_list:6,x_squar:6,x_test:[27,28,29],x_train:[27,28,29],xarrai:6,xaxi:20,xaxis_loc:19,xlabel:[18,19],xlim:19,xlrd:6,xlsx:7,xlsxwriter:6,xlwing:6,xmax:26,xmin:26,xmlfile:6,xor:2,xtick:19,xticklabel:19,xxx:16,xxxx:11,xytext:19,y_axis_label:20,y_cancer:29,y_diabet:29,y_i:29,y_interp:6,y_pred:29,y_test:[27,28,29],y_train:[27,28,29],yaml:6,yapf:6,yarl:6,yaxi:[18,20],yaxis_loc:19,year:[2,7,10,11,12,14,15,18,19,23,24,26],year_built:11,year_remod:11,year_sold:14,yearbuilt:28,yell:24,yellow:16,yes:0,yet:[6,18,19,23,29],yike:3,ylabel:[18,19],ylim:19,ymax:26,ymin:26,you:[0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31],young:7,younger:10,your:[1,3,4,6,7,8,9,10,11,12,14,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31],your_monitor:3,yourself:[6,11,15,20,25],yr_sold:11,yrsold:20,ytick:19,yticklabel:19,yugoslavia:28,zen:[1,24],zero:[2,3,4,16,18,19,22,26,28],zerodivisionerror:2,zict:6,zip:[6,23],zip_cod:4,zipp:6,zone:[7,11,12],zoom:20,zope:6},titles:["Lesson 0: Configuring your computer","Lesson 1a: Introduction to JupyterLab","Lesson 1b: Variables, operators & types","Lesson 1c: More operators & conditionals","Lesson 1d: Data structures","Overview","Lesson 2a: Packages, libraries & modules","Lesson 2b: Importing data","Lesson 2c: Deeper dive on DataFrames","Overview","Lesson 3a: Subsetting data","Lesson 3b: Manipulating data","Lesson 3c: Summarizing data","Overview","Lession 4a: Tidy data","Lesson 4b: Relational data","Lesson 4c: Handling text data","Overview","Lession 5a: Plotting with Pandas","Lesson 5b: Plotting with Matplotlib","Lesson 5c: Plotting with Bokeh","Overview","Lession 6a: Conditional statements","Lesson 6b: Iteration statement","Lesson 6C: Writing functions","Overview","Lesson 7a: Data Exploration","Lesson 7b: First model with scikit-learn","Lesson 7c: Feature Engineering","Lesson 7d: Model Evaluation & Selection","Overview","Statistical Computing"],titleterms:{"boolean":3,"case":16,"class":[16,31],"default":24,"float":2,"function":[1,11,24,29],"import":[6,7,19,20],"long":14,"switch":22,"true":3,"try":24,"while":23,Adding:[11,19],Are:8,Axes:19,The:[0,1,3,12,18,20],Using:28,acknowledg:31,addit:[1,7,14],adult:26,aggreg:12,alia:6,altogeth:16,anaconda:0,anatomi:19,anchor:16,anonym:24,appli:[11,22],arg:24,argument:24,asid:3,assert:24,assign:2,attribut:[7,18],axes:19,base:[11,28],basic:[16,28],bia:29,bigger:15,bokeh:20,book:31,branch:22,brief:3,calcul:11,call:19,can:8,cartesian:29,categor:28,categori:28,cell:1,censu:26,chain:3,chang:24,charact:16,check:[0,2,3,4,6,7,10,11,12,14,15,16,18,19,22,23,24,27,29],choos:28,chrome:0,code:[1,20],color:20,column:11,command:0,common:16,complex:11,comprehens:23,comput:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29,31],conda:0,condit:[3,22],configur:0,content:6,control:23,convent:31,convers:[2,16],copi:10,count:16,creat:26,creation:[4,19],cross:29,custom:11,data:[4,6,7,10,11,12,14,15,16,19,20,26,27,28,29],databas:7,datafram:[8,12,18],dataset:26,decis:26,deeper:8,defin:24,delimit:7,describ:12,detect:16,determin:2,dictionari:4,differ:15,dimens:[10,19,20],displai:1,distinguish:19,distribut:0,dive:8,docstr:24,download:0,ecod:28,els:3,encod:28,engin:[28,29],environ:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],equal:3,error:24,escap:16,estim:[5,9,13,17,21,25,29,30],evalu:29,exampl:15,excel:7,except:24,exercis:[1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],explicit:6,explor:26,express:16,extract:16,fals:3,featur:[26,27,28,29],feedback:31,figur:19,file:[1,7],filter:10,firefox:0,first:[20,27],fit:27,fold:29,frame:20,from:[0,19,27],full:[15,29],get:19,get_:19,git:0,grammar:20,graphic:1,grid:29,group:12,hand:26,handl:16,hello:1,hint:24,hood:18,hyperparamet:29,ident:3,implicit:6,increment:2,index:[4,8,12],indic:15,individu:29,inlin:3,inner:15,inspect:26,instal:0,integ:2,interpret:1,introduct:1,iter:23,join:15,json:7,jupyt:1,jupyterlab:[0,1],kei:[1,15],keyboard:1,keyword:24,knowledg:[2,3,4,6,7,10,11,12,14,15,16,18,19,22,23,24,27,29],kwarg:24,label:19,launch:[0,1],learn:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31],left:[3,15],lession:[14,18,22],lesson:[0,1,2,3,4,6,7,8,10,11,12,15,16,19,20,23,24,26,27,28,29],librari:6,limit:19,line:[0,16,19],list:[4,23],load:26,locat:19,logic:3,loop:23,machin:0,maco:0,made:8,make:27,manag:0,mani:7,manipul:11,materi:31,matplotlib:[6,18,19],melt:14,memori:7,merg:15,metacharact:16,metadata:7,method:[7,12,19,24,29],metric:29,miss:11,mode:1,model:[27,28,29],modul:[6,19],more:[3,11,19],multipl:[11,12,16,19],multiwai:22,mutabl:4,mutat:15,need:14,node:0,nomin:28,non:11,note:2,notebook:1,numer:[3,11,28],numpi:6,object:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31],oper:[2,3,4,10,11,16],order:2,ordin:28,other:[3,6,7,19,20],our:20,out:3,outer:15,overview:[5,9,13,17,21,25,30],overwrit:11,own:0,packag:[0,6],panda:[6,18,22],paramet:[24,29],part:16,parti:6,path:7,pickl:7,pipelin:28,pivot:14,plot:[18,19,20],predict:27,prep:29,preprocess:28,prerequisit:[10,15,16,18,20,22,23,24,28],print:1,put:16,pyplot:19,python:1,question:[1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,23,26,27,28,29,31],quick:[1,4,29],random:29,refresh:29,regex:16,regular:16,relat:[3,15],remov:11,renam:11,repetit:16,replac:[11,16],requir:[5,9,13,17,21,25,30],resampl:29,reshap:14,respons:26,review:4,right:15,row:10,rule:26,save:20,schedul:31,scienc:6,scikit:27,scipi:6,scope:24,score:29,search:[24,29],select:[10,28,29],separ:27,sequenc:23,sequenti:10,seri:[8,12,18],set:19,set_:19,shortcut:1,shorthand:16,simpl:12,simultan:10,size:19,slice:[4,10],special:14,specif:20,split:27,sql:7,standard:6,statement:[22,23,24],statist:31,strategi:28,string:[2,16],structur:[4,31],style:[19,20],subset:10,summar:12,target:27,task:[6,22,23,24],termin:0,terminolog:6,test:27,text:[16,19],thi:31,third:6,tick:19,tidi:[14,20],time:[5,9,13,17,21,25,30],titl:19,todo:15,togeth:28,tool:14,train:27,tune:29,tupl:4,tutori:[7,19,20],type:[2,7,24,28],unbias:26,under:18,unicod:3,uninstal:0,unpack:4,upon:19,used:31,user:0,using:11,valid:[24,29],valu:[3,11,16],variabl:[2,10,12,24,26,28],varianc:29,video:[1,2,3,4,6,7,8,10,11,12,14,15,16,19,20,22,23,24,31],view:10,visual:26,what:[1,8],when:24,why:[0,1],wide:14,window:0,word:16,world:1,wrap:28,write:24,xcode:0,you:8,your:0}})
\ No newline at end of file
+Search.setIndex({docnames:["00-module/lesson-0b","01-module/lesson-1a","01-module/lesson-1b","01-module/lesson-1c","01-module/lesson-1d","01-module/overview","02-module/lesson-2a","02-module/lesson-2b","02-module/lesson-2c","02-module/overview","03-module/lesson-3a","03-module/lesson-3b","03-module/lesson-3c","03-module/overview","04-module/lesson-4a","04-module/lesson-4b","04-module/lesson-4c","04-module/overview","05-module/lesson-5a","05-module/lesson-5b","05-module/lesson-5c","05-module/overview","06-module/lesson-6a","06-module/lesson-6b","06-module/lesson-6c","06-module/overview","07-module/lesson-7a","07-module/lesson-7b","07-module/lesson-7c","07-module/lesson-7d","07-module/overview","intro"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["00-module/lesson-0b.ipynb","01-module/lesson-1a.ipynb","01-module/lesson-1b.ipynb","01-module/lesson-1c.ipynb","01-module/lesson-1d.ipynb","01-module/overview.md","02-module/lesson-2a.ipynb","02-module/lesson-2b.ipynb","02-module/lesson-2c.ipynb","02-module/overview.md","03-module/lesson-3a.ipynb","03-module/lesson-3b.ipynb","03-module/lesson-3c.ipynb","03-module/overview.md","04-module/lesson-4a.ipynb","04-module/lesson-4b.ipynb","04-module/lesson-4c.ipynb","04-module/overview.md","05-module/lesson-5a.ipynb","05-module/lesson-5b.ipynb","05-module/lesson-5c.ipynb","05-module/overview.md","06-module/lesson-6a.ipynb","06-module/lesson-6b.ipynb","06-module/lesson-6c.ipynb","06-module/overview.md","07-module/lesson-7a.ipynb","07-module/lesson-7b.ipynb","07-module/lesson-7c.ipynb","07-module/lesson-7d.ipynb","07-module/overview.md","intro.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"000":[3,6,7,11,23],"00000":12,"000000":[11,12,18,26,28],"00000000e":[],"000010e":28,"000011":16,"00011423":[],"00021005":29,"00021315":29,"00022817":29,"00023317":29,"00030708":29,"0004468":29,"00046897":29,"00047302":29,"0008657":29,"00091314":29,"0009765625":23,"0015783":24,"002048":12,"004":29,"004552":28,"005":22,"00574432":[],"007100e":12,"00845704":[],"00857417":24,"011604":12,"01166758":[],"0123456789":16,"01264809":24,"01662099":[],"01671126":[],"017759":12,"018564":16,"019000":16,"019058":28,"02121496":29,"02129579":29,"02192521":29,"0222559":29,"02284193":29,"02325082":29,"02332211":29,"02336216":29,"0234158":29,"02420998":29,"025330":11,"026876":16,"026963":16,"02821534":[],"03000427e":28,"030341":16,"030940":26,"031441":26,"03327204":[],"03408696":28,"034354137152878":[],"03492848":29,"037346e":28,"03870031":[],"042267":11,"04288912":29,"04320383":29,"04330611":29,"04380894":29,"04482484":29,"045000":24,"04694151":28,"048333":24,"05126361":[],"05195989":[],"052784":11,"054467":26,"05474412":[],"05630605":24,"056944":26,"05786357":[],"059179e":28,"060068":12,"0600682594":12,"067626":28,"06762622":28,"07022987":[],"071110e":28,"071558":26,"071811e":12,"073516":11,"07469469":[],"07530392":[],"077229":26,"07808853":28,"078089":28,"07831103e":[],"080972":26,"082157":26,"08264166":[],"087370":12,"08952764":[],"090909":12,"09282163":[],"092903":11,"094881":12,"09573488":[],"09984341":24,"0a1":6,"0x7fa02666bca0":12,"0x7faa33a56b80":[],"0x7fcb6ea59d00":[],"0x7febc2cf4a30":[],"100":[3,4,6,12,15,16,18,19,23,24,27,29],"1000":[2,6,11,12,29],"1001":12,"10010":7,"1002":12,"1003":12,"1004":12,"1005":12,"1006":12,"1007":12,"1008":12,"1009":12,"101":12,"1010":12,"1011":12,"1012":12,"1013":12,"1014":12,"10147":12,"1015":12,"1016":12,"1017":12,"1018":12,"1019":[12,16],"10196804":24,"102":[12,28],"1020":12,"1020156":[15,22],"1021":12,"1022":12,"1023":12,"1024":[12,23],"1025":12,"1026":12,"1027":12,"1028":12,"1029":12,"1029743":15,"103":12,"1030":12,"1031":12,"1032":[11,12],"1039":12,"104":12,"1040":12,"1041":12,"1041453":[15,22],"1042":12,"1043":12,"1044":12,"10441":7,"1045":12,"1046":12,"1047":12,"1048":12,"104988":11,"105":[11,12,14,15],"1050":12,"105000":[7,11],"1050000":11,"1051":[12,16],"1052":12,"1053":12,"1053875":[15,22],"1054":12,"1055":12,"1056":12,"105608":12,"1057":12,"1058":12,"1059":12,"106":[7,11,12,15],"1060":12,"106000":12,"1061":12,"1061220":15,"1062":12,"1063":12,"1064":12,"1065":[11,12,16],"1066":12,"106668":16,"1067":12,"1068":12,"1069":12,"107":[12,14,15],"1070":12,"1071":[11,12],"1072":12,"1073":12,"1074":12,"1075":[11,12,16],"1076":12,"1077":12,"1078":12,"1079":[12,28],"108":[11,12,14,15],"1080":12,"1081":12,"1082":12,"1083":12,"1084":12,"1085":12,"1086":12,"1087":12,"10878":26,"1088":12,"1089":12,"109":[12,14,15],"1090":12,"1091":12,"1092":12,"1093":12,"1094":[12,16],"1095":12,"1095275":[15,18,19,22],"1096":12,"1097":12,"1098":12,"1099":12,"10lb":16,"10th":[26,28],"110":[12,14,15],"1100":12,"1101":12,"1102":12,"11025000000":11,"1103":12,"1104":12,"1105":12,"1106":12,"1107":12,"1108":12,"1109":12,"111":[12,14,15],"1110":12,"111003":18,"1111":12,"11110":11,"1112":12,"111279":18,"11128":15,"1113":[12,16],"1114":[12,16],"1115":12,"111537":12,"1116":12,"11160":[7,11],"1117":12,"11170334":7,"1118":12,"1119":12,"112":[11,12,14,15],"1120":12,"1121":12,"1122":12,"1123":12,"1124":12,"1125":12,"11250":20,"1126":12,"112611":12,"1127":12,"1128":12,"11287186":[],"1129":12,"113":[12,15],"1130":12,"1131":12,"1132":12,"1133":12,"1134":12,"1135":12,"1136":12,"1137":12,"1138":12,"1139":12,"114":[12,15],"1140":12,"1141":12,"1142":12,"1143":12,"1144":12,"1145":12,"1146":12,"1147":12,"1148":12,"1149":12,"115":[11,12,15],"1150":12,"1151":12,"1152":12,"1153":[12,16],"1154":12,"1155":12,"11555":12,"1156":12,"1157":12,"11572":11,"1158":12,"1159":12,"115910":11,"116":[11,12,15],"1160":12,"1161":12,"1162":12,"11622":[7,11],"1163":12,"1164":12,"1165":12,"1166":12,"1167":12,"1168":12,"11684397e":6,"11687":26,"1169":12,"117":[11,12,15],"1170":12,"1171":12,"1172":12,"1173":12,"1174":12,"1175":12,"1176":12,"1178":12,"1179":12,"118":[12,15],"1180":12,"1181":12,"1182":12,"1183":12,"1185":12,"1186":12,"1187":12,"1188":12,"1189":12,"119":[12,15],"1190":12,"1191":12,"1197":12,"1198":12,"1199":12,"11th":[26,28],"120":[12,15],"1200":12,"1201":12,"1203":12,"120369":18,"121":[12,15],"1211":14,"1212":14,"1213":14,"1214":14,"1215":14,"1216":14,"1219":12,"122":[12,15],"1220":12,"1221":12,"1222":12,"12265107":[],"1228":[15,22],"123":[11,12,16,27,28,29],"124":12,"124756":12,"12494":18,"125":[12,14],"12500":[7,11],"1251":16,"125146":26,"1254":12,"1255":12,"1257":12,"1258":12,"1259":12,"126":12,"1265":14,"1267":16,"126750":12,"127":[12,16],"1277":16,"12789":12,"1279328171":16,"128":[7,12],"1280":11,"1282":14,"1283":12,"128361":22,"1284":12,"1285":12,"1285396":22,"1286":12,"1287":12,"1288":[12,14],"1289":12,"129":[11,12],"1290":12,"1291":12,"1292":12,"1293":12,"129500":12,"12b0":6,"12th":[26,28],"130":12,"1300":12,"1301033579":4,"130413341399557":[],"130500":12,"1306":14,"131":[11,12],"131000":[7,11],"1310385":18,"13157581":24,"132":[11,12],"1320":11,"132000":[7,11],"1327":[12,14],"132722":6,"1328":12,"1329":[12,16],"133":[12,14],"1330":12,"1331":12,"1332":12,"1333":12,"1334":12,"1335":12,"1336":12,"1337":12,"1338":12,"1339":12,"134":[12,14],"1340":12,"1341":12,"1342":[12,14],"1343":12,"1344":12,"1345":12,"1347":15,"1348":[12,15],"1349":[12,15],"135":[12,14],"1350":[12,15],"1351":[12,15],"1352":[12,15],"1353":[12,15],"1354":[12,15],"1355":[12,15],"1356":15,"1357":15,"1358":15,"1359":[12,15],"136":[12,14],"1360":[12,15],"1361":12,"1362":12,"1363":12,"1364":12,"1365":12,"1368":[12,16],"1369":12,"137":[12,14],"1370":12,"1371":12,"1372":12,"1373":12,"1374":12,"1375":12,"1376":12,"1377":12,"1378":[12,16],"13780":11,"1379":12,"1379372":22,"138":[12,14],"1380":12,"1381":12,"1382":12,"1383":12,"13830":[7,11],"1384":12,"1385":12,"1386":12,"1387":12,"1388":12,"1389":[12,26],"139":[12,14],"1390":12,"139059":12,"1391":12,"1392":12,"1393":12,"1394":12,"1395":12,"1396":12,"1397":12,"1398":12,"1399":12,"140":[12,14],"1400":12,"140000":20,"1401":12,"1402":12,"14025548":15,"140262968913200":[],"140262983233200":[],"140284253111536":[],"140284267294928":[],"1403":12,"1404":12,"140438716342624":10,"140438730364480":10,"1405":12,"1406":12,"140606100927728":[],"140606114994256":[],"140680024288368":[],"140680038399040":[],"1407":12,"1408":12,"1409":12,"141":[7,11,12],"1410":12,"1411":12,"1412":12,"1413":[12,14],"141331":12,"1414":12,"1415":12,"1416":12,"1417":12,"1418":12,"1419":12,"142":[11,12,18,20],"1420":12,"14207045":[],"1421":12,"14217":11,"1422":12,"1423":12,"1424":12,"1424042":22,"1425":[12,15],"142500":[7,11],"1426":12,"14260":20,"14267":[7,11],"1427":12,"1428":12,"1429":12,"143":12,"1430":12,"1431":12,"1432":12,"1433":12,"1434":12,"1435":12,"143590":12,"1436":[12,16],"143689":26,"1437":12,"1438":12,"1439":12,"144":[12,16],"1440":12,"1441":12,"1442":12,"144645e":12,"1447":14,"1448":[14,16],"14480353":28,"145":12,"14537686":[],"1457":14,"145lr":10,"145xr":10,"146":[6,12,16],"1465":12,"1466":14,"1469302":[15,24],"1469303":[15,24],"1469304":[15,24],"1469305":[15,24],"1469306":[15,24],"1469307":[15,24],"147":[12,14],"148":[12,14],"1482":14,"1483":14,"1485":12,"1486":12,"1487":[12,14],"1488":12,"1489":12,"149":[12,14],"1490":12,"1491":12,"1492":12,"1493":12,"1494":12,"1495":12,"1496":12,"1497":12,"1498":12,"1499":12,"150":[12,14,19],"1500":12,"15000":18,"1501":12,"1502":12,"15024":27,"1503":[12,14],"1504":12,"1508":[7,11],"151":[11,12,14,16],"15141":18,"1515":12,"1516":12,"1517":12,"1518":12,"15188":18,"1519":12,"152":[12,14],"1520":12,"1521":12,"1522":12,"1523":12,"152330":11,"1524":12,"1525":12,"1526":12,"1527":12,"1528":12,"1529":12,"153":[11,12,16],"1530":12,"1531":12,"1532":12,"15324":15,"1533":12,"1534":12,"1535":12,"1536":12,"1537":12,"1538":12,"1539":12,"154":12,"1540":12,"1541":12,"1542":12,"1543":12,"1544":12,"1545":12,"1546":12,"1547":12,"1548":12,"1549":12,"155":[12,16],"1550":12,"15500":19,"1551":12,"1552":12,"1553":12,"1554":[12,14],"1555":12,"1556":12,"1557":[12,14],"1558":12,"155848":24,"1559":12,"156":[12,16,18],"1560":12,"1561":12,"1562":12,"15627646e":[],"1563":12,"1564":12,"1565":12,"1566":12,"1567":12,"1568":12,"1569":12,"157":[12,18],"1570":12,"1571":12,"1572":12,"1573":12,"1574":12,"1575":12,"1576":12,"1577":[12,14],"1578":12,"15784":26,"1579":12,"158":12,"1580":12,"1581":12,"1582":12,"1583":12,"1584":12,"1585":12,"1586":12,"1587":12,"1588":12,"1589":12,"159":12,"1590":[12,26,27],"15900":19,"1591":12,"1592":12,"1593":12,"1594":12,"1595":12,"1596":12,"1597":12,"1598":12,"1599":12,"160":12,"1600":12,"16000":18,"160000":12,"1601":[12,26],"1602":12,"1603":12,"1604":12,"1605":12,"1606":12,"1607":12,"1608":12,"1609":12,"161":[12,16],"1610":12,"1615":12,"1616":12,"16167":18,"1617":12,"1618":12,"1619":12,"16192":26,"162":12,"1620":12,"1621":12,"1622":12,"1623":12,"1624":12,"1625":12,"1626":12,"1627":12,"1628":12,"1629":12,"163":12,"1630":12,"1631":12,"1632":[12,14],"1633":12,"1634":12,"1635":12,"1636":12,"1637":12,"1638":12,"1639":12,"164":12,"1640":12,"1641":12,"1642":12,"1643":12,"1644":12,"1645":12,"1646":12,"1647":12,"1648":12,"1649":12,"16490846":[],"165":[12,16],"1650":12,"1651":12,"1652":12,"1653":12,"1654":12,"1655":12,"1656":12,"1657":12,"1658":12,"1659":12,"166":12,"1660":12,"16601":18,"1661":12,"1666":14,"167":[12,15],"1671":14,"1675":12,"1676":12,"1677":12,"1678":12,"1679":12,"168":12,"1680":12,"1681":12,"1682":12,"1684":12,"1685":12,"1686":12,"1687":12,"1688":12,"1689":12,"169":12,"1690":12,"169014":18,"1691":12,"1692":12,"170":[11,12],"17000":12,"170000":[7,11],"1704":[14,16],"1705":14,"171":[12,16],"1711":14,"171271e":28,"171988":11,"172":[11,12],"172000":[7,11],"1720000":11,"1727":12,"1728":12,"173":12,"1735":14,"174":12,"1740":14,"174000":12,"1741":12,"1742":12,"1743":12,"1744":[12,16],"1747":16,"17480":16,"175":12,"1753":14,"175900":12,"176":12,"1760":12,"176000":12,"1761":12,"1762":12,"1763":12,"1764":12,"1765":12,"1766":12,"176614":15,"1767":12,"1768":12,"1769":12,"177":12,"1770":12,"1771":12,"1772":12,"177266":12,"1773":12,"1774":12,"1779":14,"178":12,"179":12,"1798":18,"180":12,"18056453":16,"1806":12,"1807":12,"180796":12,"1808":12,"1809":12,"181":12,"1810":12,"18107338":16,"18107424":16,"1811":12,"1812":[12,26],"1813":12,"1814":12,"181452e":28,"18147446":16,"18148186":16,"18148548":16,"1815":12,"181500":20,"1816":12,"1817":12,"181709":11,"1818":12,"18185766":16,"18186504":16,"18186637":16,"1819":12,"18193059":16,"182":[10,12],"1820":12,"1821":12,"1822":12,"1823":12,"1823234":11,"1824":12,"1825":12,"1826":12,"1827":12,"1828":12,"1829":12,"18293142":16,"18293439":16,"18293696":16,"18294080":16,"183":12,"1830":12,"1831":12,"18316298":16,"1832":12,"1833":12,"184":12,"185":[11,12],"1853":12,"1854":12,"1855":12,"1856":12,"1857":12,"1858":12,"1859":12,"186":[12,19],"1860":12,"1861":12,"1863":12,"1864":12,"1865":12,"1866":12,"1867":12,"187":12,"1872":12,"187500":11,"188":[11,12],"188000":[7,11],"189":[11,12,14],"1891":14,"189888":11,"189900":[7,11],"1899000":11,"18996":18,"190":12,"1901":12,"1902":12,"1903":12,"1904":12,"190714":12,"191":[12,14],"191500":12,"1916":16,"192":[12,14],"192000":12,"192500":12,"193":12,"193353e":28,"1935637":[],"193993":18,"194":[12,14],"1942":14,"1943":[14,16],"194671":12,"1947":16,"1949681077":16,"195":[12,14],"1950":12,"1954":12,"1958":11,"196":[11,12],"1960":11,"1961":11,"1965":12,"196661":12,"1968":11,"197":12,"1971":12,"19725323e":[],"19725891":28,"1973":12,"1975":11,"197500":12,"197687315":4,"198":[7,11,12],"1983":11,"1984":[11,12],"198790e":28,"199":[12,16],"1993":[11,12],"1994":26,"1997":11,"1998":10,"1999":[7,10],"1st":[7,11,26,28],"1st_flr_sf":11,"1xc2345g":7,"200":[0,4,7,12,18,24,29],"2000":14,"200000":[7,11],"2001":[12,28],"2002":10,"2003":10,"2004":[10,12],"2005":12,"2006":[7,12,14,20],"2007":[12,14,20],"2008":[12,14,20],"2009":[12,14],"201":12,"2010":[7,11,12,14,20],"2011":12,"2012":12,"2013":[7,12],"2014":[1,12],"2015":12,"2016":12,"2017":[12,15,16,18,19,22],"2018":[12,14,15,18,19,23],"2019":[12,14,23],"202":12,"2020":[2,12,14,23],"20200713":6,"2021":[6,23],"2022":[4,6,12,23],"20220215":6,"2023":[12,23],"2024":12,"2025":12,"20296134":24,"203":12,"2030":12,"2031":12,"2032":12,"2033":12,"203340":11,"2034":12,"2035":[12,14],"2036":12,"2037":12,"2038":12,"2039":12,"204":[12,16],"2043":12,"2044":12,"20442794":[],"2045":12,"2047":12,"2048":12,"20480363":24,"2049":12,"205":12,"2050":12,"2051":12,"2052":12,"2053":12,"2054":12,"2055":12,"2056":12,"205662":7,"2057":12,"206":[6,12],"2061":26,"206667":24,"207":12,"2070":15,"2071":12,"2072":12,"2073":12,"2077":12,"208":12,"2080":12,"208500":20,"208662":12,"2089":12,"209":12,"2090":12,"2091":12,"2092":12,"210":[12,18],"210337":18,"2104":14,"211":12,"2110":[],"2114":16,"2115":12,"2116":12,"2117":12,"2118":12,"212":[12,29],"213":12,"21320432":[],"2135":14,"213500":12,"21394141":28,"214":[10,12],"2142":15,"214424":12,"214988":11,"215":[11,12],"215000":[7,11,18],"2150000":11,"215245":12,"216":12,"2160":3,"216041":12,"217":12,"2171271":28,"21740158":24,"218":12,"2186":14,"219":12,"2190037627":10,"21927493":[],"2194":12,"2195":12,"2196":12,"2197":12,"2198":12,"2199":12,"220":12,"2200":12,"2201":12,"2202":12,"2203":12,"2204":12,"22048":18,"2205":12,"2206":12,"2207":12,"2208":12,"2209":12,"221":[12,18],"2210":12,"2211":12,"2212":12,"2213":12,"2214":12,"2215":12,"22153859":[],"2216":12,"2217":12,"22173441e":[],"2218":12,"2219":12,"222":12,"2220":12,"2221":12,"2222":12,"2223":12,"2224":12,"2225":12,"2226":12,"2227":12,"2228":12,"2229":12,"223":12,"2230":12,"2231":12,"2232":12,"2233":12,"2234":12,"2235":12,"223500":20,"2236":12,"2237":12,"2238":12,"2239":12,"224":12,"2240":12,"2241":12,"2242":12,"2243":12,"2244":12,"2245":12,"224590":12,"2246":12,"2247":12,"2248":[12,14],"2249":12,"224947":12,"225":12,"2250":12,"2251":12,"2252":12,"2253":12,"2254":12,"2255":12,"2256":12,"2257":12,"2258":12,"2259":12,"225928":12,"226":12,"2260":12,"2261":12,"2262":12,"2263":12,"2264":12,"2265":12,"2266":12,"2267":12,"22670219":[],"2268":12,"2269":12,"227":12,"2270":12,"2271":12,"2272":12,"2273":12,"2274":12,"2275":12,"2276":12,"2277":12,"2278":12,"2279":12,"228":12,"2280":12,"2281":12,"2282":12,"2283":12,"2284":12,"2285":12,"2286":12,"2287":12,"2288":12,"2289":12,"229":12,"2290":12,"2291":12,"2292":12,"2293":12,"2294":12,"2295":12,"2296":12,"2297":12,"2298":12,"2299":12,"230":12,"2300":12,"2301":12,"2302":12,"2303":12,"2304":[12,24],"230619":7,"231":12,"23124505e":[],"232":12,"2322":12,"2326":[12,15],"2327":12,"2328":12,"2329":12,"233":12,"2330":12,"2331":12,"2332":12,"2333":12,"2334":12,"2335":[12,23],"2336":12,"2339":12,"234":12,"2340":12,"2341":12,"235":12,"236":12,"23600674":[],"2364":12,"2365":12,"2366":12,"2367":12,"2368":12,"2369":12,"237":12,"2370":12,"2371":12,"2372":12,"2373":12,"2376":12,"2377":12,"238":12,"23875146":[],"2389":14,"239":12,"23913172e":28,"23959983":[],"240":12,"241":12,"241088":11,"2412":14,"2413":12,"24143768":[],"2419":12,"242":12,"2420":12,"2421":12,"2422":12,"2423":12,"2424":12,"2425":12,"2426":12,"2427":12,"2428":12,"2429":12,"243":[12,16],"243345":12,"24371621":24,"243988":11,"244":[11,12],"2440":[7,11,12],"244000":[7,11],"2440000":11,"2442":12,"2443":12,"2444":12,"2445":12,"2446":12,"2447":12,"2448":12,"2449":12,"245":12,"2450":12,"2451":12,"2452":12,"2453":12,"245361":12,"24554053":[],"246":12,"2463":14,"2467":16,"247":[12,26],"2475":16,"248":12,"249":12,"2498":12,"2499":12,"250":[0,12,16],"2500":12,"25000":12,"250000":[12,20,24],"2501":12,"2502":12,"2503":12,"251":12,"25122836":[],"2516":12,"2517":12,"2518":12,"2519":12,"252":12,"2520":12,"252051":7,"2521":12,"2522":12,"25276445":[],"25280979":[],"253":12,"253577":12,"2536":12,"253962":12,"254":12,"255":12,"2554":12,"2555":12,"2556":12,"2557":12,"25590877":[],"256":[3,12],"2560":14,"25624387":[],"25671":16,"257":12,"258":12,"25838401":[],"259":12,"25th":22,"260":12,"26081":16,"26093":16,"261":12,"261000000000001":2,"26190":16,"262":12,"263":12,"263011e":12,"2633":12,"26355":16,"264":12,"26426":16,"26441719":[],"265":12,"265000":18,"26540":16,"2657":26,"26586246":[],"266":12,"26601":16,"266553":12,"2669":12,"267":12,"2670":12,"2671":12,"2672":12,"2673":12,"2675":12,"2676":12,"2677":12,"268":12,"2685369145":2,"26889":16,"269":12,"2690":12,"2691":12,"2692":12,"2693":12,"2694":12,"2695":12,"2696":12,"2697":12,"270":12,"270000":12,"2701":12,"2701405":11,"2703":12,"2704":12,"271":12,"272":12,"2725":12,"2726":12,"2727":12,"273":12,"2730":12,"2731":12,"274":[12,16],"275":[0,12],"27503":16,"276":12,"27623192":[],"2764":12,"2765":12,"27657":16,"2766":12,"2767":12,"27695":16,"277":12,"2771":[7,11],"2773":[7,11],"27754":16,"27767":16,"278":12,"27812":16,"2783512":[],"2785":16,"2788":12,"279":12,"27925":16,"27960":16,"280":[12,18],"281":[12,16],"28116":16,"28117":16,"28143":16,"28192":16,"282":12,"28208":16,"283":12,"28358511":[],"28377":16,"284":12,"2842":12,"2845":12,"2846":12,"2847":[7,11,12],"284770e":12,"2848":12,"2849":[7,11,12],"285":12,"2850":[7,11,12],"2851":12,"2852":12,"2853":12,"2854":12,"2855":12,"285556":24,"2856":12,"2857":12,"2858":12,"2859":[12,29],"286":12,"2860":12,"28603":16,"2861":12,"2862":12,"2863":12,"2864":12,"2865":12,"2866":12,"2867":12,"2868":12,"2869":12,"28696366e":[],"287":12,"2870":12,"2872":12,"2873":12,"2874":12,"2875":12,"2876":12,"2877":12,"2878":12,"2879":12,"288":12,"2880":12,"2881":12,"2882":12,"2885":12,"2886":12,"2887":12,"2888":12,"28889":16,"2889":12,"28892":16,"28897":16,"289":[12,16],"2890":12,"2891":12,"2892":12,"2893":12,"2894":12,"2895":12,"2896":12,"2897":12,"2898":12,"2899":12,"290":12,"2900":12,"2901":12,"2902":12,"29023343e":[],"2903":12,"2904":12,"2905":12,"2907":[7,11,12],"29077389e":[],"2908":12,"2909":12,"291":12,"2910":12,"2913":12,"29132":16,"2914":12,"2916":12,"2917":12,"2918":12,"2919":12,"292":12,"2920":12,"2920717387":4,"2925":[7,11],"2926":[7,11],"2927":[7,11],"2928":[7,11],"2929":[7,11],"2929663160":2,"293":12,"2930":[7,11,12],"294":12,"294458e":28,"2946":11,"295":12,"29584000000":11,"296":12,"297":12,"298":12,"299":12,"2a29":6,"2min":29,"2nd":[7,11],"2nd_flr_sf":11,"300":[12,16,19],"300000000000001":2,"30003":16,"30008233":[],"301":[11,12],"30130928e":[],"30179":16,"302":12,"303":[12,16],"303397e":28,"30367773e":6,"304":12,"305":12,"30557308":[],"306":12,"307":[12,15],"308":12,"309":[12,24],"310":12,"311":[12,15],"31198437603":24,"31198445400":24,"31198445429":24,"31198445465":24,"31198452527":24,"31198570044":[15,18,19,22],"31198570047":[15,22],"31198655051":[15,22],"31198705046":[15,22],"312":[11,12],"313":12,"313880":11,"314":12,"31426853":[],"31493":16,"315":12,"31541475196":[18,19],"316":12,"316613":12,"31672350129":[18,19],"317":12,"31720":11,"31770":[7,11],"318":12,"3182":12,"31883555076":[18,19],"319":[12,15,16,22],"31944515097":[18,19],"320":[12,18],"3203":12,"321":12,"322":[12,16],"32265":16,"323":12,"3233621946":16,"324":12,"325":12,"32597983e":[],"326":12,"32603992":[],"32650":26,"327":12,"327438e":28,"328":12,"32841381":[],"32888":16,"329":12,"330":[12,15,18,19,22],"33048":16,"3307568":11,"331":12,"3317":10,"3318":10,"3319":10,"332":12,"3320":10,"3321":10,"3322":10,"333":12,"333333":12,"33379301":[],"334":12,"33457437":[],"335":[12,16],"33568138":[],"336":12,"337":[11,12,18],"337458":18,"338":12,"3380102":11,"338987":11,"339":12,"340":12,"341":12,"342":12,"34214":16,"342562":7,"343":12,"343719":7,"344":[12,16],"344288":12,"345":12,"34549264":[],"346":12,"34662782":24,"347":12,"34743670e":[],"348":12,"34846205":[],"349":12,"34997":16,"350":[3,12,20],"35085315e":[],"351":[12,29],"352":12,"35215":16,"353":12,"3534964":[],"35379898":[],"354":12,"354536e":12,"354641":24,"355":[12,18],"355073":11,"356":12,"356314":12,"356992":18,"357":[12,29],"35779":18,"358":12,"359":12,"360":12,"36062010000":11,"3607":16,"361":12,"361562":12,"362":12,"3621933347":2,"3627558":[],"363":12,"3635":12,"364":12,"36406":16,"36421":18,"365":12,"365335":12,"36561":16,"366":12,"367":12,"368":12,"3684":12,"369":12,"370":[6,12],"37073":16,"371":12,"37103696e":28,"37155":26,"372":12,"373":12,"374":12,"375":12,"375418":7,"37543":16,"376":12,"377":12,"378":12,"379":12,"380":12,"3801605409":16,"381":12,"382":12,"383":12,"38328":18,"384":12,"3840":3,"3840x2160":3,"38420133":24,"385":12,"38524204e":[],"38592242":[],"386":12,"38692881":[],"386950":11,"387":12,"387372":12,"38786197940297423":29,"388":12,"389":12,"38917282":[],"390":12,"391":12,"391444":28,"392":12,"3928153":24,"393":12,"393051216518487":24,"394":12,"395":[12,24],"396":12,"397":[12,16],"39757527":[],"398":12,"39803966":24,"399":12,"39901557":[],"3990994":7,"39921224":[],"3min":29,"3ssn":[7,11,12],"3ssn_porch":11,"3x3":6,"400":12,"400000":12,"401":12,"402":12,"403":[12,28],"404":12,"40402155":24,"405":12,"406":[12,15,22],"407":12,"408":12,"408696e":28,"409":12,"4096":3,"410":12,"41007503":[],"41012764":[],"411":12,"411026":12,"4114":14,"4115":14,"4116":14,"41180837":28,"412":12,"413":12,"41338666":[],"414":12,"41453083334":15,"41453103606":15,"41480008448":24,"41480013048":24,"41480018446":24,"41481252623":24,"41481282915":24,"415":12,"4153":14,"4154":14,"4155":14,"4157":14,"416":12,"417":12,"418":[11,12],"419":12,"41933527":28,"41945159460331":[],"420":12,"420617":11,"4207":18,"421":12,"422":12,"422382":28,"42238238":28,"423":12,"424":12,"425":12,"426":12,"427":12,"4277480":11,"428":12,"42895409":[],"429":12,"430":[12,14],"43002542":24,"431":[12,14],"43119703":[],"432":[12,14],"43233":18,"433":[12,14],"4331779":7,"43361":16,"434":[12,14],"435":[12,14,16],"4356":28,"436":12,"437":12,"43713849e":[],"438":12,"439":12,"440":12,"441":[12,24],"442":12,"443":[12,19],"444":12,"4440733300753526":29,"44482601":[],"445":12,"44523688e":[],"44599":16,"446":12,"447":[12,15],"448":12,"448035e":28,"449":12,"450":12,"451":12,"45159783":[],"45194277e":28,"452":12,"45208":4,"45218":16,"4523764416":4,"45265":22,"453":12,"4537275440":4,"4537277616":4,"45385":4,"454":12,"454545":12,"455":12,"456":12,"45607":16,"45665299e":[],"457":[12,15],"45769391":[],"458":12,"459":12,"460":12,"46005403":[],"4604":19,"46064982":[],"461":12,"462":12,"46225000000":11,"463":12,"464":12,"465":[12,22],"4654":7,"466":[12,29],"467":12,"46730":22,"4674958":24,"46790":18,"468":[11,12],"468087":11,"46871185":29,"469":[12,15],"46947885":29,"470":12,"47085719":24,"471":12,"472":12,"47252277":24,"473":12,"47327805":29,"47338025e":[],"474":12,"475":12,"475502e":28,"476":12,"47673547":[],"477":12,"478":12,"479":12,"480":12,"481":12,"48153345":[],"482":[11,12],"483":12,"483400":12,"484":[11,12],"485":12,"48534298":29,"48562898":[],"486":12,"48616936":24,"48677206":29,"487":12,"4875":16,"488":12,"48837":[27,28],"48838":[27,28],"48839":[27,28],"48840":[27,28],"48841":[27,28],"48842":[26,27,28],"489":[12,14],"490":[11,12,14],"49076104":29,"491":[12,14],"492":[12,14],"493":[12,14],"49363395":[],"494":[12,14],"495":[12,14,18],"495000":24,"495366":11,"496":[12,14],"49621201":29,"497":12,"498":12,"499":12,"49930":16,"49930501":29,"49k":[18,19],"4g0":8,"4th":[8,19,26,28],"500":[3,12,28,29],"5000":26,"50000":12,"500000":[11,12],"50082432":[],"501":12,"502":12,"50231358":28,"502314":28,"503":12,"504":12,"505":12,"505912437858434":[],"506":12,"50666094":29,"50691006":[],"507":12,"50776":16,"508":12,"50809":15,"509":[12,26],"50k":[26,27],"50th":22,"510":12,"51061606":29,"511":12,"511163":29,"512":12,"51276347":24,"51279712":29,"51290982":[],"513":12,"514":12,"51475096":29,"515":12,"51552533":[],"516":12,"517":12,"5177494254132934":29,"518":[12,14],"519":[12,14],"51963961e":[],"520":[12,14],"521":12,"52101973e":[],"522":[11,12],"523":12,"52304196":29,"524":12,"525":12,"52565252":24,"526":12,"526301100":[7,11],"526350040":[7,11],"526351010":[7,11],"526353030":[7,11],"527":[12,16],"52703":15,"527105010":[7,11],"528":[11,12],"528228285":12,"528228290":12,"528228295":12,"528228435":12,"528228440":12,"529":12,"529732456":12,"530":12,"53070":16,"5309":4,"531":12,"531030e":28,"53172027":[],"532":12,"53262924":[],"533":12,"533447":12,"53369375":24,"533810":24,"53397067e":[],"534":12,"535":12,"536":12,"537":12,"538":12,"539":12,"53s":29,"540":12,"541":12,"54183793":29,"542":12,"543":12,"544":12,"54460":16,"545":12,"546":12,"547":12,"548":12,"549":12,"550":12,"55063553":24,"551":12,"5510424":7,"552":12,"553":[12,18],"55366273":[],"55396944":24,"554":12,"55414971":[],"555":12,"556":12,"5568":8,"5569":8,"557":12,"5570":8,"5571":8,"5572":8,"5573":8,"5574":8,"5575":8,"558":12,"559":12,"560":12,"561":12,"562":12,"563":12,"563140":12,"564":12,"565":12,"56595959":[],"566":12,"567":12,"568":12,"569":[12,29],"56997021":[],"570":12,"57094644e":28,"570973":28,"571":12,"571429":12,"572":[7,11,12],"573":12,"574":12,"574586":11,"575":12,"576":12,"577":[12,29],"578":12,"57801142":[],"578629e":28,"579":12,"580":12,"581":12,"5819":16,"582":12,"5820":16,"58266445":[],"583":12,"584":12,"584958e":28,"585":12,"58522071":[],"586":12,"587":12,"588":[11,12],"588536":18,"589":12,"590":[12,16],"591":12,"592":12,"592491":12,"593":12,"594":[12,26],"594573e":28,"595":12,"59536000000":11,"596":12,"597":12,"597181":12,"59796822":[],"598":12,"5987":18,"599":12,"5gb":0,"5th":[26,28],"600":[12,18],"601":[12,18],"602":12,"60273701e":[],"603":12,"604":12,"6043":[0,4,6,7,24,31],"60469202":24,"605":12,"606":12,"607":12,"608":12,"609":12,"60924":16,"610":[12,16],"611":12,"61168440e":6,"612":12,"613":[12,18],"614":12,"615":12,"616":12,"617":12,"617582e":28,"618":12,"619":12,"61955664":[],"620":[12,18],"621":12,"622":12,"62298604":[],"623":12,"624":12,"6244":18,"625":16,"625000":12,"62559371":24,"62571776":[],"626964":11,"62888":16,"6290521":7,"63291805":24,"633":16,"635154":12,"63547457":[],"6372547":[],"638025":12,"6384":16,"639":11,"6393":16,"639810":11,"640":15,"640457":15,"6406":16,"64223695":[],"643585":28,"64358544":28,"6442":16,"64481501":[],"64583":16,"64623":16,"64812038":28,"6488":19,"650":[11,12],"65051358":[],"651":16,"65343888":[],"654":12,"655":12,"65530407":24,"656":12,"65625":2,"657":[12,26],"658":12,"6581":18,"65832708":[],"659":12,"65988219":[],"660":12,"661":12,"662":12,"663":12,"664":12,"665":12,"66500104":[],"66604259":[],"6666666666666666":2,"666667":12,"6698":18,"67082046":[],"67346176":[],"67628976":24,"6764":18,"67799293":[],"678":15,"67801721e":[],"678571":12,"679":15,"67975973":[],"680":15,"680000":24,"68118805":[],"682":15,"684":15,"685":15,"6856":19,"68729707":24,"6894":19,"6903987680657":29,"690444":12,"691":12,"692":12,"69235666493":12,"692357":12,"693":[12,15,16],"693486":18,"694":12,"694214e":28,"695":12,"696":12,"697":12,"698":12,"699":12,"6th":[26,28],"700":[7,12,20],"7000000000000001":2,"701":12,"702":12,"703":12,"704":12,"705":12,"706":12,"70647352":[],"707":12,"708":12,"7087":19,"709":12,"710":12,"710510":28,"711":12,"7110072":24,"712":[12,18],"713":12,"714":12,"71432":16,"714492":12,"7146":16,"715":12,"716":12,"717":12,"718":12,"71817427":24,"719":12,"720":12,"720000":18,"720000000000001":2,"721":12,"722":12,"723":12,"724":[12,18],"72496667":29,"725":12,"72575612":[],"725961":11,"726":12,"727":12,"72700439e":[],"727312e":28,"728":12,"729":12,"72nd":19,"730":[11,12],"731":12,"73191621":[],"732":[11,12],"732031":11,"733":12,"734":12,"735":12,"736":12,"737":12,"738":12,"73877887":24,"739":12,"740":12,"740000":18,"741":12,"742":12,"74241047739471":2,"743":12,"744":12,"7440":12,"74461546":[],"74479073e":[],"745":12,"7452":28,"745808e":28,"746":12,"747":12,"74755018":28,"748":12,"74843539":[],"749":12,"750":12,"75000":12,"751":12,"751877":12,"752":12,"753":12,"75314323":[],"754":12,"755":12,"755000":12,"75536478":[],"756":[12,26],"757":12,"758":[11,12],"75888":16,"759":12,"75th":22,"760":12,"761":12,"762":12,"763":12,"763164e":28,"764":[12,16],"765":12,"76553595":[],"766":12,"76606614e":[],"767":12,"768":12,"7688":[26,27],"769":12,"770":12,"771":12,"772":[12,16],"77292975":28,"773":12,"773210":24,"774":12,"775":12,"776":12,"77631645":28,"77636602":[],"777":12,"777778":12,"778":12,"779":12,"779246":11,"780":12,"7805":16,"781":12,"782":12,"783":12,"784":12,"785":[12,18],"786":12,"78614167":24,"787":12,"7871":14,"7872":14,"78727272":[],"7873":14,"7874":14,"7876":14,"788":12,"7880":12,"78888":16,"789":12,"78929133":24,"790":12,"790444":12,"791":[11,12],"792":12,"793":12,"7937":7,"794":12,"795":12,"796":12,"797":12,"798":12,"798005":11,"798506":11,"79882196":24,"79886":12,"799":12,"7993648":[],"79994174":[],"7th":[26,28],"800":[4,12,18],"801":12,"801951":11,"802":[12,16],"8025":26,"803":12,"804":12,"805":12,"806":12,"806000":11,"807":12,"808":12,"809":12,"80920443":[],"810":12,"811":12,"812":12,"813":12,"8135287855212513":28,"814":12,"815":12,"816":12,"817":12,"818":12,"819":[11,12],"819190":11,"820":[11,12],"821":12,"822":12,"823":12,"824":12,"824334e":28,"825":12,"826":12,"827":12,"828":12,"829":[12,15],"830":12,"83020334":[],"830918":11,"831":12,"832":12,"83270803":[],"83284370e":[],"833":12,"833454":11,"834":[12,26],"835":12,"836":12,"837":12,"838":12,"839":12,"83969465":24,"840":12,"841":12,"842":12,"843":12,"84347625":24,"844":12,"845":12,"8450":20,"8451":[4,24],"8452":4,"84548185":29,"846":12,"8461":18,"8467":16,"847":12,"847368":11,"8479791982310306":27,"848":12,"849":12,"850":12,"8503808041929408":[28,29],"85094185":29,"851":12,"851539":29,"85183458":[],"85191757":29,"852":[12,29],"85208198e":[],"853":12,"854":12,"85449383":24,"855":12,"85558286":29,"856":12,"857":12,"85790336":29,"858":12,"859":12,"860":[12,15],"860286":12,"861":12,"862":12,"86209879":[],"863":12,"86380":18,"864":12,"865":12,"866":[12,16],"867":[4,12],"86754508":[],"868":12,"869":[12,16],"870":12,"871":12,"87131501":28,"872":12,"873":12,"87315597e":[],"87352712e":[],"87397615":24,"874":12,"875":12,"8754":18,"876":[12,16],"87604445":[],"877":12,"878":12,"879":12,"880":12,"881":12,"881784197001252e":2,"882":12,"8820":22,"883":12,"883160":11,"884":12,"884200e":28,"885":12,"886":12,"887":12,"887308e":12,"888":12,"88817336":[],"8885":7,"8888":0,"889":[11,12],"890":12,"891":12,"892":12,"89227408":[],"893":12,"8936630646924394":29,"894":12,"895":12,"896":[12,16],"896801":12,"897":12,"898":12,"89809281":[],"899":12,"8999999999999999":2,"8th":[26,28],"900":[12,15,18,19,22],"90016302":[],"90055592":[],"90079956":29,"901":12,"902":12,"903":12,"90326931":29,"904":12,"90485472":29,"905":[12,18],"90553186":29,"906":[12,15,22],"907":12,"9079893":24,"908":12,"90816178":29,"909":12,"909894":15,"910":12,"911":12,"91160689":[],"912":12,"91226131":24,"913":12,"91316978":29,"91387354e":[],"914":12,"915":12,"916":12,"91614":16,"9167993399776069":29,"917":12,"91795629":[],"918":12,"919":12,"920":12,"921":12,"92140":16,"921843":12,"92199":16,"922":12,"92201":16,"92237":16,"92253":16,"92261":16,"92287":16,"92289":16,"92290":16,"92295":16,"923":[11,12],"92326":16,"92327":16,"923275080":7,"923276100":7,"92328":16,"92329":16,"92330":16,"92331":16,"923400125":7,"924":12,"924100070":7,"924151050":7,"925":[11,12],"926":12,"927":12,"9276":18,"928":12,"929":12,"92993":7,"930":[7,12],"930000e":12,"931":12,"932":12,"9326":15,"9327":15,"9328":15,"933":12,"933067":15,"934":12,"9341":15,"9342":15,"9343":15,"9345":15,"9346":15,"9347":15,"9348":15,"9349":15,"935":12,"9350":15,"9351":15,"9352":15,"9353":15,"9354":15,"9355":15,"9356":15,"9357":15,"9358":15,"9359":15,"936":12,"93630901":[],"937":[12,22],"9374":18,"938":12,"939":12,"93924":7,"940":12,"941":12,"942":12,"94263356e":[],"94272":7,"94299":7,"943":12,"9436":12,"944":12,"945":12,"94594":7,"946":12,"94633383":29,"947":12,"948":12,"9487528482967953":29,"949":12,"950":12,"951":12,"951207":24,"952":12,"953":12,"954":12,"95423523":[],"9543760900586651":29,"95474713":[],"955":[12,26],"9550":20,"95526039":[],"956":12,"957":12,"95744367":24,"958":12,"959":12,"9595782073813708":29,"960":12,"9600":20,"961":12,"96179203":[],"962":12,"96247":12,"9627":7,"963":12,"964":12,"965":[11,12],"965052":11,"966":12,"967":12,"968":12,"968011126564673":29,"969":12,"970":12,"971":12,"97101427":[],"972":12,"973":12,"974":12,"97418341":28,"97430082":[],"975":12,"976":12,"977":12,"978":12,"97806829":[],"979":12,"980":12,"981":12,"982":[6,12],"983":12,"98300226":[],"984":12,"985":12,"985736":11,"986":12,"987":12,"9878513":[15,22],"988":12,"98924274":[],"99090":16,"99172":16,"992":12,"993":12,"994":12,"995":12,"99512893":28,"996":12,"99608":18,"9968596":[],"997":12,"99724987e":[],"998":12,"999":12,"9999":16,"99992041":[],"99999":28,"9th":[26,28],"abstract":10,"boolean":[4,7,11,16],"break":[10,23],"byte":7,"case":[1,3,4,6,8,10,11,12,14,15,19,22,24,27,28,31],"class":[0,1,2,3,4,6,7,11,12,18,19,20,24,26,27,28,29],"default":[0,2,8,11,12,15,18,19,20,22,23,28,29],"export":[7,31],"final":[2,3,4,6,20,23,24,28,29,30,31],"float":[3,4,7,8,12,24,29],"function":[0,2,3,4,6,7,8,12,14,15,16,18,19,20,22,23,25,27,28,31],"import":[0,1,2,3,4,8,9,10,11,12,13,14,15,16,17,18,22,23,24,25,26,27,28,29,31],"int":[2,3,4,6,12,24,29],"long":[0,3,6,12,22,23],"new":[0,1,2,3,4,6,8,10,11,14,15,17,19,22,24,26,27,28,29,30,31],"null":[7,11],"public":[1,6,19,20],"return":[1,3,4,8,10,11,12,14,15,16,19,22,23,24,27,28,29],"short":[2,3,6,8,22,24,31],"switch":[1,20,24],"throw":[16,24],"true":[4,7,10,11,14,15,16,18,19,22,23,24,27,29],"try":[1,2,3,4,6,10,14,26,29],"var":[2,4,10,16,24,26],"while":[0,1,2,3,7,10,11,12,15,24,27,28,29],AND:[3,12,16,26],AWS:0,Adding:[2,28],Ames:[7,11,12,20],And:[1,2,6,7,8,9,10,12,16,23,24,26,27,28,29],Are:[3,11,18],Being:[3,21,24],But:[2,3,4,8,10,11,15,16,18,19,22,24,29],Eve:19,For:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,22,23,24,26,27,28,29,31],Going:24,Has:20,ICE:16,IDEs:24,Into:10,Its:[22,24],MXS:16,Mas:[7,11,12],NOT:3,Not:[8,12],One:[0,1,3,4,6,10,11,16,19,28],Such:[6,11],That:[0,1,2,3,20],The:[2,4,5,6,7,8,9,10,11,13,14,15,16,17,19,21,22,23,24,25,26,27,28,29,30,31],Their:22,Then:[2,7,19,23,24,30],There:[0,1,2,3,4,6,7,8,11,12,15,16,18,19,20,22,23,24,26,28,29,31],These:[1,3,4,6,7,8,9,15,18,19,24,26,31],Use:[0,4,6,11,12,14,15,16,18,19,23,24,25,29],Using:[0,1,8,10,11,12,15,16,19,20,22,24,26,29],Wes:11,With:[3,4,6,7,15,20],Yes:2,___:[3,22],____:[3,22],_____:[3,12,22,23],______:[10,12,23,27],_______:[7,23],________:22,__________:27,__class__:27,__getattr__:8,__getattribute__:8,__init__:[14,15,29],__iter__:23,__main__:24,__name__:27,_accessor:8,_can_hold_identifiers_and_holds_nam:8,_constructor_expanddim:14,_constructor_sl:14,_distribut:29,_info_axi:8,_internal_names_set:8,_make_selector:14,_merg:15,_merge_doc:15,_mergeoper:15,_metadata:8,_shared_doc:14,_subplot:19,_unstack:14,_unstack_extension_seri:14,_validate_specif:15,_valu:14,a320:10,a330:7,a_dict:4,a_list:4,a_tupl:4,abc:4,abcd:11,abil:[1,19,31],abl:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31],abnorm:[11,30],abnorml:20,about:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31],abov:[0,1,2,3,6,7,8,10,11,12,14,16,18,19,20,22,23,24,26,29],abs:[22,29],absenc:16,absolut:[7,22,29],absolute_path:7,abspath:7,abvgr:[7,11,12],abvgrd:[7,11,12],accept:[11,24,28],access:[3,4,6,7,8,11,12,15,16,18,19,20,23,24],accessor:[8,11,16],accessori:16,accomplish:[1,2,18,20,23,24],accord:26,accordingli:[3,11],account:[0,27],accur:[11,15],accuraci:[27,29],acdm:[26,28],achiev:[12,23,26,29],acquaint:[5,15],across:[1,6,11,12,13,14,15,18,19,23,26,28,29,30],action:[1,2,3,22,24],activ:[0,1,13,15,17,24,31],actual:[1,2,3,4,8,10,11,16,18,19,23,24,26,27,29],adapt:29,add:[1,2,3,4,7,11,12,15,16,18,19,20,23,24,27,29],add_layout:0,add_tool:20,added:[2,15,24],adding:[1,2,11,12,15,18,19,20,23],addit:[0,2,3,11,12,15,16,18,19,20,22,23,24,27,28,31],address:[0,2,4,31],aden:14,adher:20,adjust:[18,19,20,24],admit:6,adopt:[16,25],adult:[16,18,19,27,28,29],adult_censu:[26,27,28,29],advanc:[0,18,20,23,31],advantag:[0,10,18,20],aeiou:16,aeosa:6,affect:[7,29],after:[0,1,4,6,12,18,20,23,24],afterward:[20,26,27],again:[0,1,2,3,4,6,8,19,20,24,29],age:[10,11,15,18,19,24,26,27,28],age_limit:26,agg:[12,15,16,18,19],aggfunc:14,aggreg:[6,13,14,29],agnost:1,agre:27,ahead:[0,10,19,28],aid:24,aim:[25,31],aiohttp:6,aiosign:6,air:[7,8,11,20],airbu:[7,10],airlin:8,airlinedetail:7,airport:8,airwai:8,aka:[0,2,10,11,16,26,29],alabast:6,alaska:8,albumid:7,alemb:6,algebra:6,algorithm:[6,26,27,28,29,30],alia:[19,24],align:[7,14,15,22,28,29],all:[0,1,2,3,4,6,7,10,11,12,14,15,16,18,19,20,22,23,24,27,28,31],allei:[7,11,12,20],alloc:11,allow:[0,1,2,3,4,6,7,10,14,15,18,20,22,23,24,27,28,29],allpub:[11,20],alma_mat:4,almost:[0,3,7,16,20],alon:[6,24],along:[0,1,4,7,14,15,17,19,20,22,24,26,31],alpha:[20,26],alphabet:28,alphanumer:16,alpo:16,alq:11,alreadi:[0,1,2,3,15,16,20,24,26,28],also:[0,1,2,3,4,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,29],alt:1,altair:19,alter:16,altern:[1,7,16,18,22,23,24,27,28,29],although:[4,6,7,8,15,18,20,23,24,25,26,29],altitud:8,alwai:[0,1,2,3,7,8,10,12,19,22,23,24,27,28,29,31],american:8,ames2:14,ames2_reshap:14,ames:[7,11,12],ames_clean:[20,26,28],ames_grp:12,ames_melt:14,ames_miss:11,ames_pivot:14,ames_raw:[7,11,12],ames_sale_price_vs_living_area:20,ames_wid:14,ames_wide2:14,ammonia:16,among:6,amount:[7,11,16,18,24,25],amp:[7,15,16,28],anaconda3:[6,8,14,15,20],anaconda:6,analges:16,analog:8,analys:24,analysi:[1,6,10,11,12,15,16,17,18,20,21,24,31],analyst:[11,25],analyt:4,analyz:[18,24,30],andi:25,angu:7,ani:[1,2,3,4,6,7,8,10,11,16,18,19,20,22,24,26,28,29],annot:[19,26],anonym:18,anoth:[0,1,2,3,4,6,7,10,11,14,15,16,18,19,20,23,24,26,27,31],answer:[14,15,16,17],anti:14,anticip:24,anyio:6,anyon:1,anyth:[0,4,6,16],anywher:23,apart:27,api:[6,19,20,24,27,29,31],app:0,appar:3,appdir:6,appear:[1,7,11,15,19,20],append:[7,10,14,15,16,23],appengin:6,appet:16,appl:[4,16],applaunchservic:6,applehelp:6,appli:[2,3,4,6,12,14,15,16,17,18,21,23,24,28,29,30,31],applic:[0,1,7,11,22,24],apply_discount:24,applymap:[11,22],appnop:6,approach:[6,7,10,11,16,18,19,22,23,24,29],appropri:[14,15,20],approxim:[19,27,28,29],appscript:6,apr:11,apt:0,arang:6,arbitrari:28,arbitrarili:11,area:[2,7,11,12,18,20,29],aren:12,arg:29,argon2:6,argument:[1,7,8,11,12,14,15,18,20,23,28,29],aris:26,arithmet:[2,3,6],arm:14,around:[2,3,12,14,18,19,22],arrai:[4,6,8,11,19,20,24,27,28,29],arrang:6,arrow:[6,19],arrowprop:19,as_index:[12,15,16,18,19],ascend:[15,18],asid:2,ask:[1,3,6,15,16],aspect:3,assertionerror:24,assess:[3,7,18,19,26,27,29],asset:7,assign:[1,3,4,5,8,10,11,18,19,20,22,23,24,29],assist:6,assoc:[26,28],associ:[0,2,3,4,7,22,28,29,31],assum:[4,10,12,23,24,28,31],assumpt:[18,28],ast:6,asterisk:[16,24],astrai:19,astroid:6,astronomi:6,astrophys:6,astropi:6,asttoken:6,astyp:[16,29],async:6,asyncio:6,atomicwrit:6,attach:[11,24],attchd:11,attent:26,attr:6,attribut:[6,8,9,11,20,26,28],attributeerror:8,auc:29,audit:6,aug:11,australia:23,auth:6,author:1,authorit:[1,25],autocomplet:6,autom:26,automat:[0,1,6,20,23,24,26,27,29],autopep8:6,avail:[0,1,6,7,11,15,16,18,19,23,26,27,29,31],averag:[12,18,24,27,29],avg:29,avoid:1,awai:[4,8],awar:[10,26,27],ax1:19,ax2:19,ax3:19,ax4:19,ax_arrai:19,axes:20,axessubplot:[18,19],axhlin:26,axi:[15,18,19,20,22,24],axvlin:26,azur:[0,6],b294776:[6,7,24],babel:6,bachelor:[26,28],back:[2,3,8,11,14,16,20,24],backcal:6,backend:20,background:[],background_gradi:26,backgroundcolor:19,backport:6,backrefer:16,backslash:16,backward:[11,23],bacon:[15,22],bad:22,bag:[15,16],bagel:[15,18,19],balanc:29,ball:7,balt:7,bana6043:31,bana:[0,4,6,7,24,31],banana:16,bar:[0,16,18,19,20],barh:18,base:[0,4,6,8,12,15,18,19,20,22,24,26,27,29],baselin:[15,18],basenam:23,bash:0,basic:[0,2,4,7,8,9,13,17,18,19,20,22,23,24,25,29,30,31],basket:24,basket_id:[15,18,19,22,24],basketbal:3,bath:[7,11],batteri:6,bcrypt:6,bear:7,beauti:[1,20],beautifi:18,beautifulsoup4:6,becam:28,becaus:[0,1,2,3,4,6,8,10,11,12,14,15,16,17,18,20,24,26,27,28,29],becom:[0,11,12,14,15,16,22,25,27,31],bedroom:[7,11,12,14],bedroom_abvgr:11,beef:15,been:[8,11,15,19,22,24,25,26,28],befor:[0,1,6,10,18,19,23,24,26,28],began:6,begin:[1,2,4,16,19,22],beginn:24,behav:[3,4,10,11,24],behavior:[3,11,12],behind:[24,25],being:[0,1,4,7,11,18,19,24],believ:26,belong:[3,28],below:[0,1,3,6,8,12,14,16,18,19,22,23,24,27],benefici:29,benefit:[1,5,23,28,31],best:[2,16,18,19,22,24,26,29],best_params_:29,best_score_:29,better:[1,3,8,11,20,24,27,28,29],between:[3,4,6,7,8,10,11,12,15,16,18,20,24,26,28,29],beuzen:31,beyond:[0,3,4,6,19],bfill:11,bias:29,bibtex:6,big:7,bin:[18,19,26],binari:[0,2,3,6,26,27],binaryornot:6,bind:6,biolog:31,biscuit:15,bit:[1,2,3,7,10,11,16,18,22,23],bitarrai:6,bite:4,bitwis:[2,3],bivari:18,bkchart:6,bkd:16,black:[0,6,20,26],blackcellmag:[0,6],blank:[3,10,12,22,27],bldg:[7,11],bldg_type:11,bleach:6,blmngtn:[12,14],blob:6,block:[1,22,24],blog:[3,4,20],blood_transfus:29,bloomington:12,blq:11,blt:[7,11],blue:[1,19,20,26,29],bluest:[12,14],bob:4,bodi:[23,24],boe:10,boehmk:[4,19,24],boi:31,bokeh:[0,1,6],bokehj:[0,20],bold:[8,31],book:[1,6,7,11,16,24,25],bookstor:16,bool:[3,10,24,27],boost:29,bootcamp:31,bootstrap:29,born:1,boss:16,both:[1,3,6,10,11,14,15,16,18,19,20,21,22,23,28,31],bother:16,boto3:6,botocor:6,bottleneck:6,bottom:[26,28],bound:19,boundari:[16,19],bouquet:16,box:[0,6,16,18,19,28],boxplot:[18,19],brace:[4,16,20,22],bracket:[4,8,10,11,12,16,23],brad:[4,6,24],bradlei:4,bradleyboehmk:[7,31],brain:10,brand:[15,16],brand_ti:7,brdale:[12,14],bread:16,breiman:28,brian:[1,7],briefli:6,bring:[1,3,10],brkface:11,brkside:[12,14],broad:6,broader:24,broard:6,broccoli:22,brotlipi:6,browser:[0,20],bsmt:[7,11],bsmt_cond:11,bsmt_exposur:11,bsmt_full_bath:11,bsmt_half_bath:11,bsmt_qual:11,bsmt_unf_sf:11,bsmtfin:[7,11],bsmtfin_sf_1:11,bsmtfin_sf_2:11,bsmtfin_type_1:11,bsmtfin_type_2:11,bug:[24,31],bugbear:6,bui:[3,15],buie:14,build:[0,1,6,13,15,16,17,18,20,21,23,24,26,27,29,30,31],built:[1,2,3,4,5,6,7,9,11,12,15,16,19,20,24,29],bulb:16,bulk:[16,31],bundl:6,busi:[4,18,29],c06lv6q17tjbyjv2nkt0_s4s1sh0tg:[2,4,10,16],cach:[3,6],cachetool:6,cake:24,calcul:[1,2,5,12],call:[1,2,3,4,6,7,8,10,11,12,14,15,16,17,18,20,23,24,26,27,28],caltech:[0,31],came:[0,15],campaign:15,campaign_descript:15,can:[0,1,2,3,4,6,7,9,10,11,12,14,15,16,18,19,20,22,23,24,25,26,27,28,29,30],candi:[15,16],candid:[8,29],cannot:[2,3,4,14,20,24,26],canva:[20,31],cap:26,capabl:[4,6,11,16,18,20,31],capit:[1,23,26,27,28],captial:8,captur:[16,24,29],car:[7,11,12],card:16,cardin:28,care:[10,16,28,29],career:7,caret:16,carri:[2,15,28],carrier:8,carrier_column:8,cat:[16,19],categor:[16,19,20,26,29],categori:[4,12,14,15,16,18,19,22],categorical_column:[26,28,29],categorical_columns_selector:[28,29],categorical_featur:28,categorical_features_encod:28,categorical_preprocessor:[28,29],categories_:28,caus:[4,7,8,11,24,26,28],caution:31,caveat:10,cbar:11,cdn:20,cell:[0,4,5,6,7,8,10,14,15,19,23,24,27,28,31],censu:[27,28,29],center:[0,19],central:[1,6,7,11,20],central_air:11,centralair:20,ceo:4,certain:[3,4,7,10,16,18,19,23,24,26,29],certifi:6,cffi:6,cfgv:6,cftime:6,ch0000063:24,ch0000070:24,chain:[11,20,28,29],challeng:[3,24],chanc:24,chang:[1,2,3,4,6,8,10,11,12,15,16,18,19,20,25],chapek:4,charact:[2,3,4,11,12,17,23,24],character:15,characterist:29,chardet:6,charli:25,charset:6,chart:[18,20],check:[1,26,28,31],checklan:16,chees:16,chest_pain:10,chew:15,chick:16,chicken:15,child:26,children:16,chinook:7,chip:[15,16],choc:16,chocol:24,choic:[7,8,12,19,20,22,23,28],chol:[10,11],choos:[3,6,19,20,29],chose:[0,8,26],chosen:[15,19],christma:19,chunk:[16,18,22,23,24,31],circl:[20,26],citru:16,civ:26,cj_data:[15,16,18,19],clarifi:9,class_id:4,classic:1,classif:[26,27,29],classifi:[22,27,28,29],classification_report:29,classroom:31,claus:[3,24],clean:[11,15,16,17,20],cleaner:20,cleang:16,clear:[3,20],clearcr:[12,14],clearli:[3,10,14],clf:29,cli:6,click:[0,1,6,20],clickstream:6,client:6,close:[0,2,15,20,24,26,28],closest:27,cloud:[0,6],cloudpickl:6,cluster:20,clutter:1,clyent:6,cmap:[11,26],cmath:6,cmd:1,cocktail:16,code:[0,2,3,4,5,6,7,8,10,11,12,15,18,19,22,23,24,25,31],coerc:11,coers:2,coffe:16,coherc:2,coin:23,col1:23,col2:23,col3:23,col:[10,12,19,23],col_index:10,colab:0,collabor:[0,1,10,20],collaps:12,colleagu:20,collect:[4,6,12,15,16,17,24,26,29],colleg:[26,28],collgcr:[12,14],colon:[4,24],color:[0,15,18,19,26],color_mapp:20,colorama:6,colorcet:6,colum:19,column:[6,7,8,10,12,13,14,15,16,18,19,20,22,23,24,26,27,28,29],columndatasourc:20,columns_encod:28,columns_listlik:14,columntransfom:28,columntransform:[28,29],columntransformercolumntransform:28,columnwis:12,com:[7,18,31],combin:[1,10,11,15,16,17,19,21,26,28,29,30],combo:[4,16],combo_2:4,come:[2,3,4,6,8,18,19,23,26,27],comfort:18,comm:6,comma:[4,18,20,26],command:[1,6,7,15,31],comment:[1,6,14,16,26],commit:6,commmand:0,commod:7,common:[3,4,6,7,8,10,11,13,15,18,19,22,23,24,27,28,29],common_col:15,commonli:[6,15,16,20,24,26,27,29],commonmark:6,commun:[23,24,31],comp_index:14,compani:[4,24],company_nam:4,compar:[3,18,26,27,29],comparison:3,compil:1,complet:[0,1,2,3,6,7,12,18,19,20,22,31],completejournei:[6,15,16],completejourney_pi:[0,15,16,18,19,22,23,24],complex:[1,4,6,7,10,16,20,22,23,24,29,31],complic:[1,6,22,26],compon:[6,9,20,23,26],compos:[7,28,29],comprehens:[19,24],comput:[13,25],computation:29,con:7,concaten:[2,4,11,28],concep:14,concept:[2,4,9,10,17,19,22,23,24,29,31],conceptu:7,concern:[2,16,26,27],concis:[3,24],conclus:16,concret:20,cond:[7,10,11,12],conda:[6,7],condens:[18,23],condit:[4,7,10,11,12,18,23,24],condition_1:11,condition_2:11,condition_hold:23,conduc:31,cone:16,confer:19,config:[7,11],configur:[7,19,20],confirm:10,conflict:0,conform:29,confus:[1,10,11,19,24],conjunct:[18,23],connect:[3,7,15,24,28],consequ:[1,7,11,15,16,18,19,22,24,26,27,28,29],consid:[2,4,6,10,11,12,14,15,16,18,20,23,24,28,29],consider:[0,26],consist:[1,7,9,16,18,20,24,29],consol:[0,1,6],constant:6,constantli:[6,24],constrained_layout:19,construct:[2,3,6,20],constructor:14,contain:[0,1,2,3,4,6,7,8,11,14,16,18,19,22,24,26,27,28,29,31],content:[1,31],context:[12,16,19,23],continu:[0,7,8,10,18,20,23,24,28,31],contour:[7,11,12],contrast:[1,7],contribut:28,control:[3,18,20,22,24,25,29,31],conveni:[1,3,4,6,12,16,20],convent:[6,19,24,28],converg:28,convers:[3,4],convert:[2,4,8,11,12,14,18,22,24,28,31],convert_to_sq_met:11,convolut:24,cook:4,cooki:16,cookiecutt:6,coolwarm:26,coordin:20,copi:[7,11,15,24,25],copybutton:6,core:[6,7,8,10,11,12,14,15,19,31],corei:[7,19,31],corr:26,correct:[15,24,27,29],correctli:29,correl:26,correspond:[8,11,15,26,28],cos:[0,6],cosin:6,cost:[2,24],could:[2,4,10,11,12,14,15,16,18,19,20,22,24,26,28,29,31],count:[7,11,12,18,19,28],counter:23,counterintuit:3,countri:[26,28],country_:28,coupl:[18,22,28],coupon:15,coupon_disc:[15,18,19,22],coupon_match_disc:[15,18,19,22],coupon_redempt:15,courier:19,cours:[0,3,6,7,11,14,18,24,31],covari:26,cover:[0,2,3,7,11,15,18,22,23,24,28,31],covid:23,cplex:6,cpu:29,cpython:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,22,23,26,27,28,29],cracker:16,cranberri:16,crawfor:[12,14],crc32c:6,creat:[1,2,3,4,5,6,8,11,12,13,18,19,20,21,22,23,24,25,27,28,29,31],create_engin:7,creativ:31,creator:[11,24],credit:4,criteria:16,critic:24,cross:[2,14,15],cross_col:15,cross_val_scor:29,cross_valid:29,crosstab:26,crouton:16,crush:16,cryptographi:6,cssselect:6,csv:[6,7,8,10,11,12,14,20,22,23,24,26,27,28,29],ctn:16,ctrl:1,cube:[2,16],cubic:6,curli:[4,16],current:[1,6,7,8,11,14,18,19,23,24],currentairlin:7,cursor:[0,6],curv:[6,29],custom:[0,15,18,19,20,29],cut:25,cv_result:29,cycler:6,cython:6,cytoolz:6,daal4pi:6,dacit:6,dadjok:6,dai:[2,10,15,18,19,24],daili:[16,18,19],daily_sal:19,dairi:[15,16],dame:4,dash:19,dashboard:20,dask:6,data:[0,1,2,3,5,8,9,13,17,18,21,22,23,24,25,30,31],databas:[6,8,24],databras:7,datafram:[6,7,9,10,11,13,14,15,16,19,22,23,24,28,31],dataframegroupbi:12,datalak:6,dataset:[6,9,11,12,14,17,20,27,28,29],datashad:6,datashap:6,date:[0,7,16,18,19,28,31],datepars:6,datetim:[7,19],dateutil:6,daunt:18,dave:25,dawn:7,day_nam:[18,24],day_ord:18,dci:3,deaffi:7,deal:[2,3,16,27,28],debat:3,debug:24,debugpi:6,dec:11,decid:[3,18,19,20,26,27],decim:[3,7,16,24],decimal_ounc:16,decimal_ounces_or_lb:16,deciph:24,decis:[28,29],deck:[7,11,12],declar:[16,24],decompos:29,decomposit:6,decor:[6,16],decreas:[18,29],dedic:0,deep:29,deeper:[6,29],def:[4,6,11,14,15,22,24,29],defacto:19,defin:[3,11,14,16,20,27,28,29],definit:[2,4,18,24],defusedxml:6,degre:19,del:2,delet:[1,28],deli:18,delimit:[4,22],delta:[7,8],delv:24,demand:23,demograph:[15,18,19],demonstr:[16,24],denisti:18,denot:[1,2,11],dens:6,densiti:18,depart:[7,15,16,18],depend:[2,3,4,6,7,12,14,15,16,22,28,29],deploi:26,deploy:26,dept_sal:18,dept_tot:18,depth:[1,29],derail:24,descent:28,describ:[3,4,7,11,14,17,18,27,28],descript:[4,7,15,16,18,19,24,26,30,31],desert:23,design:[8,31],desir:19,desktop:[2,6,7,24],dessert:16,detach:11,detail:[6,11,20,24,27,28,31],detchd:11,deter:29,determin:[4,6,8,10,19,22,23],determinist:27,develop:[0,1,19,20,25],devhelp:6,deviat:[12,28,29],diag_kind:26,diag_kw:26,diagon:26,diagram:[6,27,28],dialect:7,diamandi:10,dict:[4,7,12,20,22,23,24],dict_kei:[4,15],dict_valu:4,dictionari:[8,11,12,15,20,22,23,24,29],did:[1,2,3,10,11,12,14,18,19,20,24,26],didact:28,didn:[4,10,11,15,16],diego:12,diesel:7,diff:6,differ:[1,2,3,4,6,7,8,9,10,11,12,14,16,17,18,19,23,24,26,27,28,29,30,31],differenti:[10,26],difficult:[6,12,18],dig:[9,18,20],digest:[18,23],digit:[16,24],dimens:[6,7,8,26],dimension:[6,7,8,10],dimes:7,dinner:16,direct:[3,31],directli:[0,1,2,6,7,8,18,19,20,22,27],directori:[0,6,7,19],dirkscneid:7,disc_rat:22,discard:15,discount:[18,22,24],discov:[11,30],discret:[20,28],discuss:[0,1,6,8,9,13,14,15,16,17,18,21,23,24,28,29,31],diseas:10,dish:16,disk:[6,7,20],disnei:4,dispers:19,displai:[0,3,7,15,16,19,20,27,28],display_loc:15,dispos:[6,16],distanc:28,distinct:[7,29],distinguish:24,distlib:6,distribt:18,distribut:[6,7,18,26,28,29],dive:1,divid:[2,11,28,29],divis:2,dl1:14,dnr:[15,16],doc:[0,1,6,10,11,16],doctor:[26,28],document:[0,1,6,7,10,11,16,18,19,20,24,27],docutil:6,doe:[1,2,3,4,7,8,12,14,16,19,22,24,26,27,28,29],doesn:[8,12,14,15,22,24],dog:[16,19],doing:[0,1,3,4,6,8,10,11],dollar:[16,18,20],domain:6,domin:1,don:[3,4,6,7,8,10,11,12,14,15,22,24,25,29],done:[2,6,8,19,24,27,31],dorsal:14,dot:[6,7,16,20,29],doubl:[2,3,16,24],doubt:10,dough:15,down:[0,1,7,18,24],downgrad:0,download:[6,7,26],downstream:28,downward:11,dplyr:10,draw:29,drawback:12,drawn:19,dri:16,drink:16,drive:[0,7,11,29],driver:7,drnk:15,drop:[11,13,14,16,18,26,27,28,29],drop_duplc:11,dropna:11,drosophila:14,drug:[15,16,18],dry:[16,25],dsh:16,dtype:[6,7,8,10,11,12,14,15,16,18,19,22,24,26,27,28],dtype_exclud:[28,29],dtype_includ:[28,29],due:[2,7,24,29,31],duplic:[8,11,14,25,28,29],dure:[0,11,12,24,26],dynam:6,dynload:6,e451:6,each:[1,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29,31],earli:1,earlier:[0,7,8,16,19],earn:26,easi:[0,20,24,28],easier:[3,10,14,20,23,28],easiest:12,easili:[0,7,11,14,15,16,18,26,27,28],easter:16,econom:2,economi:16,ecosystem:[6,9,18,21,31],ed_level:28,edg:0,edit:[1,25],editor:1,educ:[0,1,26,27,28,29],education_:28,education_column:28,education_encod:28,education_num:28,edward:[12,14],effect:29,effici:[3,6,7,22,25,28,31],effo411:6,effo:6,effodata:6,effort:24,eger:4,egg:[16,22],eigenvalu:6,eight:[6,15],eigval:6,either:[0,1,2,3,7,11,18,19,22,23,27],electr:[7,11,16],eleg:21,element:[4,6,7,8,10,11,12,14,16,19,23,24,27,28],elementari:23,elif:[3,22,24],elimin:7,els:[4,8,11,14,18,22,24],email:[0,20,31],emb:10,embed:[4,16,24],embraer:10,embryo:14,emeritu:12,emp:28,emphas:16,emphasi:[10,31],emploi:3,employ:[4,26,31],empti:[1,19,22,23],empty_list:22,enabl:[0,20],enclos:[2,7,11,12,16,20,24],enclosed_porch:11,encod:[3,15,29],encount:[1,3,4,7,10,23],encourag:0,end:[0,1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31],endeavor:8,ends_with_fruit:16,energy_consumpt:7,engin:[7,10,26,31],english:[3,4],enhanc:1,enough:[0,2,8],ensembl:29,ensur:[23,24,28],enter:[0,1,3],entir:[1,4,10,11,12,16,23,29],entireti:6,entre:16,entri:[6,7,11,14,20,29],entropi:29,entrypoint:6,enumer:[23,24],environ:[25,31],eol:2,epsilon_1:29,epsilon_2:29,epsilon_k:29,equal:[2,10,11,15,22,23,24,28,29],equat:22,equip:30,equival:[2,3,10,15,16,22,24,26],error:[2,4,8,10,11,14,15,16,25,29,31],esc:1,especi:[1,6,12,18,24],essenti:[2,24],establish:[7,24,28,31],estim:18,etc:[0,2,8,11,14,15,18,19,26,29,31],ethan:[4,31],eval:6,evalu:[1,2,3,5,22,23,24,25,27,31],even:[0,3,4,6,7,10,11,13,16,19,20,23,24,27,28,29],eventu:[10,24],ever:1,everi:[1,4,6,8,10,11,16,18,19,25,29],everyth:[0,2,6,19,22],evolv:1,exact:[6,16,19,24],exactli:[3,16,24],examin:[3,12],exampl:[0,1,2,3,4,6,7,8,10,11,12,14,16,18,19,20,22,23,24,26,29],exce:23,exceeds_100:23,excel:19,excelfil:7,except:[2,4,23],exception:18,exchang:7,exclud:26,exclus:[4,8],exectut:22,execut:[1,2,3,5,6,7,10,22,23,24,29],exercis:[0,31],exist:[1,4,7,10,11,15,23,24,29],exit:[1,23],exot:15,expand:[1,16,24],expect:[2,3,4,6,11,24,28,29],expected_annual_revenu:22,expected_result:14,experi:[1,10,31],explain:[1,4,5,6,8,9,17,23,24,27,30],explanatori:8,explicit:[1,20,24,27],explicitli:[1,2,7,15,19,24,28],explod:[19,28],explor:[1,2,6,15,18,20,21,28,29,30],exploratori:[1,12,20],explos:4,exponenti:[2,11,19],export_svg:20,expos:[1,6,7,16,20,31],exposur:[7,11],express:[1,2,3,7,11,17,22,23,24],extend:[2,12,18,19],extens:[1,2,6,7,23],exter:[7,11],exter_cond:11,exter_qu:11,exterior:[7,11],exterior_1st:11,exterior_2nd:11,extern:6,extra:11,extract:[4,8,10,18,19,21,31],extrem:[4,6,20,26,29],eye:26,f1_score:29,faa:8,fabric:16,face:[6,19,28],facial:[15,16],fact:[0,1,2,3,6,8,12,16,18,19,22,28,29],facto:0,factor:20,factor_cmap:20,fair:26,fairlearn:26,fairli:[7,8,11,19,20],fall:[16,24,28],fall_product:16,fals:[4,7,10,11,12,15,16,18,19,22,23,24,27,28],famili:[15,26,28],familiar:[0,6,7,8,11,18,29],fan:10,far:[2,3,4,6,7,11,15,19,24,25,29],farm:26,fashion:[1,19,24,28],fast:[6,7],faster:[8,22,26,28],fastest:12,fastjsonschema:6,fat:25,favorit:19,feat:23,featur:[0,1,6,7,11,12,16,18,19,20,31],feature_col:27,feature_nam:28,feb:11,fed:27,feder:28,feed:25,feedback:24,feel:[3,6,11,12],feet:[11,12,20],femal:[10,26],fenc:[7,11,12,20],fetch:8,few:[0,1,3,6,7,9,10,11,12,16,18,19,22,26,28,29,30],ffill:11,fft:6,fftpack:6,fibanacci:23,fibonacci:23,field:[6,7,20,26],fifth:[7,8],fig:19,figsiz:[11,18,19,26],figur:[0,6,11,18,20],file:[0,2,6,8,14,15,19,22,23,24,26,31],file_nam:23,filelock:6,filenam:20,fill:[3,10,11,12,14,15,16,22,23,27],fill_color:20,fill_lin:20,fill_valu:14,fillet:16,fillna:11,filt:24,filter:[8,13,15,16,22,26],fin:[7,11],find:[0,1,4,6,7,10,11,12,15,16,19,24,26,27,28,29,31],find_stack_level:15,fine:[0,21,22],finegrain:24,finger:[2,7,25],finish:[7,11],finit:[2,28],firebrick:19,fireplac:[7,11],fireplace_qu:11,first:[0,1,2,3,4,6,7,8,9,10,11,15,16,17,18,19,22,23,24,25,28,29,30],first_25:10,first_init:4,first_nam:4,first_row:8,firstpart:24,fish:26,fit:[18,28,29,30],fit_tim:29,fit_transform:28,five:[10,27],fivethirtyeight:18,fix:[10,11,16],flag:[1,22],flake8:6,flask:6,flat:3,flatten:[14,18],flavor:[6,15],flesh:16,flexibl:[4,7,8,12,16,19,20,29],flip:[15,23],float128:7,float64:[7,10,11,12,16,18,24],floor:2,floral:18,flow:[3,24,25],flowcat:6,flr:[7,11],fluid:15,fly:[11,24],focu:[2,5,6,10,11,12,14,16,19,24,26],focus:[0,4,9,18,29],foilwar:16,folder:[0,2,4,6,7,10,16,23,24],follow:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,27,28,29,31],font:[19,20],fontnam:19,fontsiz:[19,26],fonttool:6,food:[7,16],foot:11,footag:[11,12],forc:[3,18,19,29],foreign:15,forest:[28,29],forgot:24,form:[6,7,14,15,19,22,23,28],formal:29,format:[1,6,7,8,14,18,20],formatt:20,former:[26,28],formul:25,forthcom:3,fortran:[1,6],fortun:22,forward:[11,16],found:[16,19,23,24],foundat:[5,7,8,11,16,19,28,30,31],founder:10,four:[1,2,4,19,20,23,24],fourier:6,fourth:[7,23],fowl:15,foxtrot:25,frac:[2,11,23,24],fraction:[11,19],frame:[7,10,11,14,15,16,24,28],frame_height:20,frame_width:20,free:0,french:16,freq:[12,18],frequenc:[7,18],frequent:[7,12,15],fresh:[0,15],fridai:18,from:[1,2,3,4,6,7,8,9,10,11,12,14,15,16,18,20,22,23,24,26,28,29,31],front:15,frontag:[7,11,12],frown:6,frozen:[16,22],frozen_revenu:22,frozenlist:6,frozenset:24,fruit:16,fruit_product:16,frustrat:1,frz:16,frzn:16,frzn_product:16,fsopt:6,fsspec:6,fuel:18,full:[2,6,7,8,11,31],full_bath:11,fulli:[1,6,7],func:[6,24],functool:6,fundament:[5,8,9,12,19,28,31],further:[0,1,4,23,26,31],furthermor:0,futur:[0,2,3,6,8,11,20,25,26,27],futurewarn:15,fyi:24,gain:[2,6,19,26,27,28,30,31],gal:16,galleri:6,game:15,gar2:[7,11],garag:[7,11,12],garage_area:11,garage_car:11,garage_cond:11,garage_finish:11,garage_qu:11,garage_typ:11,garage_yr_blt:11,garrick:14,gaug:31,gave:29,gbm:29,gdprv:[7,11],gelatin:16,gener:[0,1,3,4,6,7,8,10,11,12,13,14,15,16,17,20,22,23,24,27,28,29,31],generaliz:[26,29],genotyp:14,genreid:7,gensim:6,genutil:6,get:[0,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,18,20,22,23,24,26,27,28,29],get_data:[15,16,18,19,22,24],get_feature_names_out:28,get_group:12,get_result:[14,15],get_titl:19,get_xlim:19,get_xtick:19,get_xticklabel:19,get_ylim:19,get_ytick:19,getcwd:6,gfp:14,ggplot:6,gilbert:[11,12,14],gitdb:6,github:31,githubusercont:7,gitpython:6,give:[1,2,3,4,6,7,14,16,19,24,26,29,30,31],given:[3,4,12,14,16,18,20,24,28,29],glanc:4,glob2:6,glob:23,global:[24,25],glq:11,glut:12,glyph:20,gmpy2:6,goal:26,goe:11,going:[4,7,8,10,11,12,14,15,20,29],good:[3,7,8,10,15,22,24,26,27,28,29],goodi:0,googl:[0,6,12],googleapi:6,got:[4,23,24],gov:[26,28],gpu:0,gr_liv_area:11,grab:4,grad:[26,28],gradient:[14,28,29],grai:[19,29],grander:25,grape:16,graph:[6,19],graphic:[0,20,21,28],great:[1,2,3,4,7,11,12,15,18,24,31],greater:[3,7,16,19,24],greatest:[3,15,16],greatli:[1,7],green:[12,14],greenlet:6,greet:16,grei:15,grid:[6,19,20],grid_search:29,gridlin:19,gridsearchcv:29,grill:16,grlivarea:[20,28],grnhill:[12,14],groceri:[7,15,16,18],ground:[11,12,16],group:[2,6,14,15,16,18,19,24,29],group_index:14,groupbi:[6,12,15,16,18,19,22,24],grown:6,growth:16,grpc:6,grpcio:6,grvl:12,guarante:[6,24],guid:[15,24,31],guidelin:[13,14,17],gum:15,h5py:6,had:[6,11,15],hair:16,half:[7,11],half_bath:11,ham:22,hand:[3,11,15,19,22,24,31],handi:[8,11,16,18,22],handk:15,handl:[6,14,17,24,29,31],handle_unknown:[28,29],handler:24,hang:3,happen:[0,1,2,3,4,6,7,10,11,14,15,18,19,22,24,26],happi:18,hard:[0,10,26],has:[0,1,2,3,4,6,7,8,9,11,12,14,15,16,19,20,22,24,25,26,28,29,31],hat:29,haunt:3,have:[0,1,2,3,4,6,7,8,9,10,11,12,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,31],haven:[0,14],havoc:25,head:[6,7,8,10,11,12,14,15,16,18,19,20,22,23,26,28],header:[1,14,23,24],health:6,heapdict:6,hear:6,heard:6,heart:[7,10,11],hearts_data_dictionari:7,heat:[7,11],heating_qc:11,heatmap:11,heaviest:18,heavili:18,height:[0,3,19,26],held:27,hello:[2,3,6,24],hello_world:6,help:[0,1,3,6,7,8,9,11,14,16,18,20,22,24,26,28,31],helper:[27,28],henceforth:2,herb:16,here:[0,1,2,3,4,6,7,8,10,11,14,15,16,18,19,20,22,23,24,27,28,29],heterogen:[4,26],hexbin:18,hierarch:[14,24],hierarchi:19,hig:22,high:[6,9,18,20,22,24,26,28,29],higher:[0,6,18,19,20,21,24,31],highest:19,highli:[4,8,18,24,26,29,31],highlight:[10,27,31],hint:[3,12,22,23],his:[1,11],hist:[18,19,26],histogram:[18,19,20,26],histor:4,hit:[0,1,6],hold:[1,6,7,8,9,20,22,23,24,27,28],holder:16,holoview:[1,6],home:[0,11,12,14,20,26],home_ownership:[18,19],homeown:[18,19],homepag:0,homes_sold:14,homogen:8,hood:[2,11,23],hoorai:1,hope:1,horizont:18,host:[1,6,7,29,31],hot:[28,29],hour:[5,9,13,17,18,19,21,25,26,27,28,30],hours_per_week_limit:26,hous:[7,11,12,20],house_styl:11,household:[15,16,18],household_comp:[18,19],household_id:[15,18,19,22],household_s:[18,19],hover:[20,24],hovertool:20,how:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31],howev:[1,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],hpc:0,href:24,hshd_id:15,html:[1,10,20,24,27,28],htmlhelp:6,http:[0,6,7,10,26,27,28,31],hue:26,human:[1,10,26],hung:14,hunner:20,hunt:25,husband:26,hvplot:6,hyper_grid:29,hypercub:29,hyperlink:[1,6],hypertrophi:11,hypothesi:6,iam:6,ice:16,icon:[0,1,20],id_a:15,id_b:15,id_var:14,idea:[2,6,8,26,29],ident:[4,6],identifi:[3,6,7,11,12,13,14,15,16,17,18,19,20,24,26,28,30],idna:6,idotrr:[12,14],idx:18,iger:4,ignor:[1,16,20,28,29],iinfo:14,illustr:[6,7,8,10,11,12,14,15,16,18,20,22,23,24,27,28,29],iloc:[10,23],imag:[1,6,19,29],imagecodec:6,imageio:6,images:6,imagin:4,imbal:26,imbalanc:[26,27],immedi:[2,6,8],immut:[3,4],impact:[16,26,28],implement:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,22,23,24,26,27,28,29],impli:[7,23,25],implicit:[1,3,24],implicitli:[20,24],importantli:[1,6,31],imported_json:7,imported_pickl:7,importlib:6,imporv:19,impos:20,imposs:24,improp:24,improv:[24,25,26,28],imput:11,inadvis:8,inc:[8,24,28],incept:4,inch:[2,19],includ:[0,1,2,4,6,7,8,10,11,12,13,14,15,16,18,19,20,22,23,24,26,28,29,31],includes_dot:16,inclus:[4,8,10,15],incom:[15,18,19,26],incomplet:[6,23],incopor:29,incorpor:[3,16,23,29],incorrectli:10,increas:[18,28,29],increment:[6,19,23],inde:[1,19,26,27],indent:[3,15,20,22,23],independ:10,index:[6,7,10,11,14,15,16,18,19,22,23,24,26,28,29],indexerror:4,indic:[2,3,19,24,26,28,31],indigo:19,individu:[4,7,8,15,17,18,19,26],industri:10,ineffici:[25,28],inflect:6,influenc:31,influenti:26,info:[7,11,15],inform:[1,2,4,6,7,11,12,15,16,18,20,24,26,28],ing:4,iniconfig:6,initi:[1,2,4,12,15,16],inlin:[6,31],inner:[16,18,19],inplac:11,input:[2,4,6,8,14,15,16,19,22,23,24,27,28],input_featur:28,inria:31,insert:[1,24],insid:[0,1,4,6,7,19],insight:[12,18,21,26,29,31],inspct:26,inspect:[28,29],instal:[6,7,20],instanc:[0,7,16,20,24,26,28],instanti:[2,20],instead:[4,7,10,12,16,18,19,23,27,28,29],instruct:[0,1,3],instructor:4,int32:14,int64:[7,8,10,11,16,22,26,28],intak:6,integ:[3,4,6,7,8,11,23,24,28,29],integr:[0,6,22],intelex:6,intend:[6,24],intens:[29,31],intent:[3,24],inter:23,interact:[1,6,7,17,19,20,26,31],interest:[3,4,7,8,10,11,12,13,15,16,17,18,25,26,27,28,29,31],interfac:[0,5,6],intern:[3,24,28],interp1d:6,interpol:6,interpret:[2,3,4,5,16],interquartil:18,intersect:15,interupt:1,intervaltre:6,intervent:26,intrins:20,intro:[22,31],introduc:[1,7,9,16,18,22,27,28,29,31],introduct:[9,15,19,22,23,24,29,31],intuit:[2,20,27,28],invalid:[4,22,24],invari:25,inventor:1,inventori:15,invers:11,investig:[3,29],invok:1,involv:[15,17,19,20,26],ionari:7,iowa:[7,20],ipykernel:6,ipykernel_14538:2,ipykernel_17769:[],ipykernel_24203:[],ipykernel_32272:[],ipykernel_34439:[],ipykernel_40532:[],ipykernel_40601:[],ipykernel_50389:[],ipykernel_69390:10,ipykernel_69791:16,ipykernel_97171:[],ipykernel_97208:[],ipykernel_98564:4,ipynb:[7,24],ipython:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,22,23,26,27,28,29],ipywidget:6,iqplot:[0,6],iqr:18,ir1:[7,11,20],irwin:23,is_1d_only_ea_dtyp:14,is_incorpor:24,is_luxery_hom:11,is_uniqu:15,isin:18,isin_top10:18,isinst:24,isn:[10,19,24],isnul:11,isod:6,isol:[11,14,19],isort:6,issu:[2,26,31],isupp:23,ital:31,italian:16,item:[4,6,7,16,19,23,24],itemadapt:6,itemload:6,iter:[6,24,25,28,29,31],itert:23,itertool:6,ith:[23,28],its:[0,1,2,4,6,7,8,11,14,15,16,18,19,20,24,27,28,29,31],itsdanger:6,itself:[0,1,19],jame:3,jan:11,javascript:[0,20],jdcal:6,jedi:6,jetblu:8,jinja2:6,jmespath:6,job:[23,28,31],joblib:6,joel:14,john:[23,24],johnson:7,join:[6,14,16,17,18,24,26,31],jordan:3,journei:[18,19,22],jsmath:6,json5:6,json:6,json_exampl:7,jsonrpc:6,jsonschema:6,juic:15,jul:11,julia:1,jump:[1,23],jun:11,jupyer:1,jupyt:[0,2,5,6,7,31],jupyter_bokeh:0,jupyterbook:6,jupyterlab:[2,3,4,5,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29,31],jupytext:6,just:[0,1,2,3,4,6,7,8,10,11,12,15,16,17,18,19,22,23,24,25,26,29],justin:31,kangaroo:23,kaufman:7,kaydai:6,kde:18,keep:[0,4,6,14,15,24,26],kei:[4,7,8,12,21,22,23,24,31],kernel:[1,6,18],kernighan:1,kevin:31,keyerror:4,keyr:6,keyword:[3,20],kickstart:1,kid:[18,19],kids_count:[18,19],kind:[2,3,6,7,8,12,18,20,26,28],kitchen:[7,11],kitchen_abvgr:11,kitchen_qu:11,kiwisolv:6,kneighborsclassifi:[27,29],kneighborsclassifierkneighborsclassifi:27,knew:2,knn:29,knn__n_neighbor:29,knob:29,know:[0,1,2,3,6,8,14,15,16,18,23,24,31],knowledg:[1,25,31],known:[1,6,7,12,14,16,22],koala:23,kpi:6,kwarg:[20,29],lab:[0,1,31],label:[0,6,8,14,20,28],lai:19,lamb:15,lambda:[11,18,22,24],land:[0,7,11,12],land_contour:11,land_slop:11,landcontour:20,landmrk:[12,14],landscap:6,languag:[1,2,3,4,5,6,7,22,24,31],laptop:0,larg:[0,1,6,16,22,31],larger:[3,4,15,24,29],largest:[12,18,24],last:[1,2,3,4,6,7,8,10,13,14,15,16,17,18,19,23,24,29],last_nam:4,lastli:[20,24],lastpurchas:7,latenc:0,later:[1,2,3,4,6,8,12,19,20,24,26,27],latex:6,latexcodec:6,latin:29,latter:[0,26,28],launch:[2,5],launchabl:1,launcher:[0,1],laundri:16,layout:[1,7,19],lazi:6,lead:[19,26,28],leaf:29,leakag:29,learn:20,learner:31,least:[3,6,15,16,22],leav:[11,18,27],lebron:3,lectur:31,left:[0,1,8,11,19,26,29],left_col:15,left_index:15,left_on:15,left_onli:15,legaci:2,legal:3,legb:24,legend:[18,19,20],legend_field:20,legibl:22,len:[3,11,14,15,16,23,24],length:[4,7,10,11,15,16,18,24,27],lengthen:25,leo:28,less:[3,6,12,22,24,25],lesson:[5,9,13,14,17,18,21,22,25,30,31],let:[0,1,2,3,4,6,8,10,11,14,15,16,18,19,20,23,24,26,27,28,29],letter:[4,8,16,23],letters_in_my_nam:4,level:[1,3,6,9,12,14,15,18,19,20,21,24,28,31],leverag:[16,23,31],lexic:24,lexicograph:28,lib:[6,8,14,15,20],libarch:6,liblinear:29,librari:[0,3,7,9,10,11,15,16,18,19,20,21,24,28,31],lies:3,life:[26,31],lightweight:1,like:[0,1,2,3,4,6,7,8,10,12,14,16,18,19,20,22,23,24,26,28],lili:16,limit:[6,7,22,24,29],linalg:6,line:[1,2,3,4,6,7,8,10,11,14,15,18,20,22,23,24,25,28,29,31],line_color:20,line_width:0,linear:[6,28,29],linear_model:[27,28,29],linearregress:[28,29],linestyl:[19,26],linewidth:19,link:[14,15],linkifi:6,linspac:[0,6],liquid:16,list:[0,1,3,6,7,8,10,11,12,14,16,18,19,20,22,24,28],liter:[2,16,19,31],literal_count:16,litter:16,littl:[1,8,15,18,19,23,25],liv:[7,11,12],live:[11,14,20,28],llvmlite:6,load:[0,1,2,6,7,8,10,11,15,16,18,20,22,24],load_breast_canc:29,load_diabet:29,load_ext:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],lobal:24,loc:[8,10,18],local:[6,7,24,26,28],localhost:0,locat:[1,3,4,6,7,8],locket:6,log:[6,18,19,29],logger:6,logi:18,logic:[10,18,23],logist:[27,28],logisticregress:[27,28,29],logisticregressionlogisticregress:28,loguniform:29,loguniform_int:29,logx:18,long_track:7,longer:[4,6,10,14,19,20,23,28],longest:16,look:[0,1,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,24,26,27,28,29],lookup:[6,24],loop:[6,24,25],lose:26,loss:[26,27,28,29],lot:[1,4,6,7,8,11,12,15,16,18,19,20],lot_area:11,lot_config:11,lot_frontag:11,lot_shap:11,lotarea:20,lotfrontag:20,lotshap:20,love:[1,3,24],low:[7,11,16,18,22,24,26],low_qual_fin_sf:11,lower:[6,11,16,18,19,20,21,24,31],lowercas:16,lru:6,lsp:6,lunch:16,lunchmeat:[15,16],luxeri:11,lvh:11,lvl:[7,11,12,20],lwq:11,lxml:6,mac:0,machin:[1,6,14,26,27,28,29,30,31],maco:1,macro:29,made:[4,7,10,11,14,19,24,27],mae:29,magazin:16,magic:[1,2,6],mai:[0,1,3,6,7,10,11,12,14,16,18,19,23,24,26,28,29],main:[0,1,7,9,10,14,15,18,19,20,23,24,28,29],mainli:[7,16,18,26],maintain:6,major:[1,19,27],make:[0,1,2,3,4,6,7,8,10,11,12,14,18,19,20,23,24,26,28],make_column_selector:[28,29],make_pipelin:[28,29],makeup:16,mako:6,malcolm:7,male:[10,26],malfunct:26,manag:[4,6,7,15,25,31],mani:[0,1,2,3,4,6,8,10,11,14,15,16,17,18,19,20,22,23,24,26,27,28,29],manipul:[1,6,8,9,12,13,16,17,19,21,31],manner:[4,6,24,28],manual:[4,27],manufactur:[7,10,12],manufacturer_id:[15,16],manufacturerdetail:7,map:[2,4,11,12,20,22,23,24,28],mapper:20,mar:11,marit:[26,28],marital_statu:[18,19],mark:[16,18,19],markdown:[1,5,6],marker:20,markham:31,markup:1,markupsaf:6,marri:[18,19,26],mas:11,mas_vnr_area:11,mas_vnr_typ:11,mask:14,master:[26,28],match:[6,15,16,22],math:[6,11],mathemat:[2,6,11,12],mathjax:6,matl:[7,11],matlab:19,matplotlib:[0,20,26],matric:[6,28],matrix:[6,28],matter:[3,6,12,24],matur:18,max:[12,14,18,24,28],max_depth:29,max_featur:29,max_hr:[10,11],max_it:[28,29],max_sampl:29,maxim:29,maximum:[12,29],mayb:[8,20,26],mccabe:6,mckinnei:11,mdit:6,meadowv:[12,14],mean:[1,2,3,4,6,7,8,11,12,14,16,18,19,24,26,27,28,29],mean_:28,mean_absolute_percentage_error:29,mean_squared_error:29,meaning:[8,21,28],meaningless:28,meant:[1,15,16,25],measur:[7,14,16,26,29],meat:[15,16,18],meat_product:16,mechan:[27,28],med:22,media:6,median:[12,18],median_sales_by_weekdai:18,mediatypeid:7,medium:22,meet:[14,16,22,24],member:4,membership:[3,4],memori:[3,4,10,11,24],mental:31,mention:[1,2,3,6,8],menu:[0,1],merg:[6,16,18,19],mergeerror:15,merit:25,mess:2,messag:[2,11,24],metadata:[6,15],meter:11,method:[4,6,8,10,11,14,15,16,18,20,22,26,27,28],metric:[6,27],mexican:16,michael:3,micro:6,microsoft:[0,4],might:[1,2,3,6,7,10,20,24,28,29],mike:14,milk:[15,24],millisecond:[7,12],mimic:19,min:[12,18,24,28],min_samples_leaf:29,mind:[4,20],mine:[6,22],miner:16,minim:[24,25,29],minimum:[12,29],minu:23,minut:[2,3,4,6,14,28,29],misc:[7,11,12,15,16],misc_featur:11,misc_val:11,miscellan:[15,16,18],miscfeatur:20,miscval:20,misinterpret:25,mislead:28,misord:28,miss:[7,12,13,16,17,26],mistak:[4,24,25,27],mistun:6,mitchel:[11,12,14],mitig:26,mix:[3,8,16,26],mkl:6,mnprv:[7,11,12],mo_sold:11,mock:[6,7],mode:[11,12,20],model:[0,6,7,10,11,12,14,20,26,30,31],model_select:[27,28,29],moder:7,modern:[6,20],modifi:[11,16,19,23],modul:[1,2,3,4,5,8,9,13,17,18,21,22,24,25,27,28,29,30,31],modulo:2,moment:[3,19],momentarili:1,mondai:18,monitor:3,monospac:31,monoton:29,monroevil:8,month:[11,12,18,22,23],monthly_data:23,monthly_data_fil:23,mooc:31,more:[0,1,2,4,6,7,8,10,12,15,16,18,20,22,23,24,25,26,27,28,29,31],moreov:[17,22,26],morphogen:14,mosold:20,most:[0,1,2,3,4,6,7,8,9,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29,31],mostli:11,motiv:1,mous:20,move:[1,3,6,23,24,30],movi:16,mpire:6,mpmath:6,ms_subclass:11,ms_zone:11,msal:6,mse:29,msg:15,msgpack:6,msrest:6,mssubclass:20,mszone:20,mtick:18,much:[2,3,4,6,10,14,19,20,22,24,25,26,31],mud:3,multi:[2,6,10,11,16,22,24],multidict:6,multiindex:14,multipl:[2,3,4,7,8,10,14,15,17,18,22,23,29,31],multipledispatch:6,multipli:2,multitoc:6,munkr:6,must:[3,6,11,15,17,19,20,23,25],mutabl:3,mutlti:14,my_data:7,my_dict:4,my_int:2,my_list:4,my_monitor:3,my_nam:[4,24],my_notebook:7,my_past:24,my_str:[2,4],my_tupl:4,mypi:6,myst:6,n10156:10,n102uw:10,n103u:10,n104uw:10,n10575:10,n105uw:10,n107u:10,n109uw:10,n11106:10,n11107:10,n11109:10,n11121:10,n11127:10,n11137:10,n11140:10,n11150:10,n_estim:29,n_iter:29,n_job:29,n_neighbor:29,n_outlier:19,n_samples_to_plot:26,n_tri:23,nadella:4,naiv:26,name:[1,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29,31],name_as_list:4,name_as_str:4,name_as_tupl:4,namespac:6,nan:[7,10,11,12,14,15,16,20],nanosecond:7,napkin:[15,16],napoleon:6,narrowest:14,nation:[15,16],nativ:[7,26,28],natur:[16,20,27],navig:[0,6,19],nbclassic:6,nbclient:6,nbconvert:6,nbdime:6,nbformat:6,nbsp:[16,26],nbsphinx:6,nclose:24,ndarrai:[6,8,19],ndframe:8,ndsu:4,nearest:[11,24,27,28,29],nearli:19,necessari:[0,1,20,22,23,24,26],necessarili:[3,4],need:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,23,24,26,28,29],neg:[3,22],neg_:29,neg_mean_squared_error:29,neg_root_mean_squared_error:29,negat:[3,29],neighbhorhood:12,neighbor:[27,28,29],neighborhood:[7,11,12,14,28],nest:[3,4,6,22,24],nested_list:4,netcdf4:6,networkx:6,neuro:6,never:[1,3,20,26,28],new_column_nam:11,new_column_seri:11,new_name1:11,new_name2:11,new_text:24,new_valu:22,newer:6,newli:15,next:[0,1,2,18,23,24,28],nice:[1,2,3,7,12,15,19,27,28],nicer:8,nipi:6,nlargest:[16,18],nleft:15,nltk:6,node:29,nodeenv:6,nois:29,non:[0,4,6,7,8,14,15,16,22,24,28,29,31],non_empty_list:22,none:[7,11,14,15,16,22,24],nonempti:22,nonetheless:24,nonloc:24,nonsens:11,nonzero:22,nor:[3,15],noridg:[12,14],normal:[4,6,7,11,12,16,19,20,24,28],nose:6,not_a_tupl:4,notat:[2,4,7,10,12],note:[1,3,4,6,7,8,10,11,12,15,16,20,23,24,26,27,31],notebook1:7,notebook2:7,notebook3:7,notebook:[0,2,5,6,7,19,20,24,26,27,28,29,31],noth:[1,3,11,22,24],notic:[1,3,6,7,8,10,12,14,15,16,18,19,20,22,24,28,31],notr:4,nov:11,now:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,23,24,27,28,29,30],npkvill:[12,14],nridght:[12,14],num:[24,26,27,28,29],num_cel:14,numba:6,number:[1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,22,23,24,26,27,28,29],numberofflight:7,numer:[6,8,16,18,19,23,24,26,27,29],numeraltickformatt:20,numeric_column:26,numerical_column:[28,29],numerical_columns_selector:[28,29],numerical_featur:28,numerical_features_sc:28,numerical_preprocessor:[28,29],numexpr:6,numpi:[0,8,11,19,22,24,26,27,28,29],numpydoc:6,nuniqu:[12,23],nutrit:[16,18],nwame:[12,14],oauthlib:6,obj:14,object:20,observ:[6,7,10,11,12,14,15,16,19,20,22,26,27],obtain:[27,28],obviou:[19,26],ocal:24,occasion:15,occup:[26,28],occupi:3,occur:[24,25],occurs:24,oct:11,odd:23,off:[6,24,26,29],offer:[0,4,6,11,19,23,29],offici:[0,2],often:[1,3,6,7,8,9,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],okai:10,old:[11,14,24],old_name1:11,old_name2:11,older:10,oldtown:[12,14],olefil:6,omit:14,onc:[0,1,3,4,6,7,10,14,16,18,19,24,28,29],one:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,22,23,24,26,27,28,29],onehotencod:[28,29],onehotencoderonehotencod:28,ones:[1,6,11,16,20,23],onli:[1,4,6,7,8,10,11,12,15,16,17,18,19,20,22,23,24,26,27,28,31],onlin:[1,6,7,24,31],onto:[16,19],open:[0,1,6,7,11,12,18],open_porch_sf:11,openml:[26,27],openpyxl:[6,7],oper:[0,6,7,8,12,14,15,17,19,22,24,28],operand:[2,3,4,6],opt:[6,8,14,15,20],optim:[1,6,8,28,29],optimist:27,option:[0,1,3,4,10,11,15,16,18,19,22,24,28],orang:26,ord:3,order:[1,3,4,7,11,12,18,24,26,28,29],ordinalencod:28,org:[6,10,26,27,28],organ:[1,6,7,16,20],orient:[19,24],origin:[1,10,11,14,15,19,23,24,27,28],orindalencod:28,other:[0,1,2,4,8,10,11,12,14,15,16,18,22,23,24,25,26,28,29,31],otherwis:[0,1,2,3,19,22],ounc:16,ouput:2,our:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22,23,24,26,27,28,29],out:[0,1,2,4,6,7,10,11,12,18,19,22,23,24,26,27,28],outermost:19,outlier:[18,20],output:[1,2,3,4,7,11,12,15,16,18,19,20,22,23,24,28,29],output_backend:20,output_fil:20,output_notebook:[0,20],outsid:[0,6,16,19,24],over:[1,2,3,15,16,18,19,20,22,23,24,26,31],overal:[7,11,12,19,24,31],overall_cond:11,overall_qu:11,overcrowd:18,overfit:29,overlap:15,overli:6,overplot:20,overs:2,overview:[1,7,19,20,31],overwhelm:3,overwrit:6,own:[4,7,8,11,15,19,20,24,26,29,30],pack:[6,16],packag:[1,8,9,10,14,15,16,19,20,29,31],package_s:[15,16,18,19],page:[0,6,7,19,20],pai:28,paint:20,pair:[4,7,15,23,28],pairplot:26,palett:20,pan:20,panda:[0,4,7,8,9,10,11,12,13,14,15,16,19,20,23,24,26,27,28,29],pandocfilt:6,pane:0,panel:6,paper:[14,15,16,19,20],paperback:16,param:6,param_distribut:29,param_rang:29,paramet:[7,12,18,19,27,28],parametr:29,paranthes:4,parenthes:[2,4,7,10,16,24],parenthesi:[16,20],parsel:6,parser:[6,23],parso:6,part:[0,1,3,6,8,10,19,22,24,25,26,28,29,31],partd:6,parti:[7,9,16],particular:[1,6,7,10,16,18,19,22,23,26,27,28,29],particularli:[3,6,8],pass:[4,7,8,10,11,12,16,18,19,20,24,28,29],password:7,past:[0,20,24,25],pasta:16,pastri:[15,16,18],patch:6,path:[6,22,23],path_fil:22,path_to_db:7,pathspec:6,patrick:23,patsi:6,patter:23,pattern:[6,11,13,16,17,18,19,23,29,31],paus:1,pave:[7,11,12,20],paved_dr:11,pckgd:[15,16,18],peach:16,peak:[18,26],pear:16,peculiar:26,pedagogi:1,peopl:[0,1,6,7,12,24,26],pep8:6,pep:6,per:[2,11,12,14,24,26,27,28],perc_valu:22,percentag:29,percentil:[19,22],perfectli:19,perform:[0,5,9,10,11,12,13,15,16,17,18,20,22,23,24,26,27,28,29,31],performancewarn:14,perhap:[6,11],period:[0,1,16],perman:11,persist:6,person:[10,26],perspect:[11,28],perus:16,pet:7,peter:[1,10],pexpect:6,pharmaci:22,philosophi:6,phrase:16,physic:[4,19,23],pick:[20,26],pickl:6,pickle_exampl:7,pickleshar:6,pictur:6,pid:[7,11,12],pie:[18,19],piec:[0,24,25,26],pillow:6,pineappl:16,pip:[0,6,7],pipelin:[0,29],pipelinepipelin:28,piqdata:6,pitfal:29,pittsburgh:8,pivot_t:14,pixel:[3,19],pixesl:3,pizza:[2,16,18,19],pkg:[6,16],pkg_name:6,pkginfo:6,place:[3,4,16,19,20,23,24,26,31],placement:24,plain:[8,16,19],plane:[10,12],planeid:7,planes_df:10,planes_df_filt:10,planes_df_filtered_and_select:10,platform:0,platformdir:6,player:3,playlist:31,pleas:[27,28,31],plenti:[0,1,25],plot:[0,1,6,26,31],plot_kw:26,plotli:6,plt:[6,18,19,26],plu:[2,6,10,16,18,19,22],pluggi:6,plugin:6,plung:28,plural:19,png:20,pocket:6,point:[1,2,3,6,8,14,18,19,20,23,26,29],pointer:2,poirot:6,polynomi:29,pool:[7,11,12],pool_area:11,pool_qc:11,poolarea:20,poolqc:20,popul:[7,20],popular:[6,7,10,18,19],porch:[7,11,12],pork:15,port:7,portalock:6,portfolio:31,portion:10,portug:28,pose:24,posit:[3,4,20,24],position:6,possibl:[3,7,8,10,11,15,19,22,24,26,28],post1:6,post:[3,4,20,22,31],potato:[15,16],potenti:[25,26,31],pound:16,pow:6,power:[0,1,2,6,12,20,22,30],power_r:22,power_rat:22,powershel:0,poyo:6,ppsi:2,practic:[2,3,6,8,10,15,22,24,26,27,29],pragmat:25,pre:[0,6,7,24,28],preced:[1,2,3,16,20],precis:[2,3,7,29],predefin:[28,29],predict:[10,26,28,29],predictor:28,prefer:[0,7,15,16,18,22,27,29],premium:16,prepar:[0,11,16,31],preprocess:[26,29],preprocessor:[28,29],preschool:[26,28],presenc:16,present:[1,20,26,27,28],preserv:[6,14],press:[0,1,6],pretti:[2,3,7,8,18],preview:31,previou:[3,6,8,10,11,12,15,16,19,20,23,24,26,27,29],previous:[0,1,6,10,12,16],previousairlin:7,price:[11,12,20,24],price_per_sqft:[11,12],price_per_total_sqft:11,primari:[2,6,8,15,16,18,19,27,29,31],primarili:[0,10,23,24],princess:7,principl:[14,25],print:[0,2,3,4,6,8,10,11,12,16,19,22,23,24,26,27,29],print_student_nam:24,prior:[3,12,24,26,31],privat:[7,15,16,26,28],prize:10,pro:0,probabl:[0,1,6,7,10,11,12,16,18,19,22,23],problem:[1,2,3,6,11,12,24,26,29,31],procdur:24,proce:[0,2,3,19,28],procedur:[15,23,24,29],proceed:19,process:[1,3,4,7,10,11,12,15,16,18,23,25,26,28,29,30],processor:29,prod:22,prod_id_8:16,produc:[6,14,16,18,22,23],produce_revenu:22,product:[6,7,15,16,18,19,24],product_categori:[15,16,18,19],product_id:[15,16,18,19,22],product_num:7,product_typ:[15,16,18,19],production:1,products_excel:7,proess:7,prof:[26,28],professor:12,program:[0,1,2,3,4,5,6,7,8,10,22,24,30,31],programm:[1,3,25],programmat:[3,20],progress:[3,23,31],project:[1,6,7,31],prometheu:6,promot:15,prompt:[0,1,6],prone:29,proper:[15,19,24],properli:[0,1,14,25],properti:[1,2,7,11,19],propon:6,proport:27,protect:26,protego:6,proto:6,protobuf:6,proven:29,provid:[0,1,6,7,9,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29,31],proxi:6,pseudorandom:6,psutil:6,psycopg2:6,ptyprocess:6,pud:16,puerto:28,pull:[4,18],pulldown:1,punctuat:16,pur:16,purchas:[18,19,22,24],purchase_flag:22,pure:[6,15],purpos:[6,14,18,19,20,22,28],push:1,put:[2,7,14,19,20,28,31],puzzl:24,py4j:6,pyarrow:6,pyasn1:6,pybtex:6,pycodestyl:6,pycosat:6,pycpars:6,pyct:6,pycurl:6,pydant:6,pydata:[6,10],pydispatch:6,pydocstyl:6,pyerfa:6,pyflak:6,pygment:6,pyhamcrest:6,pyjwt:6,pyl:6,pylint:6,pyluach:6,pyodbc:6,pyopenssl:6,pypars:6,pypi:6,pyplot:[6,18,26],pyrsist:6,pyseri:6,pysock:6,pyspark:[6,7],pytest:6,python39:6,python3:[6,8,14,15,20],python:[0,2,3,4,5,6,7,8,9,10,11,12,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31],pytz:6,pyviz:[6,18],pywavelet:6,pyyaml:6,pyzmq:6,qdarkstyl:6,qstyliz:6,qtawesom:6,qtconsol:6,qthelp:6,qtpy:6,qty_greater_than:24,qual:[7,11,12],quantifi:26,quantil:[18,19,22],quantit:12,quantiti:[2,15,16,18,19,22,24,28],queri:[7,15,18],question:17,queuelib:6,quick:[0,20],quickli:[4,7,18,19,24],quit:[1,3,7,8,11,12,16,19,23,27],quiz:31,quizz:31,quot:[2,11,12],r4d:14,race:[26,28],rais:[2,4,10,14,15,24],raisin:16,ram:2,ran:[24,29],randint:3,random:[3,6,23,24,27,28],random_sampl:24,random_search:29,random_st:[27,28,29],random_valu:23,randomforestclassifi:29,randomizedsearchcv:29,randomli:[23,29],rang:[4,6,8,16,18,20,23,24,28,29],rangeindex:[7,8,11],rapidli:8,rare:[6,8,10,15,17,19,24,28,29],rate:[22,27],rather:[1,4,6,10,11,12,15,16,18,23,24,29],ratio:24,raw:[7,16,28],reach:15,reaction:16,read:[0,1,2,3,4,6,7,10,15,18,20,22,26,31],read_csv:[7,8,10,11,12,14,20,23,26,27,28,29],read_excel:7,read_sql:7,read_xxx:7,readabl:[6,26],reader:[1,7,26],readi:7,readili:[6,31],real:[0,2,4,6,9,26,27,28,31],real_lot_area:11,realist:29,realiz:[3,4,6,11,16,18,24],realli:[1,2,3,7,10,12,14,20,28],rearrang:11,reason:[0,2,3,6,11,14,15,16,19,22,24,28],reassign:[3,4,8],rec:11,recal:[3,10,11,12,19,29],recalcul:11,receiv:15,recent:[2,4,6,8,14,15,23,24],recod:11,recommend:[6,11,18,24,26,28,31],record:[10,11,14,16,31],recreat:19,red:[0,16,18,20],redempt:15,reduc:[10,18,24,25],redund:26,reev:14,reeves_gradient_width_various_method:14,refer:[0,1,6,7,8,9,10,11,14,16,19,20,24,26,28,29],referenc:[7,8,19],refiger:16,refin:[18,20],reflect:[4,6],refrain:3,refrgratd:15,refriger:[15,16],reg:[7,11,12,20,29],regard:[18,24,28],regex:6,regex_count:16,region:26,regress:[27,28,29],regressor:[27,28,29],regular:[7,8,15,17,29],reindex:18,reinforc:31,reiter:[23,24],rel:7,relat:[6,7,8,17,24,26],relationship:[15,20,26,28,30,31],relaunch:0,relev:[3,24,28,29],reli:[7,26,28],reload:2,reload_ext:2,remain:[4,12,16,19,29],rememb:[2,4,10,16,19,22,26],remind:[1,7],remod:[7,11,12],remov:[0,7,10,14,18,23,24,25,26],renam:[18,19],render:[1,20],repeat:[16,23,25,29],repeatedli:29,repetit:[23,25,29],repl:31,replac:[6,8,24,28],replic:[4,29],repo:6,report:[11,31],repositori:31,repr:[15,27,28],repres:[2,3,4,6,7,8,11,12,14,15,16,19,20,23,24,26,27,28],represent:[6,7,20,21,25,27,28],request:6,requir:[0,8,10,11,15,20,22,24,26,28,29,31],rerun:[27,28],res_bp:11,resampl:[18,19],rescal:24,research:1,resembl:7,reserv:19,reset:[8,14],reset_index:[8,14,18,19],reshap:[6,15,17,31],resid:6,residenti:7,resolut:3,resort:7,resourc:[0,18,20,26,31],respect:[2,3,6,19,20,28,29],respons:[3,16,22,27],rest:[0,23],rest_ecg:11,restart:[1,6],restless:7,restrict:[15,24],result:[1,2,3,4,6,8,10,12,14,15,16,18,19,20,22,23,24,25,27,28,29,30],resum:6,retail_disc:[15,18,19,22],retain:[15,16],retir:26,retriev:19,return_x_i:29,reus:1,reusabl:1,reveal:26,revenu:26,review:[11,29],rewrit:24,rf__max_depth:29,rf__max_featur:29,rf__max_sampl:29,rf__min_samples_leaf:29,rf__n_estim:29,rfn:11,rich:[1,6],rico:28,ride:15,right:[1,3,8,11,18,19,20,26,29],right_col:15,right_index:15,right_on:15,right_onli:15,risk:[11,29],rmse:29,road:24,robert:[23,24],robust:[24,29],roc:29,roc_auc:29,roc_auc_scor:29,rock:7,role:2,roll:[0,2,15,18,19],roman:19,roof:[7,11],roof_matl:11,roof_styl:11,room:12,root:[0,7,29],rope:6,rose:16,rotat:[19,26],rough:1,roughli:20,round:[2,3,11,16,22,24,27],routin:[6,18,24],row:[7,8,11,12,13,14,15,16,18,19,20,24,27,28],row_index:10,rowwis:12,rsa:6,rtd:6,rtree:6,ruamel:6,rule:[3,24,27,29],run:[0,1,3,6,7,12,19,20,24,29],russet:16,rvs:29,s3transfer:6,safari:0,sai:[0,1,2,3,4,7,10,11,14,15,16,18,19,20,22,23,24,29],said:[1,4,28],sake:27,salad:16,sale:[7,11,12,15,16,18,19,20,24],sale_condit:11,sale_pric:11,sale_price_k:11,sale_typ:11,salecondit:20,saledpric:20,salepric:[7,11,12,20,26,28],sales_by_stor:18,sales_valu:[15,16,18,19,22,24],saletyp:20,salli:24,salut:7,same:[0,1,2,3,4,6,7,9,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],sampl:[6,26,27,28,29],san:12,sandi:23,sandybrown:19,saturdai:18,satya:4,sauc:16,save:[1,2,6,7,10,23,25],saw:[2,6,7,8,16,18,19,28],sawyer:[12,14],sawyerw:[12,14],scalar:[8,11],scale:[18,28,29],scale_:28,scaler:28,scan:2,scatter:[18,19,20],scatterplot:[18,26],schafer:[7,19,31],schema:15,scheme:[3,4],school:[4,26,28,31],scienc:[0,1,7,8,9,31],scientif:[0,1,2,6],scientist:[6,24,31],scikit:[0,6,28,29,30,31],scipi:[0,19,29],score:[27,28],score_tim:29,scotland:28,scrapi:6,scratch:[8,28],screen:[0,1,7,11,12,19,29],screen_porch:11,script:[1,6,24,31],scroll:15,seaborn:[0,1,6,11,19,26],seafood:[15,16,18],searborn:11,search:[0,6,12,16],season:16,seat:[10,12],second:[1,3,4,9,10,15,20,23,24,25,29],secondpart:24,section:[0,3,4,7,10,12,14,16,18,19,24,31],secur:6,see:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,22,23,24,26,27,28,31],seed:3,seek:19,seem:[1,2,3,4,22,24,26],seen:[6,7,11,16,18,24,29],seldom:27,select:[1,6,7,8,12,13,14,18,31],select_dtyp:[26,27],selector:[14,28,29],self:[8,14,15,24,28,29,31],seller:16,semant:[6,14],send2trash:6,send:[24,28],sens:[2,8,10,29],sensit:[4,16],sensor:26,sep:[11,24],separ:[1,3,4,6,7,10,11,15,19,22,24,26,28,29],sequenc:[4,10,11,16,18,22],sequenti:[4,23,28],seri:[9,10,11,13,14,15,16,19,23,24],serializinghtml:6,serv:[16,20,26],server:[6,7],servic:[0,6],session:[0,5,6,7],set:[0,1,3,6,7,8,9,10,11,12,14,15,16,17,20,23,24,26,27,28,29,31],set_config:[27,28],set_facecolor:19,set_index:[8,18,19],set_major_formatt:18,set_tick:19,set_titl:19,set_xlabel:19,set_xlim:19,set_xscal:19,set_xtick:19,set_xticklabel:19,set_ylabel:19,set_ylim:19,set_ytick:19,set_yticklabel:19,settingwithcopywarn:10,setuptool:6,sever:[0,1,2,6,11,15,16,18,19,22,23,29],sex:[10,26,28],shape:[7,8,11,12,15,16,19,26,27],share:[0,1,6,20],shark:7,shed:[7,11,12],sheet:7,sheet_nam:7,shelf:[15,16],shell:6,shellingham:6,shift:[0,1],shop:18,shopper:15,shorter:[6,11],shortest:16,shorthand:[12,23,28],shortli:16,should:[0,1,2,4,5,6,7,8,9,10,11,13,15,17,20,21,23,24,25,26,28,30],shouldn:4,show:[0,1,7,14,19,20,22,24,26,27,28,31],shown:[1,16,26],shuck:4,shuffl:27,shut:[0,1,7],shutdown:1,side:11,sign:[1,2,16,20],signal:[23,24],signatur:6,signifi:[20,31],signific:[11,26,28],significantli:[22,28],similar:[2,3,4,7,8,10,11,12,14,15,16,18,20,23,24,27,28,29],similarli:26,simpi:6,simpl:[0,1,3,4,6,9,10,15,16,20,22,23,24,26],simpler:6,simplest:[6,15,19],simpli:[2,7,8,10,11,14,15,16,18,19,20,23,24],simplic:[11,27],simplifi:[7,16,25],simultan:1,sin:[0,6],sinc:[2,7,9,10,11,15,16,18,19,20,22,24,26,28,29,31],sine:6,singl:[1,2,3,4,8,10,11,12,15,16,17,18,19,22,23,24,25,26,28,29],sip:6,sit:7,site:[6,8,14,15,19,20],situat:[3,11,22,24],six:[2,6],size:[7,15,16,18,20,22,28,29],size_adj:19,size_filt:16,skew:18,skill:[1,15,31],skillet:16,skip:[0,23,24],skip_these_numb:23,sklearn:[27,28,29],skyblu:19,slice:16,slight:25,slightli:26,slope:[7,11],slugifi:6,small:[7,10,15,18,19,22,24,26,29],smaller:[10,19],smaller_s:16,smallest:12,smart:[0,6],smith:7,smmap:6,smoke:15,smooth:[6,18],snack:[15,16],snake:19,snappi:6,sniffio:6,snowballstemm:6,sns:[11,26],soft:16,soften:16,softwar:[0,7,25],sold:[7,11,12,14,15,18,19],sole:18,solut:11,solv:[6,24,26],solver:[28,29],some:[0,1,2,3,4,5,6,7,8,10,11,12,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,31],some_funct:24,some_packag:6,someon:[24,26],somerst:[12,14],someth:[3,6,8,16,24,26],sometim:[3,4,6,7,11,12,14,16,24],somewher:[16,18,24],soon:22,sophist:[0,6,22],sort:[15,16,20],sort_valu:[12,15,16,18],sortedcollect:6,sortedcontain:6,soupsiev:6,sourc:[1,6,7,8,9,14,15,18,19,20],south:28,southwest:7,space:[0,1,3,7,11,16,20],spam:22,span:28,sparingli:[3,6],spars:[6,28],speak:2,special:[1,2,4,6,15,16,20,24,26],specialti:16,specif:[6,7,8,10,12,14,16,24,27,28],specifi:[0,1,3,4,7,8,11,14,15,16,18,19,20,23,24,28,29],speed:[10,29],spellcheck:[0,6],spend:[0,6,8,17,20,28],spent:[11,18,28],sphinx:[6,24],sphinxcontrib:6,spice:16,split:[17,28,29],sply:16,spot:24,spous:26,spreadsheet:[7,14],spring:16,sprinkl:31,spyder:6,sqft:[20,22],sql:[10,11],sql_queri:7,sqlalchemi:[0,6,7],sqlalchemy2:6,sqlalechmi:7,sqlite:7,sqlmodel:6,sqlpars:6,sqrt:2,squar:[2,6,11,12,16,20,23,24,29],squared_certain_valu:23,squared_odd_valu:23,squared_valu:23,squared_values_dict:23,src:6,stabl:[10,15,16,28],stack:6,stacklevel:15,stage:26,stai:[8,11],stakehold:20,stall:12,stand:[1,2,6,19,24],standalon:[6,20,24],standard:[0,3,7,9,12,16,19,24,26,28,29],standard_scal:[28,29],standardscal:[28,29],standardscalerstandardscal:28,star:24,start:[0,1,3,4,6,7,8,9,11,12,16,18,19,21,23,24,26,28,29,30,31],starts_or_ends_with_fruit:16,starts_with_digit:16,starts_with_fruit:16,starts_with_nondigit:16,stat:[6,29],state:[4,8,10,12,14,23,25,26,27,28,29],statement:[1,3,6,7,11,12,16,19,25,31],statement_1:22,statement_2:22,statement_3:22,statist:[1,6,12,13,14,18,26,28,30],statsmodel:6,statu:[6,26,28],std:[12,18,28,29],steelblu:19,step:[1,7,8,10,11,16,20,21,23,24,26,27,28,29,31],steve:23,still:[2,3,4,7,10,14,18,20,28,29],stone:[11,16],stonebr:[12,14],stop:[8,22,23,24],stopiter:23,storag:6,store:[0,1,2,3,4,6,7,15,18,19,20,23,24,28],store_count:19,store_id:[15,18,19,22,24],store_sal:24,store_visit:24,str:[2,3,4,6,11,15,16,23,24],straight:16,straightforward:[8,20,26],strang:2,strategi:[27,29],stratifi:27,stream:20,street:[7,11,12,20],strict:10,strictli:8,stride:4,strike:7,string:[1,3,4,6,7,8,11,12,17,19,23,24,28,29],string_object:16,strmethodformatt:18,strong:[19,28,31],stronger:8,strongli:23,structur:[5,6,7,8,10,14,23,24,28,29],stt_wav_abn:11,stub:6,student1:24,student2:24,student3:24,student:[1,24,31],studi:31,stuff:23,style:[6,7,11,16,18,26],styliz:19,sub:[14,18,19],subclass:[7,11,12],subcompon:29,subdirectori:7,subject:[3,31],submiss:31,submodul:[6,19,20],subplot:19,subset:[11,12,13,16,26,27,28,31],substanti:28,substitut:[14,15],substr:24,subtract:[2,11,23],success:[1,15,27,28],successfulli:31,succinct:[10,16],succinctli:3,suffer:28,suffix:[1,15],suggest:[1,15,24,26,31],suitabl:29,sum:[6,11,12,14,15,16,18,19,22,23,24,26],summar:15,summari:[12,13,14,18,24,30,31],summer:16,summer_or_fal:16,summer_product:16,sundai:18,sunset:2,suppli:[15,20,22,24,29],support:[0,1,4,6,7,8,11,23,24,29],suppos:[2,3,11,28],supppli:16,suptitl:19,sure:[0,1,6,11,19,24,28,31],surfac:[19,28],svg:20,swan:[4,31],swisu:[12,14],sydnei:23,syllabu:31,symbol:[2,6,16,20,24],sympi:6,synonym:[6,24],syntax:[1,3,4,6,11,12,16,19,20,23,24],syntaxerror:2,synthes:1,sys:[6,29],system:[0,6,25,26],systemat:11,tab:[0,1,6,20],tabl:[2,3,6,7,8,14,15,16,17],tabul:6,tabular:[6,7,27],tach:11,tad:16,tail:[7,23],tailnum:10,tailnum_of_interest:10,taiwan:28,take:[0,1,2,3,6,7,8,10,11,12,15,16,18,19,20,23,24,26,27,28,29],takeawai:10,taken:[23,24,28],talk:[1,2,11,12,14,15,18],target:[26,28,29],target_col:27,target_column:26,target_predict:27,task:[3,5,9,10,11,12,13,15,17,19,26,28,29,31],tbb:6,tblib:6,tchd:11,tea:16,teach:[1,7,20],team:[11,12],technic:[7,24],techniqu:[26,28,30],tediou:[11,16,25],tell:[2,3,4,6,7,11,15,16,26],temperatur:12,tempfil:6,tempt:2,ten_coin_flip:23,ten_of_a_kind:23,tenac:6,tend:[6,15],term:[6,9,10,16,19,24,26,31],termin:[1,6,7,23],terminado:6,test2:22,test:[0,1,3,6,10,19,22,24,28,29],test_1:22,test_accuraci:29,test_express:22,test_roc_auc:29,test_scor:29,test_siz:27,testpath:6,text:[0,1,2,6,7,8,11,17,24,29,31],text_align:0,textdist:6,thailand:28,than:[0,1,3,4,6,7,8,10,11,12,15,16,18,19,22,23,24,25,27,28,29],the_truth:3,thebe:6,thei:[0,1,2,3,4,6,8,14,15,18,19,20,22,24,26,28,29,31],them:[1,2,3,4,6,7,8,11,12,14,15,16,17,18,19,20,23,24,28],theme:[6,18],themselv:3,therefor:[0,7,29],thi:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30],thing:[0,1,2,4,6,7,8,9,10,11,12,16,18,24,26,28,29],think:[1,2,3,4,6,9,10,11,12,16,20,23,24,26,29],third:[7,9,10,19,23,24,27],thoma:25,thorough:[14,22],thoroughli:6,those:[0,1,4,7,10,11,12,13,15,16,17,18,19,20,24,28],though:[1,2,3,4,8,10],thought:[1,10],thousand:11,threadpoolctl:6,three:[2,3,4,6,7,9,10,14,15,16,23,24,28,29],three_digit:16,threshold:24,through:[0,1,2,3,4,5,6,9,11,13,15,17,19,20,21,23,24,25,30,31],throughoug:18,throughout:[0,3,6,7,8,15,31],throught:[],thrown:[23,24],thu:[12,19,25,29],thursdai:18,tick:18,tick_format:18,tick_label:19,ticker:18,tidi:[17,31],tidy_reeves_gradi:14,tiffani:14,tifffil:6,tim:[1,4],timber:[12,14],time:[0,1,2,3,6,7,8,10,11,12,15,16,18,19,20,22,23,24,26,28,29,31],timeout:6,timestamp:[18,24],tinycss:6,tip:[28,31],tiss:[15,16],tissu:15,titl:[18,20,22,24],tldextract:6,to_fram:19,to_list:8,tobago:28,toc:6,todai:12,togeth:[2,3,11,12,15,20,27,29],togglebutton:6,toi:[0,11,22,29],token:6,told:2,tom:[14,24],toma:31,toml:6,tomli:6,too:[4,8,10,27],tool:[0,1,6,7,16,18,20,21,23,24,30,31],toolbar:[1,20],toolbox:30,toolkit:6,tooltip:20,toolz:6,top10:18,top:[1,6,12,16,18,19,26],topic:31,tornado:6,tortilla:16,total:[3,7,11,12,15,16,18,19,20,22,24,29],total_bsmt_sf:11,total_daily_discount:18,total_disc:22,total_sal:[16,24],total_sales_by_weekdai:18,totals_by_stor:19,totrm:[7,11,12],totrms_abvgrd:11,touch:29,towel:16,tqdm:6,traceback:[2,4,6,8,14,15,23,24],track:[7,23],trackid:7,trade:29,tradeoff:29,tradit:16,tradition:1,trai:16,train:[6,7,16,19,24,26,28,29],train_test_split:[27,28,29],traitlet:6,transact:[15,16,18,19,22,24],transaction_timestamp:[15,16,18,19,22,24],transfer:19,transform:[6,11,17,18,20,21,27,28,29,31],translat:[1,2],transpar:20,transpos:6,treat:[6,16,29],treatment:16,tree:[26,28,29],trei:20,trend:22,tri:[4,10,18,23,24],trinadad:28,tripl:2,tropic:16,troubl:3,truli:16,truncat:31,trust:[6,15,27,28],trustworthi:22,truth:3,truthi:22,tuesdai:18,tuna:15,tune:21,tupl:[19,20,23,24],turbo:10,turkei:15,turn:[10,26,28,31],tutori:[2,24,31],twice:24,twiddl:29,twist:6,two:[0,1,2,3,4,6,7,8,9,10,11,12,14,15,16,19,20,22,23,24,26,27,28,29,31],type:[0,1,3,4,5,6,8,10,11,12,14,15,16,19,20,26,27,29,31],typeerror:[2,4,6,24],typic:[1,6,7,8,11,15,16,17,19,24,28,29],typing_extens:6,typograph:31,tzlocal:6,ugli:1,uhd:3,uilt:24,ujson:6,ultim:1,umbrella:24,unambigu:25,uncommon:3,under:[1,2,6,11,14,16,22,24,29],undergrad:4,underli:[28,29],underneath:[18,23],underpin:6,underscor:[11,28],understand:[1,2,3,5,6,7,9,16,18,19,24,25,28,29,30,31],undert:29,undetermin:23,unexpect:8,unf:[7,11],unfold:23,unfortun:[18,19,28,29],unidecod:6,unifi:29,uniform:29,unind:20,uniqu:[3,4,7,8,12,14,15,16,18,20,23,24,28,29,31],unique_valu:23,unit:[14,18,19,26,28],unitpric:7,univari:18,univers:[0,4,12,31],unix:1,unknown:6,unleash:1,unless:[0,4],unlik:6,unmarri:[18,19],unnecessari:25,unord:1,unpack:[19,23],unpredict:[3,10],unrecover:24,unseen:[26,29],unstack:[14,18],unsupport:[2,4,6],until:[23,24,29],unwieldi:20,upc:15,upcom:[22,26],updat:[0,2,3,4,6,11,19,20],upon:[0,2,6,15,16,23,24,31],upper:[16,18,24],uppercas:16,upward:11,url:7,urllib3:6,urllib:6,usag:[0,7,11,24],use:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,21,22,23,24,26,27,28,29,31],used:[0,1,2,3,4,6,7,8,9,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],useful:[1,4,6,7,10,12,19,20,22,23,24,26,27],user:[6,7,8,11,18,24,29,31],user_guid:10,usernam:7,userwarn:[16,20],uses:[3,4,11,15,22,24,27,28,29],using:[0,1,2,3,4,5,6,7,8,10,12,14,15,16,18,19,20,23,24,26,27,28,29,30,31],usual:[1,3,6,10,11,18,24],util:[7,11,20],utility_spac:11,val:[6,7,11,12],val_a:15,val_b:15,val_i:15,val_x:15,valid:[4,15,18,19],valu:[0,1,2,4,6,7,8,10,12,13,14,15,17,18,19,20,22,23,24,26,27,28,29],valuabl:16,value_column:14,value_count:[16,18,26],value_map:11,value_nam:14,value_var:14,valueerror:[14,24],vanilla:1,var_nam:14,varada:14,vari:[2,14],variabl:[1,3,4,7,11,14,15,16,18,19,20,22,23,27,29,30],variablenam:12,variant:1,variat:23,varieti:[9,16,19,20,24,25,31],variou:[1,5,6,7,10,11,12,13,14,15,16,17,20,21,24,31],vast:[18,19],veal:15,vector:[6,11,22,24],veenker:[12,14],veg:16,veget:16,ventricular:11,venu:14,verbos:[6,12,22,29],veri:[0,1,2,3,4,6,10,15,18,19,20,22,23,24,26,27,29],verifi:[6,7,19],verison:1,vernor:12,versatil:[6,18],version:[0,1,2,3,4,6,7,8,10,11,12,15,16,18,19,20,22,23,26,27,28,29],versu:[3,9,10,18,19,24],vert:19,vertic:[16,18],veteran:4,via:[0,6,7,11,14,15,29,31],video:[],vietnam:28,view:[1,7,15,18,19,20,28,31],viewabl:20,viewer:19,ving:12,violat:28,viridi:11,virtualenv:6,visibl:1,visit:[3,22,24,31],visual:[1,6,7,11,14,18,19,20,21,28,30,31],vitamin:16,vnr:[7,11,12],voc:[26,28],vocabulari:31,vowel:16,vscode:24,w3lib:6,wai:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,23,24,26,28,29,31],wait:[2,3,4,11,16],walk:23,wall:[7,29],want:[0,1,2,3,4,6,8,10,11,12,13,14,15,16,17,18,19,20,22,23,24,26,27,28,29],warn:[2,10,11,14,15,16,20,31],watch:[1,2,4,6,14,15,31],watchdog:6,watermark:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],wave:11,wcwidth:6,weakref:6,web:[0,6,20],webencod:6,webinar:[1,14],webpag:[26,31],websit:[1,18,31],websocket:6,wednesdai:18,week:[15,18,19,22,24,26,27,28,31],weekdai:[18,24],weekend:[18,24],weekli:18,weigh:[3,16],weight:29,welcom:[5,9,31],well:[1,6,7,11,16,18,19,20,23,29],went:28,were:[1,2,6,14,15,16,19,20,28],werkzeug:6,what:[0,2,3,4,6,7,9,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],wheel:6,when:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,25,26,27,28,29,31],whenev:[1,8,15,19,24],where:[0,1,2,3,4,6,7,8,10,11,14,15,16,18,19,20,22,23,24,26,29,31],wherea:[8,15,28],whether:[2,3,10,16,18,19,20,24,26,28],which:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,25,26,27,28,29,31],white:[1,11,15,16,26],who:15,whoa:[3,11],whole:7,wholemount:14,why:[4,18,24,29],wide:[0,6,16,19,25,31],wider:14,widget:6,widgetsnbextens:6,width:[0,3,14,19],wild:[7,14],wildcard:16,window:[1,12],wing:10,wise:[6,11,16,19],wish:[0,4,6,15],within:[0,1,2,6,7,8,9,11,12,14,15,16,18,19,20,22,23,24,25,26,29,30,31],withing:0,without:[4,6,7,11,19,20,22,23,24,26,28],won:[11,14,22,24,28],wood:[7,11,12],wood_deck_sf:11,word:[1,3,4,6,10,15,23,24],work:[0,1,2,3,4,5,6,7,8,10,12,14,15,16,17,18,19,20,22,24,26,28,29,31],workbook:7,workclass:[26,28],workclass_:28,workflow:[8,11,26,30],worksheet:7,workshop:28,workspac:[6,7,19,24],world:[2,3,6,24,30,31],worri:[0,3,4,6,7,11,18,22,29],worst:2,worth:[1,11,14,16],would:[1,2,4,6,7,8,11,12,14,15,16,18,19,20,24,26,28,29],wra:16,wrangl:[9,11,13,30,31],wrap:[10,16],wrapper:6,wrapt:6,wreck:25,write:[0,1,3,11,20,22,23,25,31],written:[1,2,3,15,24,26],wrongli:27,wurlitz:6,www:[26,27],x27:28,x2a:16,x_axis_label:20,x_cancer:29,x_diabet:29,x_interp:6,x_list:6,x_squar:6,x_test:[27,28,29],x_train:[27,28,29],xarrai:6,xaxi:20,xaxis_loc:19,xlabel:[18,19],xlim:19,xlrd:6,xlsx:7,xlsxwriter:6,xlwing:6,xmax:26,xmin:26,xmlfile:6,xor:2,xtick:19,xticklabel:19,xxx:16,xxxx:11,xytext:19,y_axis_label:20,y_cancer:29,y_diabet:29,y_i:29,y_interp:6,y_pred:29,y_test:[27,28,29],y_train:[27,28,29],yaml:6,yapf:6,yarl:6,yaxi:[18,20],yaxis_loc:19,year:[2,7,10,11,12,14,15,18,19,23,24,26],year_built:11,year_remod:11,year_sold:14,yearbuilt:28,yell:24,yellow:16,yes:0,yet:[6,18,19,23,29],yike:3,ylabel:[18,19],ylim:19,ymax:26,ymin:26,you:[0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31],young:7,younger:10,your:[1,3,4,6,7,8,9,10,11,12,14,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31],your_monitor:3,yourself:[6,11,15,20,25],yr_sold:11,yrsold:20,ytick:19,yticklabel:19,yugoslavia:28,zen:[1,24],zero:[2,3,4,16,18,19,22,26,28],zerodivisionerror:2,zict:6,zip:[6,23],zip_cod:4,zipp:6,zone:[7,11,12],zoom:20,zope:6},titles:["Lesson 0: Configuring your computer","Lesson 1a: Introduction to JupyterLab","Lesson 1b: Variables, operators & types","Lesson 1c: More operators & conditionals","Lesson 1d: Data structures","Overview","Lesson 2a: Packages, libraries & modules","Lesson 2b: Importing data","Lesson 2c: Deeper dive on DataFrames","Overview","Lesson 3a: Subsetting data","Lesson 3b: Manipulating data","Lesson 3c: Summarizing data","Overview","Lession 4a: Tidy data","Lesson 4b: Relational data","Lesson 4c: Handling text data","Overview","Lession 5a: Plotting with Pandas","Lesson 5b: Plotting with Matplotlib","Lesson 5c: Plotting with Bokeh","Overview","Lession 6a: Conditional statements","Lesson 6b: Iteration statement","Lesson 6C: Writing functions","Overview","Lesson 7a: Data Exploration","Lesson 7b: First model with scikit-learn","Lesson 7c: Feature Engineering","Lesson 7d: Model Evaluation & Selection","Overview","Statistical Computing"],titleterms:{"boolean":3,"case":16,"class":[16,31],"default":24,"float":2,"function":[1,11,24,29],"import":[6,7,19,20],"long":14,"switch":22,"true":3,"try":24,"while":23,Adding:[11,19],Are:8,Axes:19,The:[0,1,3,12,18,20],Using:28,acknowledg:31,addit:[1,7,14],adult:26,aggreg:12,alia:6,altogeth:16,anaconda:0,anatomi:19,anchor:16,anonym:24,appli:[11,22],arg:24,argument:24,asid:3,assert:24,assign:2,attribut:[7,18],axes:19,base:[11,28],basic:[16,28],bia:29,bigger:15,bokeh:20,book:31,branch:22,brief:3,calcul:11,call:19,can:8,cartesian:29,categor:28,categori:28,cell:1,censu:26,chain:3,chang:24,charact:16,check:[0,2,3,4,6,7,10,11,12,14,15,16,18,19,22,23,24,27,29],choos:28,chrome:0,code:[1,20],color:20,column:11,command:0,common:16,complex:11,comprehens:23,comput:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29,31],conda:0,condit:[3,22],configur:0,content:6,control:23,convent:31,convers:[2,16],copi:10,count:16,creat:26,creation:[4,19],cross:29,custom:11,data:[4,6,7,10,11,12,14,15,16,19,20,26,27,28,29],databas:7,datafram:[8,12,18],dataset:26,decis:26,deeper:8,defin:24,delimit:7,describ:12,detect:16,determin:2,dictionari:4,differ:15,dimens:[10,19,20],displai:1,distinguish:19,distribut:0,dive:8,docstr:24,download:0,ecod:28,els:3,encod:28,engin:[28,29],environ:[0,1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],equal:3,error:24,escap:16,estim:[5,9,13,17,21,25,29,30],evalu:29,exampl:15,excel:7,except:24,exercis:[1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,29],explicit:6,explor:26,express:16,extract:16,fals:3,featur:[26,27,28,29],feedback:31,figur:19,file:[1,7],filter:10,firefox:0,first:[20,27],fit:27,fold:29,frame:20,from:[0,19,27],full:[15,29],get:19,get_:19,git:0,grammar:20,graphic:1,grid:29,group:12,hand:26,handl:16,hello:1,hint:24,hood:18,hyperparamet:29,ident:3,implicit:6,increment:2,index:[4,8,12],indic:15,individu:29,inlin:3,inner:15,inspect:26,instal:0,integ:2,interpret:1,introduct:1,iter:23,join:15,json:7,jupyt:1,jupyterlab:[0,1],kei:[1,15],keyboard:1,keyword:24,knowledg:[2,3,4,6,7,10,11,12,14,15,16,18,19,22,23,24,27,29],kwarg:24,label:19,launch:[0,1],learn:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31],left:[3,15],lession:[14,18,22],lesson:[0,1,2,3,4,6,7,8,10,11,12,15,16,19,20,23,24,26,27,28,29],librari:6,limit:19,line:[0,16,19],list:[4,23],load:26,locat:19,logic:3,loop:23,machin:0,maco:0,made:8,make:27,manag:0,mani:7,manipul:11,materi:31,matplotlib:[6,18,19],melt:14,memori:7,merg:15,metacharact:16,metadata:7,method:[7,12,19,24,29],metric:29,miss:11,mode:1,model:[27,28,29],modul:[6,19],more:[3,11,19],multipl:[11,12,16,19],multiwai:22,mutabl:4,mutat:15,need:14,node:0,nomin:28,non:11,note:2,notebook:1,numer:[3,11,28],numpi:6,object:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31],oper:[2,3,4,10,11,16],order:2,ordin:28,other:[3,6,7,19,20],our:20,out:3,outer:15,overview:[5,9,13,17,21,25,30],overwrit:11,own:0,packag:[0,6],panda:[6,18,22],paramet:[24,29],part:16,parti:6,path:7,pickl:7,pipelin:28,pivot:14,plot:[18,19,20],predict:27,prep:29,preprocess:28,prerequisit:[10,15,16,18,20,22,23,24,28],print:1,put:16,pyplot:19,python:1,question:[1,2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,23,26,27,28,29,31],quick:[1,4,29],random:29,refresh:29,regex:16,regular:16,relat:[3,15],remov:11,renam:11,repetit:16,replac:[11,16],requir:[5,9,13,17,21,25,30],resampl:29,reshap:14,respons:26,review:4,right:15,row:10,rule:26,save:20,schedul:31,scienc:6,scikit:27,scipi:6,scope:24,score:29,search:[24,29],select:[10,28,29],separ:27,sequenc:23,sequenti:10,seri:[8,12,18],set:19,set_:19,shortcut:1,shorthand:16,simpl:12,simultan:10,size:19,slice:[4,10],special:14,specif:20,split:27,sql:7,standard:6,statement:[22,23,24],statist:31,strategi:28,string:[2,16],structur:[4,31],style:[19,20],subset:10,summar:12,target:27,task:[6,22,23,24],termin:0,terminolog:6,test:27,text:[16,19],thi:31,third:6,tick:19,tidi:[14,20],time:[5,9,13,17,21,25,30],titl:19,todo:15,togeth:28,tool:14,train:27,tune:29,tupl:4,tutori:[7,19,20],type:[2,7,24,28],unbias:26,under:18,unicod:3,uninstal:0,unpack:4,upon:19,used:31,user:0,using:11,valid:[24,29],valu:[3,11,16],variabl:[2,10,12,24,26,28],varianc:29,video:[1,2,3,4,6,7,8,10,11,12,14,15,16,19,20,22,23,24,31],view:10,visual:26,what:[1,8],when:24,why:[0,1],wide:14,window:0,word:16,world:1,wrap:28,write:24,xcode:0,you:8,your:0}})
\ No newline at end of file
diff --git a/docs/_build/jupyter_execute/01-module/lesson-1a.ipynb b/docs/_build/jupyter_execute/01-module/lesson-1a.ipynb
index 45b518b..8ef6cdd 100644
--- a/docs/_build/jupyter_execute/01-module/lesson-1a.ipynb
+++ b/docs/_build/jupyter_execute/01-module/lesson-1a.ipynb
@@ -94,7 +94,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -200,7 +200,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -457,7 +457,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -522,7 +522,7 @@
"text": [
"Python implementation: CPython\n",
"Python version : 3.9.12\n",
- "IPython version : 8.2.0\n",
+ "IPython version : 8.4.0\n",
"\n",
"jupyterlab: 3.3.2\n",
"\n"
diff --git a/docs/_build/jupyter_execute/01-module/lesson-1a.py b/docs/_build/jupyter_execute/01-module/lesson-1a.py
index e7ebf41..e67cec6 100644
--- a/docs/_build/jupyter_execute/01-module/lesson-1a.py
+++ b/docs/_build/jupyter_execute/01-module/lesson-1a.py
@@ -55,7 +55,7 @@
# Hooray! We just printed `Hello, world.` to the screen. To do this, we used Python's built-in `print()` function. The `print()` function takes as an **argument** a **string**. It then prints that string to the screen. We will learn more about function syntax later, but we can already see the rough syntax with the `print()` function.
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## .py files
@@ -113,7 +113,7 @@
# To shut down the console, you can click on the `Running` tab at the left of the JupyterLab window and click on `SHUTDOWN` next to the console.
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Jupyter
@@ -268,7 +268,7 @@
# There are many others (and they are shown in the pulldown menus within JupyterLab), but these are the ones I seem to encounter most often.
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Exercises
diff --git a/docs/_build/jupyter_execute/01-module/lesson-1b.ipynb b/docs/_build/jupyter_execute/01-module/lesson-1b.ipynb
index fd37422..09091e6 100644
--- a/docs/_build/jupyter_execute/01-module/lesson-1b.ipynb
+++ b/docs/_build/jupyter_execute/01-module/lesson-1b.ipynb
@@ -46,7 +46,7 @@
"## Determining the type\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"First, we will use Python's built-in `type()` function to determine the type of some variables."
@@ -1028,7 +1028,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1226,7 +1226,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/jupyter_execute/01-module/lesson-1b.py b/docs/_build/jupyter_execute/01-module/lesson-1b.py
index 250d1a5..0e6253c 100644
--- a/docs/_build/jupyter_execute/01-module/lesson-1b.py
+++ b/docs/_build/jupyter_execute/01-module/lesson-1b.py
@@ -28,7 +28,7 @@
# ## Determining the type
#
# ```{admonition} Video 🎥:
-#
+#
# ```
#
# First, we will use Python's built-in `type()` function to determine the type of some variables.
@@ -379,7 +379,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Variables and assignment operators
@@ -461,7 +461,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Type conversion
diff --git a/docs/_build/jupyter_execute/01-module/lesson-1c.ipynb b/docs/_build/jupyter_execute/01-module/lesson-1c.ipynb
index 1bec28a..0fff718 100644
--- a/docs/_build/jupyter_execute/01-module/lesson-1c.ipynb
+++ b/docs/_build/jupyter_execute/01-module/lesson-1c.ipynb
@@ -613,7 +613,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -905,7 +905,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1177,7 +1177,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1616,7 +1616,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1657,7 +1657,7 @@
"text": [
"Python implementation: CPython\n",
"Python version : 3.9.12\n",
- "IPython version : 8.2.0\n",
+ "IPython version : 8.4.0\n",
"\n",
"jupyterlab: 3.3.2\n",
"\n"
diff --git a/docs/_build/jupyter_execute/01-module/lesson-1c.py b/docs/_build/jupyter_execute/01-module/lesson-1c.py
index 437ece0..37d1d79 100644
--- a/docs/_build/jupyter_execute/01-module/lesson-1c.py
+++ b/docs/_build/jupyter_execute/01-module/lesson-1c.py
@@ -227,7 +227,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Identity operators
@@ -352,7 +352,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Logical operators
@@ -464,7 +464,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Operators we left out
@@ -662,7 +662,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Exercises
diff --git a/docs/_build/jupyter_execute/01-module/lesson-1d.ipynb b/docs/_build/jupyter_execute/01-module/lesson-1d.ipynb
index f133545..0eff5ed 100644
--- a/docs/_build/jupyter_execute/01-module/lesson-1d.ipynb
+++ b/docs/_build/jupyter_execute/01-module/lesson-1d.ipynb
@@ -30,7 +30,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -717,7 +717,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1036,7 +1036,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1353,7 +1353,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/jupyter_execute/01-module/lesson-1d.py b/docs/_build/jupyter_execute/01-module/lesson-1d.py
index a7a9d1b..ca58855 100644
--- a/docs/_build/jupyter_execute/01-module/lesson-1d.py
+++ b/docs/_build/jupyter_execute/01-module/lesson-1d.py
@@ -17,7 +17,7 @@
# * Create and manage these data structures along with how to apply operators on them.
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Lists
@@ -288,7 +288,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Tuples
@@ -418,7 +418,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Dictionaries
@@ -539,7 +539,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Quick Review
diff --git a/docs/_build/jupyter_execute/02-module/lesson-2a.ipynb b/docs/_build/jupyter_execute/02-module/lesson-2a.ipynb
index 865840f..0709af3 100644
--- a/docs/_build/jupyter_execute/02-module/lesson-2a.ipynb
+++ b/docs/_build/jupyter_execute/02-module/lesson-2a.ipynb
@@ -37,7 +37,7 @@
"## Terminology\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"People often use the terms _\"package\"_, _\"library\"_, and _\"module\"_ synonymously. If you are familiar with the R programming language you've probably heard some of these terms before. Although there are some semantical differences between R and Python, here is how you can think of the two terms:\n",
@@ -60,394 +60,443 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Package Version\r\n",
- "----------------------------- --------------------\r\n",
- "aiohttp 3.8.1\r\n",
- "aiosignal 1.2.0\r\n",
- "alabaster 0.7.12\r\n",
- "anaconda-client 1.9.0\r\n",
- "anaconda-navigator 2.1.4\r\n",
- "anaconda-project 0.10.2\r\n",
- "anyio 3.5.0\r\n",
- "appdirs 1.4.4\r\n",
- "applaunchservices 0.2.1\r\n",
- "appnope 0.1.2\r\n",
- "appscript 1.1.2\r\n",
- "argon2-cffi 21.3.0\r\n",
- "argon2-cffi-bindings 21.2.0\r\n",
- "arrow 1.2.2\r\n",
- "astroid 2.6.6\r\n",
- "astropy 5.0.4\r\n",
- "asttokens 2.0.5\r\n",
- "async-timeout 4.0.1\r\n",
- "atomicwrites 1.4.0\r\n",
- "attrs 20.3.0\r\n",
- "Automat 20.2.0\r\n",
- "autopep8 1.6.0\r\n",
- "Babel 2.9.1\r\n",
- "backcall 0.2.0\r\n",
- "backports.functools-lru-cache 1.6.4\r\n",
- "backports.tempfile 1.0\r\n",
- "backports.weakref 1.0.post1\r\n",
- "bcrypt 3.2.0\r\n",
- "beautifulsoup4 4.11.1\r\n",
- "binaryornot 0.4.4\r\n",
- "bitarray 2.4.1\r\n",
- "bkcharts 0.2\r\n",
- "black 21.12b0\r\n",
- "blackcellmagic 0.0.3\r\n",
- "bleach 4.1.0\r\n",
- "bokeh 2.4.2\r\n",
- "boto3 1.21.32\r\n",
- "botocore 1.24.32\r\n",
- "Bottleneck 1.3.4\r\n",
- "brotlipy 0.7.0\r\n",
- "cachetools 4.2.2\r\n",
- "certifi 2022.5.18.1\r\n",
- "cffi 1.15.0\r\n",
- "cftime 1.5.1.1\r\n",
- "chardet 4.0.0\r\n",
- "charset-normalizer 2.0.4\r\n",
- "click 8.0.4\r\n",
- "click-completion 0.5.2\r\n",
- "click-log 0.3.2\r\n",
- "cloudpickle 2.0.0\r\n",
- "clyent 1.2.2\r\n",
- "colorama 0.4.4\r\n",
- "colorcet 2.0.6\r\n",
- "commonmark 0.9.1\r\n",
- "completejourney-py 0.0.3\r\n",
- "component-logger 1.11.1\r\n",
- "conda 4.12.0\r\n",
- "conda-build 3.21.8\r\n",
- "conda-content-trust 0+unknown\r\n",
- "conda-pack 0.6.0\r\n",
- "conda-package-handling 1.8.1\r\n",
- "conda-repo-cli 1.0.4\r\n",
- "conda-token 0.3.0\r\n",
- "conda-verify 3.4.2\r\n",
- "constantly 15.1.0\r\n",
- "cookiecutter 1.7.3\r\n",
- "cryptography 3.4.8\r\n",
- "cssselect 1.1.0\r\n",
- "cycler 0.11.0\r\n",
- "Cython 0.29.28\r\n",
- "cytoolz 0.11.0\r\n",
- "daal4py 2021.5.0\r\n",
- "dask 2022.2.1\r\n",
- "datashader 0.13.0\r\n",
- "datashape 0.5.4\r\n",
- "dateparser 1.1.1\r\n",
- "debugpy 1.5.1\r\n",
- "decorator 5.1.1\r\n",
- "defusedxml 0.7.1\r\n",
- "diff-match-patch 20200713\r\n",
- "distributed 2022.2.1\r\n",
- "docutils 0.16\r\n",
- "e451-py-security 1.0.57\r\n",
- "effo-cookiecutter 0.4.0\r\n",
- "effo411 0.2.0\r\n",
- "effodata 2.5.0\r\n",
- "entrypoints 0.4\r\n",
- "et-xmlfile 1.1.0\r\n",
- "executing 0.8.3\r\n",
- "fastjsonschema 2.15.1\r\n",
- "filelock 3.6.0\r\n",
- "flake8 3.9.2\r\n",
- "Flask 1.1.2\r\n",
- "fonttools 4.25.0\r\n",
- "frozenlist 1.2.0\r\n",
- "fsspec 2022.2.0\r\n",
- "future 0.18.2\r\n",
- "gensim 4.1.2\r\n",
- "gitdb 4.0.9\r\n",
- "GitPython 3.1.27\r\n",
- "glob2 0.7\r\n",
- "gmpy2 2.1.2\r\n",
- "google-api-core 1.25.1\r\n",
- "google-auth 1.33.0\r\n",
- "google-cloud-core 1.7.1\r\n",
- "google-cloud-storage 1.31.0\r\n",
- "google-crc32c 1.1.2\r\n",
- "google-resumable-media 1.3.1\r\n",
- "googleapis-common-protos 1.53.0\r\n",
- "greenlet 1.1.1\r\n",
- "grpcio 1.42.0\r\n",
- "h5py 3.6.0\r\n",
- "HeapDict 1.0.1\r\n",
- "holoviews 1.14.8\r\n",
- "hvplot 0.7.3\r\n",
- "hyperlink 21.0.0\r\n",
- "hypothesis 6.29.3\r\n",
- "idna 3.3\r\n",
- "imagecodecs 2021.8.26\r\n",
- "imageio 2.9.0\r\n",
- "imagesize 1.3.0\r\n",
- "importlib-metadata 4.11.3\r\n",
- "incremental 21.3.0\r\n",
- "inflection 0.5.1\r\n",
- "iniconfig 1.1.1\r\n",
- "intake 0.6.5\r\n",
- "intervaltree 3.1.0\r\n",
- "ipykernel 6.9.1\r\n",
- "ipython 8.2.0\r\n",
- "ipython-genutils 0.2.0\r\n",
- "ipywidgets 7.6.5\r\n",
- "iqplot 0.2.4\r\n",
- "isort 5.9.3\r\n",
- "itemadapter 0.3.0\r\n",
- "itemloaders 1.0.4\r\n",
- "itsdangerous 2.0.1\r\n",
- "jdcal 1.4.1\r\n",
- "jedi 0.18.1\r\n",
- "Jinja2 2.11.3\r\n",
- "jinja2-time 0.2.0\r\n",
- "jmespath 0.10.0\r\n",
- "joblib 1.1.0\r\n",
- "json5 0.9.6\r\n",
- "jsonschema 3.2.0\r\n",
- "jupyter 1.0.0\r\n",
- "jupyter-bokeh 3.0.4\r\n",
- "jupyter-book 0.12.3\r\n",
- "jupyter-cache 0.4.3\r\n",
- "jupyter-client 6.1.12\r\n",
- "jupyter-console 6.4.0\r\n",
- "jupyter-core 4.9.2\r\n",
- "jupyter-server 1.13.5\r\n",
- "jupyter-server-mathjax 0.2.5\r\n",
- "jupyter-sphinx 0.3.2\r\n",
- "jupyterlab 3.3.2\r\n",
- "jupyterlab-pygments 0.1.2\r\n",
- "jupyterlab-server 2.10.3\r\n",
- "jupyterlab-spellchecker 0.7.2\r\n",
- "jupyterlab-widgets 1.0.0\r\n",
- "jupytext 1.10.3\r\n",
- "kayday 2.0.0\r\n",
- "keyring 23.4.0\r\n",
- "kiwisolver 1.3.2\r\n",
- "kpi-metrics 1.3.4\r\n",
- "latexcodec 2.0.1\r\n",
- "lazy-object-proxy 1.6.0\r\n",
- "libarchive-c 2.9\r\n",
- "linkify-it-py 1.0.3\r\n",
- "llvmlite 0.38.0\r\n",
- "locket 0.2.1\r\n",
- "lxml 4.8.0\r\n",
- "Markdown 3.3.4\r\n",
- "markdown-it-py 1.1.0\r\n",
- "MarkupSafe 2.0.1\r\n",
- "matplotlib 3.5.1\r\n",
- "matplotlib-inline 0.1.2\r\n",
- "mccabe 0.6.1\r\n",
- "mdit-py-plugins 0.2.8\r\n",
- "mistune 0.8.4\r\n",
- "mkl-fft 1.3.1\r\n",
- "mkl-random 1.2.2\r\n",
- "mkl-service 2.4.0\r\n",
- "mock 4.0.3\r\n",
- "mpmath 1.2.1\r\n",
- "msgpack 1.0.2\r\n",
- "multidict 5.2.0\r\n",
- "multipledispatch 0.6.0\r\n",
- "munkres 1.1.4\r\n",
- "mypy-extensions 0.4.3\r\n",
- "myst-nb 0.13.2\r\n",
- "myst-parser 0.15.2\r\n",
- "navigator-updater 0.2.1\r\n",
- "nbclassic 0.3.5\r\n",
- "nbclient 0.5.13\r\n",
- "nbconvert 5.6.1\r\n",
- "nbdime 3.1.1\r\n",
- "nbformat 5.3.0\r\n",
- "nest-asyncio 1.5.5\r\n",
- "nested-lookup 0.2.23\r\n",
- "netCDF4 1.5.7\r\n",
- "networkx 2.7.1\r\n",
- "nltk 3.7\r\n",
- "nose 1.3.7\r\n",
- "notebook 6.4.8\r\n",
- "numba 0.55.1\r\n",
- "numexpr 2.8.1\r\n",
- "numpy 1.21.5\r\n",
- "numpydoc 1.2\r\n",
- "olefile 0.46\r\n",
- "openpyxl 3.0.9\r\n",
- "packaging 21.3\r\n",
- "pandas 1.4.2\r\n",
- "pandocfilters 1.5.0\r\n",
- "panel 0.13.0\r\n",
- "param 1.12.0\r\n",
- "parsel 1.6.0\r\n",
- "parso 0.8.3\r\n",
- "partd 1.2.0\r\n",
- "pathspec 0.9.0\r\n",
- "patsy 0.5.2\r\n",
- "pep8 1.7.1\r\n",
- "pexpect 4.8.0\r\n",
- "pickleshare 0.7.5\r\n",
- "Pillow 9.0.1\r\n",
- "pip 21.2.4\r\n",
- "pkginfo 1.8.2\r\n",
- "platformdirs 2.5.2\r\n",
- "plotly 5.6.0\r\n",
- "pluggy 1.0.0\r\n",
- "poyo 0.5.0\r\n",
- "prometheus-client 0.13.1\r\n",
- "prompt-toolkit 3.0.20\r\n",
- "Protego 0.1.16\r\n",
- "protobuf 3.19.1\r\n",
- "psutil 5.8.0\r\n",
- "ptyprocess 0.7.0\r\n",
- "pure-eval 0.2.2\r\n",
- "py 1.11.0\r\n",
- "py4j 0.10.9.3\r\n",
- "pyarrow 8.0.0\r\n",
- "pyasn1 0.4.8\r\n",
- "pyasn1-modules 0.2.8\r\n",
- "pybtex 0.24.0\r\n",
- "pybtex-docutils 1.0.1\r\n",
- "pycodestyle 2.7.0\r\n",
- "pycosat 0.6.3\r\n",
- "pycparser 2.21\r\n",
- "pyct 0.4.6\r\n",
- "pycurl 7.44.1\r\n",
- "pydata-sphinx-theme 0.7.2\r\n",
- "PyDispatcher 2.0.5\r\n",
- "pydocstyle 6.1.1\r\n",
- "pyerfa 2.0.0\r\n",
- "pyflakes 2.3.1\r\n",
- "Pygments 2.11.2\r\n",
- "PyHamcrest 2.0.2\r\n",
- "PyJWT 2.1.0\r\n",
- "pylint 2.9.6\r\n",
- "pyls-spyder 0.4.0\r\n",
- "pyluach 1.4.2\r\n",
- "pyodbc 4.0.32\r\n",
- "pyOpenSSL 21.0.0\r\n",
- "pyparsing 3.0.4\r\n",
- "pypi-simple 0.9.0\r\n",
- "pyrsistent 0.18.0\r\n",
- "pyserial 3.5\r\n",
- "PySocks 1.7.1\r\n",
- "pyspark 3.2.1\r\n",
- "pytest 7.1.1\r\n",
- "python-dateutil 2.8.2\r\n",
- "python-lsp-black 1.0.0\r\n",
- "python-lsp-jsonrpc 1.0.0\r\n",
- "python-lsp-server 1.2.4\r\n",
- "python-slugify 5.0.2\r\n",
- "python-snappy 0.6.0\r\n",
- "pytz 2021.3\r\n",
- "pyviz-comms 2.0.2\r\n",
- "PyWavelets 1.3.0\r\n",
- "PyYAML 6.0\r\n",
- "pyzmq 22.3.0\r\n",
- "QDarkStyle 3.0.2\r\n",
- "qstylizer 0.1.10\r\n",
- "QtAwesome 1.0.3\r\n",
- "qtconsole 5.3.0\r\n",
- "QtPy 2.0.1\r\n",
- "queuelib 1.5.0\r\n",
- "regex 2022.4.24\r\n",
- "requests 2.27.1\r\n",
- "requests-file 1.5.1\r\n",
- "rich 12.4.3\r\n",
- "rope 0.22.0\r\n",
- "rsa 4.7.2\r\n",
- "Rtree 0.9.7\r\n",
- "ruamel-yaml-conda 0.15.100\r\n",
- "s3transfer 0.5.0\r\n",
- "scikit-image 0.19.2\r\n",
- "scikit-learn 1.0.2\r\n",
- "scikit-learn-intelex 2021.20220215.132722\r\n",
- "scipy 1.7.3\r\n",
- "Scrapy 2.6.1\r\n",
- "seaborn 0.11.2\r\n",
- "Send2Trash 1.8.0\r\n",
- "service-identity 18.1.0\r\n",
- "setuptools 65.2.0\r\n",
- "shellingham 1.4.0\r\n",
- "sip 4.19.13\r\n",
- "six 1.16.0\r\n",
- "smart-open 5.1.0\r\n",
- "smmap 3.0.5\r\n",
- "sniffio 1.2.0\r\n",
- "snowballstemmer 2.2.0\r\n",
- "sortedcollections 2.1.0\r\n",
- "sortedcontainers 2.4.0\r\n",
- "soupsieve 2.3.1\r\n",
- "Sphinx 3.5.3\r\n",
- "sphinx-book-theme 0.1.10\r\n",
- "sphinx-comments 0.0.3\r\n",
- "sphinx-copybutton 0.5.0\r\n",
- "sphinx-external-toc 0.2.4\r\n",
- "sphinx-jupyterbook-latex 0.4.6\r\n",
- "sphinx-multitoc-numbering 0.1.3\r\n",
- "sphinx-panels 0.6.0\r\n",
- "sphinx-thebe 0.1.2\r\n",
- "sphinx-togglebutton 0.3.1\r\n",
- "sphinxcontrib-applehelp 1.0.2\r\n",
- "sphinxcontrib-bibtex 2.4.2\r\n",
- "sphinxcontrib-devhelp 1.0.2\r\n",
- "sphinxcontrib-htmlhelp 2.0.0\r\n",
- "sphinxcontrib-jsmath 1.0.1\r\n",
- "sphinxcontrib-qthelp 1.0.3\r\n",
- "sphinxcontrib-serializinghtml 1.1.5\r\n",
- "spyder 5.1.5\r\n",
- "spyder-kernels 2.1.3\r\n",
- "SQLAlchemy 1.4.32\r\n",
- "sqlparse 0.4.2\r\n",
- "stack-data 0.2.0\r\n",
- "statsmodels 0.13.2\r\n",
- "sympy 1.10.1\r\n",
- "tables 3.6.1\r\n",
- "tabulate 0.8.9\r\n",
- "TBB 0.2\r\n",
- "tblib 1.7.0\r\n",
- "tenacity 8.0.1\r\n",
- "terminado 0.13.1\r\n",
- "testpath 0.5.0\r\n",
- "text-unidecode 1.3\r\n",
- "textdistance 4.2.1\r\n",
- "threadpoolctl 2.2.0\r\n",
- "three-merge 0.1.1\r\n",
- "tifffile 2021.7.2\r\n",
- "tinycss 0.4\r\n",
- "tldextract 3.2.0\r\n",
- "toml 0.10.2\r\n",
- "tomli 1.2.2\r\n",
- "toolz 0.11.2\r\n",
- "tornado 6.1\r\n",
- "tqdm 4.64.0\r\n",
- "traitlets 5.1.1\r\n",
- "Twisted 22.2.0\r\n",
- "typed-ast 1.4.3\r\n",
- "typing_extensions 4.1.1\r\n",
- "tzlocal 2.1\r\n",
- "uc-micro-py 1.0.1\r\n",
- "ujson 5.1.0\r\n",
- "Unidecode 1.2.0\r\n",
- "urllib3 1.26.9\r\n",
- "w3lib 1.21.0\r\n",
- "watchdog 2.1.6\r\n",
- "watermark 2.3.0\r\n",
- "wcwidth 0.2.5\r\n",
- "webencodings 0.5.1\r\n",
- "websocket-client 0.58.0\r\n",
- "Werkzeug 2.0.3\r\n",
- "wheel 0.37.1\r\n",
- "widgetsnbextension 3.5.2\r\n",
- "wrapt 1.12.1\r\n",
- "wurlitzer 3.0.2\r\n",
- "xarray 0.20.1\r\n",
- "xlrd 2.0.1\r\n",
- "XlsxWriter 3.0.3\r\n",
- "xlwings 0.24.9\r\n",
- "yapf 0.31.0\r\n",
- "yarl 1.6.3\r\n",
- "zict 2.0.0\r\n",
- "zipp 3.7.0\r\n",
- "zope.interface 5.4.0\r\n"
+ "Package Version Location\r\n",
+ "------------------------------ -------------------- ----------------------------------------------------------------\r\n",
+ "aiohttp 3.8.1\r\n",
+ "aiosignal 1.2.0\r\n",
+ "alabaster 0.7.12\r\n",
+ "alembic 1.8.1\r\n",
+ "anaconda-client 1.9.0\r\n",
+ "anaconda-navigator 2.1.4\r\n",
+ "anaconda-project 0.10.2\r\n",
+ "anyio 3.5.0\r\n",
+ "appdirs 1.4.4\r\n",
+ "applaunchservices 0.2.1\r\n",
+ "appnope 0.1.2\r\n",
+ "appscript 1.1.2\r\n",
+ "argon2-cffi 21.3.0\r\n",
+ "argon2-cffi-bindings 21.2.0\r\n",
+ "arrow 1.2.2\r\n",
+ "astroid 2.6.6\r\n",
+ "astropy 5.0.4\r\n",
+ "asttokens 2.0.5\r\n",
+ "async-timeout 4.0.1\r\n",
+ "atomicwrites 1.4.0\r\n",
+ "attrs 20.3.0\r\n",
+ "Automat 20.2.0\r\n",
+ "autopep8 1.6.0\r\n",
+ "azure-core 1.26.0\r\n",
+ "azure-identity 1.11.0\r\n",
+ "azure-storage-blob 12.14.0\r\n",
+ "azure-storage-file-datalake 12.9.0\r\n",
+ "Babel 2.9.1\r\n",
+ "backcall 0.2.0\r\n",
+ "backports.functools-lru-cache 1.6.4\r\n",
+ "backports.tempfile 1.0\r\n",
+ "backports.weakref 1.0.post1\r\n",
+ "bcrypt 3.2.0\r\n",
+ "beautifulsoup4 4.11.1\r\n",
+ "binaryornot 0.4.4\r\n",
+ "bitarray 2.4.1\r\n",
+ "bkcharts 0.2\r\n",
+ "black 21.12b0\r\n",
+ "blackcellmagic 0.0.3\r\n",
+ "bleach 4.1.0\r\n",
+ "bokeh 2.4.2\r\n",
+ "boto3 1.21.32\r\n",
+ "botocore 1.24.32\r\n",
+ "Bottleneck 1.3.4\r\n",
+ "brotlipy 0.7.0\r\n",
+ "cachetools 4.2.2\r\n",
+ "certifi 2022.5.18.1\r\n",
+ "cffi 1.15.0\r\n",
+ "cfgv 3.3.1\r\n",
+ "cftime 1.5.1.1\r\n",
+ "chardet 4.0.0\r\n",
+ "charset-normalizer 2.0.4\r\n",
+ "click 8.0.4\r\n",
+ "click-completion 0.5.2\r\n",
+ "click-log 0.3.2\r\n",
+ "cloudpickle 2.0.0\r\n",
+ "clyent 1.2.2\r\n",
+ "colorama 0.4.4\r\n",
+ "colorcet 2.0.6\r\n",
+ "commonmark 0.9.1\r\n",
+ "completejourney-py 0.0.3\r\n",
+ "component-logger 1.11.1\r\n",
+ "conda 4.12.0\r\n",
+ "conda-build 3.21.8\r\n",
+ "conda-content-trust 0+unknown\r\n",
+ "conda-pack 0.6.0\r\n",
+ "conda-package-handling 1.8.1\r\n",
+ "conda-repo-cli 1.0.4\r\n",
+ "conda-token 0.3.0\r\n",
+ "conda-verify 3.4.2\r\n",
+ "constantly 15.1.0\r\n",
+ "cookiecutter 1.7.3\r\n",
+ "cplex 22.1.0.0\r\n",
+ "cryptography 38.0.4\r\n",
+ "cssselect 1.1.0\r\n",
+ "cycler 0.11.0\r\n",
+ "Cython 0.29.28\r\n",
+ "cytoolz 0.11.0\r\n",
+ "daal4py 2021.5.0\r\n",
+ "dacite 1.6.0\r\n",
+ "dadjokes 1.3.2\r\n",
+ "dask 2022.2.1\r\n",
+ "datashader 0.13.0\r\n",
+ "datashape 0.5.4\r\n",
+ "dateparser 1.1.1\r\n",
+ "debugpy 1.5.1\r\n",
+ "decorator 5.1.1\r\n",
+ "defusedxml 0.7.1\r\n",
+ "diff-match-patch 20200713\r\n",
+ "distlib 0.3.6\r\n",
+ "distributed 2022.2.1\r\n",
+ "docutils 0.16\r\n",
+ "dynamic-positioner 1.5.0a1 /Users/b294776/Desktop/workspace/packages/dynamic-positioner/src\r\n",
+ "e451-py-security 1.0.57\r\n",
+ "effo-cookiecutter 0.4.0\r\n",
+ "effo411 0.2.0\r\n",
+ "effodata 2.5.0\r\n",
+ "effodata-clickstream-libs 1.1.3\r\n",
+ "entrypoints 0.4\r\n",
+ "et-xmlfile 1.1.0\r\n",
+ "executing 0.8.3\r\n",
+ "fastjsonschema 2.15.1\r\n",
+ "filelock 3.6.0\r\n",
+ "flake8 3.9.2\r\n",
+ "flake8-bugbear 22.9.23\r\n",
+ "Flask 1.1.2\r\n",
+ "flowcate 1.0.2\r\n",
+ "fonttools 4.25.0\r\n",
+ "frozenlist 1.2.0\r\n",
+ "fsopt 0.0.59\r\n",
+ "fsspec 2022.2.0\r\n",
+ "future 0.18.2\r\n",
+ "gensim 4.1.2\r\n",
+ "gitdb 4.0.9\r\n",
+ "GitPython 3.1.27\r\n",
+ "glob2 0.7\r\n",
+ "gmpy2 2.1.2\r\n",
+ "google-api-core 2.10.2\r\n",
+ "google-auth 1.33.0\r\n",
+ "google-cloud-appengine-logging 1.1.6\r\n",
+ "google-cloud-audit-log 0.2.4\r\n",
+ "google-cloud-core 2.3.2\r\n",
+ "google-cloud-logging 3.2.5\r\n",
+ "google-cloud-storage 2.5.0\r\n",
+ "google-crc32c 1.1.2\r\n",
+ "google-resumable-media 2.4.0\r\n",
+ "googleapis-common-protos 1.56.4\r\n",
+ "greenlet 1.1.1\r\n",
+ "grpc-google-iam-v1 0.12.4\r\n",
+ "grpcio 1.47.2\r\n",
+ "grpcio-health-checking 1.47.2\r\n",
+ "grpcio-reflection 1.47.2\r\n",
+ "grpcio-status 1.49.1\r\n",
+ "h5py 3.6.0\r\n",
+ "HeapDict 1.0.1\r\n",
+ "holoviews 1.14.8\r\n",
+ "hvplot 0.7.3\r\n",
+ "hyperlink 21.0.0\r\n",
+ "hypothesis 6.29.3\r\n",
+ "identify 2.5.6\r\n",
+ "idna 3.3\r\n",
+ "imagecodecs 2021.8.26\r\n",
+ "imageio 2.9.0\r\n",
+ "imagesize 1.3.0\r\n",
+ "importlib-metadata 4.11.3\r\n",
+ "incremental 21.3.0\r\n",
+ "inflection 0.5.1\r\n",
+ "iniconfig 1.1.1\r\n",
+ "install 1.3.5\r\n",
+ "intake 0.6.5\r\n",
+ "intervaltree 3.1.0\r\n",
+ "ipykernel 6.9.1\r\n",
+ "ipython 8.4.0\r\n",
+ "ipython-genutils 0.2.0\r\n",
+ "ipywidgets 7.6.5\r\n",
+ "iqplot 0.2.4\r\n",
+ "isodate 0.6.1\r\n",
+ "isort 5.9.3\r\n",
+ "itemadapter 0.3.0\r\n",
+ "itemloaders 1.0.4\r\n",
+ "itsdangerous 2.0.1\r\n",
+ "jdcal 1.4.1\r\n",
+ "jedi 0.18.1\r\n",
+ "Jinja2 2.11.3\r\n",
+ "jinja2-time 0.2.0\r\n",
+ "jmespath 0.10.0\r\n",
+ "joblib 1.1.0\r\n",
+ "json5 0.9.6\r\n",
+ "jsonschema 3.2.0\r\n",
+ "jupyter 1.0.0\r\n",
+ "jupyter-bokeh 3.0.4\r\n",
+ "jupyter-book 0.12.3\r\n",
+ "jupyter-cache 0.4.3\r\n",
+ "jupyter-client 6.1.12\r\n",
+ "jupyter-console 6.4.0\r\n",
+ "jupyter-core 4.9.2\r\n",
+ "jupyter-server 1.13.5\r\n",
+ "jupyter-server-mathjax 0.2.5\r\n",
+ "jupyter-sphinx 0.3.2\r\n",
+ "jupyterlab 3.3.2\r\n",
+ "jupyterlab-pygments 0.1.2\r\n",
+ "jupyterlab-server 2.10.3\r\n",
+ "jupyterlab-spellchecker 0.7.2\r\n",
+ "jupyterlab-widgets 1.0.0\r\n",
+ "jupytext 1.10.3\r\n",
+ "kayday 2.0.0\r\n",
+ "keyring 23.4.0\r\n",
+ "kiwisolver 1.3.2\r\n",
+ "kpi-metrics 1.3.4\r\n",
+ "latexcodec 2.0.1\r\n",
+ "lazy-object-proxy 1.6.0\r\n",
+ "libarchive-c 2.9\r\n",
+ "linkify-it-py 1.0.3\r\n",
+ "llvmlite 0.39.1\r\n",
+ "locket 0.2.1\r\n",
+ "lxml 4.8.0\r\n",
+ "Mako 1.2.4\r\n",
+ "Markdown 3.3.4\r\n",
+ "markdown-it-py 1.1.0\r\n",
+ "MarkupSafe 2.0.1\r\n",
+ "matplotlib 3.5.3\r\n",
+ "matplotlib-inline 0.1.2\r\n",
+ "mccabe 0.6.1\r\n",
+ "mdit-py-plugins 0.2.8\r\n",
+ "mistune 0.8.4\r\n",
+ "mkl-fft 1.3.1\r\n",
+ "mkl-random 1.2.2\r\n",
+ "mkl-service 2.4.0\r\n",
+ "mock 4.0.3\r\n",
+ "mpire 2.6.0\r\n",
+ "mpmath 1.2.1\r\n",
+ "msal 1.20.0\r\n",
+ "msal-extensions 1.0.0\r\n",
+ "msgpack 1.0.2\r\n",
+ "msrest 0.7.1\r\n",
+ "multidict 5.2.0\r\n",
+ "multipledispatch 0.6.0\r\n",
+ "munkres 1.1.4\r\n",
+ "mypy 0.982\r\n",
+ "mypy-extensions 0.4.3\r\n",
+ "myst-nb 0.13.2\r\n",
+ "myst-parser 0.15.2\r\n",
+ "navigator-updater 0.2.1\r\n",
+ "nbclassic 0.3.5\r\n",
+ "nbclient 0.5.13\r\n",
+ "nbconvert 5.6.1\r\n",
+ "nbdime 3.1.1\r\n",
+ "nbformat 5.3.0\r\n",
+ "nbsphinx 0.8.9\r\n",
+ "nest-asyncio 1.5.5\r\n",
+ "nested-lookup 0.2.23\r\n",
+ "netCDF4 1.5.7\r\n",
+ "networkx 2.7.1\r\n",
+ "nltk 3.7\r\n",
+ "nodeenv 1.7.0\r\n",
+ "nose 1.3.7\r\n",
+ "notebook 6.4.8\r\n",
+ "numba 0.56.4\r\n",
+ "numexpr 2.8.1\r\n",
+ "numpy 1.22.4\r\n",
+ "numpydoc 1.2\r\n",
+ "oauthlib 3.2.2\r\n",
+ "olefile 0.46\r\n",
+ "openpyxl 3.0.9\r\n",
+ "packaging 21.3\r\n",
+ "pandas 1.4.2\r\n",
+ "pandocfilters 1.5.0\r\n",
+ "panel 0.13.0\r\n",
+ "param 1.12.0\r\n",
+ "parsel 1.6.0\r\n",
+ "parso 0.8.3\r\n",
+ "partd 1.2.0\r\n",
+ "pathspec 0.9.0\r\n",
+ "patsy 0.5.2\r\n",
+ "pep8 1.7.1\r\n",
+ "pexpect 4.8.0\r\n",
+ "pickleshare 0.7.5\r\n",
+ "Pillow 9.0.1\r\n",
+ "pip 21.2.4\r\n",
+ "piqdata 2.1.20\r\n",
+ "pkginfo 1.8.2\r\n",
+ "platformdirs 2.5.2\r\n",
+ "plotly 5.6.0\r\n",
+ "pluggy 1.0.0\r\n",
+ "pockets 0.9.1\r\n",
+ "poirot 2.6.3\r\n",
+ "portalocker 2.5.1\r\n",
+ "poyo 0.5.0\r\n",
+ "pre-commit 2.20.0\r\n",
+ "prometheus-client 0.13.1\r\n",
+ "prompt-toolkit 3.0.20\r\n",
+ "Protego 0.1.16\r\n",
+ "proto-plus 1.22.1\r\n",
+ "protobuf 4.21.7\r\n",
+ "psutil 5.8.0\r\n",
+ "psycopg2-binary 2.9.5\r\n",
+ "ptyprocess 0.7.0\r\n",
+ "pure-eval 0.2.2\r\n",
+ "py 1.11.0\r\n",
+ "py4j 0.10.9.3\r\n",
+ "pyarrow 8.0.0\r\n",
+ "pyasn1 0.4.8\r\n",
+ "pyasn1-modules 0.2.8\r\n",
+ "pybtex 0.24.0\r\n",
+ "pybtex-docutils 1.0.1\r\n",
+ "pycodestyle 2.7.0\r\n",
+ "pycosat 0.6.3\r\n",
+ "pycparser 2.21\r\n",
+ "pyct 0.4.6\r\n",
+ "pycurl 7.44.1\r\n",
+ "pydantic 1.10.2\r\n",
+ "pydata-sphinx-theme 0.7.2\r\n",
+ "PyDispatcher 2.0.5\r\n",
+ "pydocstyle 6.1.1\r\n",
+ "pyerfa 2.0.0\r\n",
+ "pyflakes 2.3.1\r\n",
+ "Pygments 2.11.2\r\n",
+ "PyHamcrest 2.0.2\r\n",
+ "PyJWT 2.4.0\r\n",
+ "pylint 2.9.6\r\n",
+ "pyls-spyder 0.4.0\r\n",
+ "pyluach 1.4.2\r\n",
+ "pyodbc 4.0.32\r\n",
+ "pyOpenSSL 21.0.0\r\n",
+ "pyparsing 3.0.4\r\n",
+ "pypi-simple 0.9.0\r\n",
+ "pyrsistent 0.18.0\r\n",
+ "pyserial 3.5\r\n",
+ "PySocks 1.7.1\r\n",
+ "pyspark 3.2.1\r\n",
+ "pytest 7.1.1\r\n",
+ "python-dateutil 2.8.2\r\n",
+ "python-lsp-black 1.0.0\r\n",
+ "python-lsp-jsonrpc 1.0.0\r\n",
+ "python-lsp-server 1.2.4\r\n",
+ "python-slugify 5.0.2\r\n",
+ "python-snappy 0.6.0\r\n",
+ "pytz 2021.3\r\n",
+ "pyviz-comms 2.0.2\r\n",
+ "PyWavelets 1.3.0\r\n",
+ "PyYAML 6.0\r\n",
+ "pyzmq 22.3.0\r\n",
+ "QDarkStyle 3.0.2\r\n",
+ "qstylizer 0.1.10\r\n",
+ "QtAwesome 1.0.3\r\n",
+ "qtconsole 5.3.0\r\n",
+ "QtPy 2.0.1\r\n",
+ "queuelib 1.5.0\r\n",
+ "regex 2022.3.2\r\n",
+ "requests 2.28.1\r\n",
+ "requests-file 1.5.1\r\n",
+ "requests-oauthlib 1.3.1\r\n",
+ "rich 12.4.3\r\n",
+ "rope 0.22.0\r\n",
+ "rsa 4.7.2\r\n",
+ "Rtree 0.9.7\r\n",
+ "ruamel-yaml-conda 0.15.100\r\n",
+ "s3transfer 0.5.0\r\n",
+ "scikit-image 0.19.2\r\n",
+ "scikit-learn 1.0.2\r\n",
+ "scikit-learn-intelex 2021.20220215.132722\r\n",
+ "scipy 1.9.3\r\n",
+ "Scrapy 2.6.1\r\n",
+ "seaborn 0.11.2\r\n",
+ "Send2Trash 1.8.0\r\n",
+ "service-identity 18.1.0\r\n",
+ "setuptools 65.2.0\r\n",
+ "shellingham 1.4.0\r\n",
+ "simpy 4.0.1\r\n",
+ "sip 4.19.13\r\n",
+ "six 1.16.0\r\n",
+ "smart-open 5.1.0\r\n",
+ "smmap 3.0.5\r\n",
+ "sniffio 1.2.0\r\n",
+ "snowballstemmer 2.2.0\r\n",
+ "sortedcollections 2.1.0\r\n",
+ "sortedcontainers 2.4.0\r\n",
+ "soupsieve 2.3.1\r\n",
+ "Sphinx 3.5.3\r\n",
+ "sphinx-book-theme 0.1.10\r\n",
+ "sphinx-comments 0.0.3\r\n",
+ "sphinx-copybutton 0.5.0\r\n",
+ "sphinx-external-toc 0.2.4\r\n",
+ "sphinx-jupyterbook-latex 0.4.6\r\n",
+ "sphinx-multitoc-numbering 0.1.3\r\n",
+ "sphinx-panels 0.6.0\r\n",
+ "sphinx-rtd-theme 1.0.0\r\n",
+ "sphinx-thebe 0.1.2\r\n",
+ "sphinx-togglebutton 0.3.1\r\n",
+ "sphinxcontrib-applehelp 1.0.2\r\n",
+ "sphinxcontrib-bibtex 2.4.2\r\n",
+ "sphinxcontrib-devhelp 1.0.2\r\n",
+ "sphinxcontrib-htmlhelp 2.0.0\r\n",
+ "sphinxcontrib-jsmath 1.0.1\r\n",
+ "sphinxcontrib-napoleon 0.7\r\n",
+ "sphinxcontrib-qthelp 1.0.3\r\n",
+ "sphinxcontrib-serializinghtml 1.1.5\r\n",
+ "spyder 5.1.5\r\n",
+ "spyder-kernels 2.1.3\r\n",
+ "SQLAlchemy 1.4.32\r\n",
+ "sqlalchemy2-stubs 0.0.2a29\r\n",
+ "sqlmodel 0.0.8\r\n",
+ "sqlparse 0.4.2\r\n",
+ "stack-data 0.2.0\r\n",
+ "statsmodels 0.13.2\r\n",
+ "sympy 1.10.1\r\n",
+ "tables 3.6.1\r\n",
+ "tabulate 0.8.9\r\n",
+ "TBB 0.2\r\n",
+ "tblib 1.7.0\r\n",
+ "tenacity 8.0.1\r\n",
+ "terminado 0.13.1\r\n",
+ "testpath 0.5.0\r\n",
+ "text-unidecode 1.3\r\n",
+ "textdistance 4.2.1\r\n",
+ "threadpoolctl 2.2.0\r\n",
+ "three-merge 0.1.1\r\n",
+ "tifffile 2021.7.2\r\n",
+ "tinycss 0.4\r\n",
+ "tldextract 3.2.0\r\n",
+ "toml 0.10.2\r\n",
+ "tomli 1.2.2\r\n",
+ "toolz 0.11.2\r\n",
+ "tornado 6.1\r\n",
+ "tqdm 4.64.0\r\n",
+ "traitlets 5.1.1\r\n",
+ "Twisted 22.2.0\r\n",
+ "typed-ast 1.4.3\r\n",
+ "typing_extensions 4.1.1\r\n",
+ "tzlocal 2.1\r\n",
+ "uc-micro-py 1.0.1\r\n",
+ "ujson 5.1.0\r\n",
+ "Unidecode 1.2.0\r\n",
+ "urllib3 1.26.9\r\n",
+ "virtualenv 20.16.5\r\n",
+ "w3lib 1.21.0\r\n",
+ "watchdog 2.1.6\r\n",
+ "watermark 2.3.0\r\n",
+ "wcwidth 0.2.5\r\n",
+ "webencodings 0.5.1\r\n",
+ "websocket-client 0.58.0\r\n",
+ "Werkzeug 2.0.3\r\n",
+ "wheel 0.37.1\r\n",
+ "widgetsnbextension 3.5.2\r\n",
+ "wrapt 1.12.1\r\n",
+ "wurlitzer 3.0.2\r\n",
+ "xarray 0.20.1\r\n",
+ "xlrd 2.0.1\r\n",
+ "XlsxWriter 3.0.3\r\n",
+ "xlwings 0.24.9\r\n",
+ "yapf 0.31.0\r\n",
+ "yarl 1.6.3\r\n",
+ "zict 2.0.0\r\n",
+ "zipp 3.7.0\r\n",
+ "zope.interface 5.4.0\r\n"
]
},
{
@@ -483,7 +532,8 @@
" '/opt/anaconda3/lib/python3.9/lib-dynload',\n",
" '',\n",
" '/opt/anaconda3/lib/python3.9/site-packages',\n",
- " '/opt/anaconda3/lib/python3.9/site-packages/aeosa']"
+ " '/opt/anaconda3/lib/python3.9/site-packages/aeosa',\n",
+ " '/Users/b294776/Desktop/workspace/packages/dynamic-positioner/src']"
]
},
"execution_count": 2,
@@ -545,7 +595,7 @@
"In the code above you saw the `import` statement. The `import` statement allows us to import code from another module. There are a few ways to use the statement, which we will mention briefly here, from most recommended to least recommended.\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"### Explicit module import\n",
@@ -761,7 +811,7 @@
"## Standard library\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"In the above code we've seen a few different libraries installed (`math` and `numpy`). These libraries represent two of the many readily available libraries at your disposal. However, we refer to the `math` library is part of the **standard library** and the `numpy` library is considered a **third party library**.\n",
@@ -892,7 +942,7 @@
"## Third-party modules\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"One of the things that makes Python useful, especially within the world of data science, is its ecosystem of third-party modules. These can be imported just as the built-in modules, but first the modules must be installed on your system. As previously mentioned, [Python Package Index](https://pypi.org/) (PyPI for short) and [Anaconda](https://anaconda.org/anaconda/repo) are the two primary public package managers for Python. To install packages from these locations we just use the following:\n",
diff --git a/docs/_build/jupyter_execute/02-module/lesson-2a.py b/docs/_build/jupyter_execute/02-module/lesson-2a.py
index 5f48bf6..84e3a8c 100644
--- a/docs/_build/jupyter_execute/02-module/lesson-2a.py
+++ b/docs/_build/jupyter_execute/02-module/lesson-2a.py
@@ -21,7 +21,7 @@
# ## Terminology
#
# ```{admonition} Video 🎥:
-#
+#
# ```
#
# People often use the terms _"package"_, _"library"_, and _"module"_ synonymously. If you are familiar with the R programming language you've probably heard some of these terms before. Although there are some semantical differences between R and Python, here is how you can think of the two terms:
@@ -74,7 +74,7 @@
# In the code above you saw the `import` statement. The `import` statement allows us to import code from another module. There are a few ways to use the statement, which we will mention briefly here, from most recommended to least recommended.
#
# ```{admonition} Video 🎥:
-#
+#
# ```
#
# ### Explicit module import
@@ -166,7 +166,7 @@
# ## Standard library
#
# ```{admonition} Video 🎥:
-#
+#
# ```
#
# In the above code we've seen a few different libraries installed (`math` and `numpy`). These libraries represent two of the many readily available libraries at your disposal. However, we refer to the `math` library is part of the **standard library** and the `numpy` library is considered a **third party library**.
@@ -224,7 +224,7 @@
# ## Third-party modules
#
# ```{admonition} Video 🎥:
-#
+#
# ```
#
# One of the things that makes Python useful, especially within the world of data science, is its ecosystem of third-party modules. These can be imported just as the built-in modules, but first the modules must be installed on your system. As previously mentioned, [Python Package Index](https://pypi.org/) (PyPI for short) and [Anaconda](https://anaconda.org/anaconda/repo) are the two primary public package managers for Python. To install packages from these locations we just use the following:
diff --git a/docs/_build/jupyter_execute/02-module/lesson-2b.ipynb b/docs/_build/jupyter_execute/02-module/lesson-2b.ipynb
index a9a8d78..8af162a 100644
--- a/docs/_build/jupyter_execute/02-module/lesson-2b.ipynb
+++ b/docs/_build/jupyter_execute/02-module/lesson-2b.ipynb
@@ -30,7 +30,7 @@
"## Data & memory\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"Python stores its data in memory - this makes it relatively quickly accessible but can cause size limitations in certain fields. In this class we will mainly work with small to moderate data sets, which means we should not run into any space limitations. \n",
@@ -59,7 +59,7 @@
"## Delimited files\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"Text files are a popular way to hold and exchange tabular data as almost any data application supports exporting data to the CSV (or other text file) format. Text file formats use delimiters to separate the different elements in a line, and each line of data is in its own line in the text file. Therefore, importing different kinds of text files can follow a fairly consistent process once you’ve identified the delimiter.\n",
@@ -708,7 +708,7 @@
"### File paths\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"It's important to understand where files exist on your computer and how to reference those paths. There are two main approaches:\n",
@@ -1020,7 +1020,7 @@
"### Attributes & methods\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"We've seen that we can use the dot-notation to access functions in libraries (i.e. `pd.read_csv()`). We can use this same approach to access things inside of _objects_. What's an object? Basically, a variable that contains other data or functionality inside of it that is exposed to users. Consequently, our DataFrame item is an object.\n",
@@ -1923,7 +1923,7 @@
"text": [
"Python implementation: CPython\n",
"Python version : 3.9.12\n",
- "IPython version : 8.2.0\n",
+ "IPython version : 8.4.0\n",
"\n",
"jupyterlab: 3.3.2\n",
"pandas : 1.4.2\n",
diff --git a/docs/_build/jupyter_execute/02-module/lesson-2b.py b/docs/_build/jupyter_execute/02-module/lesson-2b.py
index 2944a3a..6dc004b 100644
--- a/docs/_build/jupyter_execute/02-module/lesson-2b.py
+++ b/docs/_build/jupyter_execute/02-module/lesson-2b.py
@@ -17,7 +17,7 @@
# ## Data & memory
#
# ```{admonition} Video 🎥:
-#
+#
# ```
#
# Python stores its data in memory - this makes it relatively quickly accessible but can cause size limitations in certain fields. In this class we will mainly work with small to moderate data sets, which means we should not run into any space limitations.
@@ -41,7 +41,7 @@
# ## Delimited files
#
# ```{admonition} Video 🎥:
-#
+#
# ```
#
# Text files are a popular way to hold and exchange tabular data as almost any data application supports exporting data to the CSV (or other text file) format. Text file formats use delimiters to separate the different elements in a line, and each line of data is in its own line in the text file. Therefore, importing different kinds of text files can follow a fairly consistent process once you’ve identified the delimiter.
@@ -85,7 +85,7 @@
# ### File paths
#
# ```{admonition} Video 🎥:
-#
+#
# ```
#
# It's important to understand where files exist on your computer and how to reference those paths. There are two main approaches:
@@ -207,7 +207,7 @@
# ### Attributes & methods
#
# ```{admonition} Video 🎥:
-#
+#
# ```
#
# We've seen that we can use the dot-notation to access functions in libraries (i.e. `pd.read_csv()`). We can use this same approach to access things inside of _objects_. What's an object? Basically, a variable that contains other data or functionality inside of it that is exposed to users. Consequently, our DataFrame item is an object.
diff --git a/docs/_build/jupyter_execute/02-module/lesson-2c.ipynb b/docs/_build/jupyter_execute/02-module/lesson-2c.ipynb
index ce4b407..148afcb 100644
--- a/docs/_build/jupyter_execute/02-module/lesson-2c.ipynb
+++ b/docs/_build/jupyter_execute/02-module/lesson-2c.ipynb
@@ -114,7 +114,7 @@
"## What Are DataFrames Made of?\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"Accessing an individual column of a DataFrame can be done by passing the column name as a string, in brackets (`[]`)."
@@ -496,7 +496,7 @@
"## What Can You Do with a Series?\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -953,7 +953,7 @@
"## DataFrame Indexes\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"It's not just Series that have indexes! DataFrames have them too. Take a look at the carrier DataFrame again and note the bold numbers on the left."
diff --git a/docs/_build/jupyter_execute/02-module/lesson-2c.py b/docs/_build/jupyter_execute/02-module/lesson-2c.py
index f06385a..d9f736f 100644
--- a/docs/_build/jupyter_execute/02-module/lesson-2c.py
+++ b/docs/_build/jupyter_execute/02-module/lesson-2c.py
@@ -26,7 +26,7 @@
# ## What Are DataFrames Made of?
#
# ```{admonition} Video 🎥:
-#
+#
# ```
#
# Accessing an individual column of a DataFrame can be done by passing the column name as a string, in brackets (`[]`).
@@ -128,7 +128,7 @@
# ## What Can You Do with a Series?
#
# ```{admonition} Video 🎥:
-#
+#
# ```
# First, let's create our own Series object from scratch -- they don't need to come from a DataFrame. Here, we pass a list in as an argument and it will be converted to a Series.
@@ -228,7 +228,7 @@
# ## DataFrame Indexes
#
# ```{admonition} Video 🎥:
-#
+#
# ```
#
# It's not just Series that have indexes! DataFrames have them too. Take a look at the carrier DataFrame again and note the bold numbers on the left.
diff --git a/docs/_build/jupyter_execute/03-module/lesson-3a.ipynb b/docs/_build/jupyter_execute/03-module/lesson-3a.ipynb
index 0450187..33818e6 100644
--- a/docs/_build/jupyter_execute/03-module/lesson-3a.ipynb
+++ b/docs/_build/jupyter_execute/03-module/lesson-3a.ipynb
@@ -179,7 +179,7 @@
"## Subsetting dimensions\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```\n",
"\n",
"We don't always want all of the data in a DataFrame, so we need to take subsets of the DataFrame. In general, **subsetting** is extracting a small portion of a DataFrame -- making the DataFrame smaller. Since the DataFrame is two-dimensional, there are two dimensions on which to subset.\n",
@@ -903,7 +903,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -2156,7 +2156,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -2491,7 +2491,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -2628,7 +2628,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_97171/2190037627.py:1: SettingWithCopyWarning: \n",
+ "/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_69390/2190037627.py:1: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
@@ -2735,8 +2735,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "The id of the original dataframe is: 140606100927728\n",
- " The id of the indexed dataframe is: 140606114994256\n"
+ "The id of the original dataframe is: 140438716342624\n",
+ " The id of the indexed dataframe is: 140438730364480\n"
]
}
],
@@ -2891,7 +2891,7 @@
"text": [
"Python implementation: CPython\n",
"Python version : 3.9.12\n",
- "IPython version : 8.2.0\n",
+ "IPython version : 8.4.0\n",
"\n",
"jupyterlab: 3.3.2\n",
"pandas : 1.4.2\n",
diff --git a/docs/_build/jupyter_execute/03-module/lesson-3a.py b/docs/_build/jupyter_execute/03-module/lesson-3a.py
index afc0461..658cd13 100644
--- a/docs/_build/jupyter_execute/03-module/lesson-3a.py
+++ b/docs/_build/jupyter_execute/03-module/lesson-3a.py
@@ -33,7 +33,7 @@
# ## Subsetting dimensions
#
# ```{admonition} Video 🎥:
-#
+#
# ```
#
# We don't always want all of the data in a DataFrame, so we need to take subsets of the DataFrame. In general, **subsetting** is extracting a small portion of a DataFrame -- making the DataFrame smaller. Since the DataFrame is two-dimensional, there are two dimensions on which to subset.
@@ -166,7 +166,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Subsetting rows
@@ -276,7 +276,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Selecting variables and filtering rows
@@ -328,7 +328,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Views vs copies
diff --git a/docs/_build/jupyter_execute/03-module/lesson-3b.ipynb b/docs/_build/jupyter_execute/03-module/lesson-3b.ipynb
index 206f0a7..896e049 100644
--- a/docs/_build/jupyter_execute/03-module/lesson-3b.ipynb
+++ b/docs/_build/jupyter_execute/03-module/lesson-3b.ipynb
@@ -1013,7 +1013,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1720,7 +1720,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -2700,7 +2700,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -4048,15 +4048,16 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAIbCAYAAAD7HxiwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACp9klEQVR4nOzdeVzU1f7H8dfI5kKZC7hrqSnlWtJNq59cyx2X1DSXsFILTUWtQEQUd1Ap9yy6pjc1c0txN7fsml5NKr3ulpk7YriB7Hx/f3iZK7mN8B0QeD8fDx8135k5CzPznc+c7znnYzEMw0BERERERO6pUG43QEREREQkL1DgLCIiIiJiAwXOIiIiIiI2UOAsIiIiImIDBc4iIiIiIjZQ4CwiIiIiYoMcDZxXr15N69atad68OQsXLszJqkVEREREssUxpyqKjo5mypQpfPPNNzg7O9O1a1eef/55qlevnlNNEBERERHJshwbcd65cycNGzbkscceo2jRorRo0YINGzbkVPUiIiIiItmSY4HzxYsXcXNzs952d3cnOjo6p6oXEREREcmWHAuc09PTsVgs1tuGYWS6LSIiIiLyMMuxOc5ly5Zl79691tsxMTG4u7vb9NxmhTrbq1lWG8/ts3sdLcrXs3sdIiIiIn+VE3FOflGo7LG735dTjXjhhRfYtWsXsbGxJCQk8O2339K4ceOcql5EREREJFtybMS5TJkyDBkyhJ49e5KSksJrr71G3bp1c6p6EREREbGjnLiyntsj5zkWOAO0bduWtm3b5mSVIiIiIpIDcjuozQnKHCgiIiIiYoMcHXEWERGxNy32FhF7MT1wXrp0KQsWLLDePnPmDO3bt6dt27aEhoYSHx9PzZo1CQsLw9nZ2ezqRUSkgFNQKyL2Ynrg3LlzZzp3vrl93PHjx+nfvz99+vShS5cu/OMf/8DDw4P333+fZcuW0b17d7OrFxGRAk4jziJiL3adqjFq1CiGDBnCf/7zH+rXr4+HhwcAwcHBpKWl2bNqEREpoBTUioi92C1w3rlzJ4mJibRq1YqIiAiKFi3KkCFDOHHiBM8++yyBgYH2qlrkvjQiJSIiIg/KboHz119/zdtvvw1AWloaO3bsYPHixZQvX57hw4cTERHBwIED7VW9yD0pqBXJv/TDWETsxS6Bc3JyMj/++CNhYWEAlC5dmnr16lGpUiUAWrVqlWkB4f0UhH0BRUREROThZpfA+ejRozz++OMULVoUgJdeeokZM2Zw/vx5ypUrx7Zt26hVq5Y9qhYRERGRXKDMgVl0+vRpypYta71drlw5xowZQ9++fUlKSuKpp55i6NChNpdXEF4IERExh6ZRiOSOghBLWQzDMHK7EfeTfqFGbjfBFDqZi4iISG4oCEGtWQqVPXbX+/JE5kCNOIuIiIhIbssTgbOCWhERERHJbXkicNaIs4iI2Erb0YmIvRTKbgFxcXG0adOGM2fOADBs2DCaN29O+/btad++PZs2bQJg8+bNtG/fnnbt2vHee+9x9erV7FYtIiIiIpJjsjXivG/fPoKDgzl58qT12IEDB1iwYAHu7u7WY3FxcYwaNYrly5dTpkwZpk2bxowZMwgODs5O9SIiIrfRaLCI2Eu2AuclS5YQEhJCQEAAAAkJCZw7d46goCCio6Np1qwZAwYMICUlhZCQEMqUKQNAzZo1Wb16tc31aBqFiIjYSlM1RHJHQZham63Aefz48ZluX7p0iYYNGxISEsIjjzyCr68vy5Yto0uXLjRr1gyAxMREIiIi8PHxsbmegvBCiIiIORTUioi9mLo4sFKlSsyaNct628fHh5UrV9KlSxcArl+/Tv/+/fHw8KBDhw5mVi0iIgJoxFkktxSEQUhTA+ejR49y8uRJWrRoAYBhGDg63qzi4sWL9O7dm4YNGxIUFGRmtSIiIlYKakXEXrK9q8atDMNgwoQJXL16lZSUFBYvXkyzZs1IS0ujb9++tGrViuHDh2OxWMysVkRERETE7kwdcfbw8ODdd9+lW7dupKam0rx5c9q0acOmTZs4dOgQaWlpbNy4EYDatWvfNkdaREQkuzRVQ0TsxWIYhpHbjbif9As1crsJptCJVkTE/hQ4i9yuIMw/Nkuhssfuep8yB/6X3lAiIiIiWVcQ4jVT5ziLiIiIiORX2RpxnjlzJuvXrwfAy8uLgIAAFi9ezPz587FYLNSuXZvRo0fj7OzMwYMHGTlyJCkpKZQrV47Jkyfz6KOPmtIJERGRDJpGIZI7cns0OCdkOXDeuXMnO3bsYMWKFVgsFvr06UNERATLli3jm2++oVixYgQGBvLVV1/x1ltvMX78ePz8/PDy8iIsLIw5c+YwZMgQM/siIiIiIrmkIEzVyHLg7ObmRmBgIM7OzgBUq1aN5ORkQkJCcHV1BaBGjRqcO3cOgPT0dOLj44GbqbmLFy+e3baLiIiIyEMit4PanGDKrhonT56kW7duLFq0iMcffxyA2NhYXnvtNUJDQ3n++ef55Zdf6NWrF0WLFqVIkSIsWbKEEiVK2FS+dtUQERERybr8sttMTvTjXrtqZHtx4PHjx+nVqxcBAQHWoDk6Opo333yTTp068fzzz5OYmMjw4cOZN28eO3bsoHv37gwdOjS7VYuIiIiI5JhsLQ6MiorCz8+PoKAgvL29Afjtt9/o06cPPj4+9OrVC4Bjx47h4uJC3bp1AXj99deZNm2azfXkl18wIiIiIvlVfhnV3pR+9/uyHDifP3+e/v37M2XKFBo1agRAXFwcvXv3ZvDgwbz66qvWx1apUoULFy5w4sQJqlatypYtW6hTp05WqxYRERGRAii3BzqzHDjPmTOHpKQkwsLCrMdat27NpUuXmDt3LnPnzgXg5ZdfZtCgQYSGhjJ48GAMw6BUqVJMmDAh+60XERH5i/wy6iUiD588kXK7WaHOdq9DJ1oRkfxB53OR2+X2SG1ekudTbouIiIjIw60grEnLE4Fzbv+RREREROTeCkK8lq3Aedq0aWzcuBGLxcJrr73G22+/zc6dOwkNDSUpKYlWrVrdlh3wu+++Y8yYMWzdutXmegrCL5i8Qn+nh4u9Pxu65C1yZzoX2ia/fL71ekuGLAfOe/bs4d///jerVq0iNTWV1q1b06hRI4KCgpg/fz7lypXD19eX7du34+XlBcClS5eYOHGiaY2XnJdfToJiG73eInemz0bBkh9ebwX/5shy4Py3v/2NL7/8EkdHR6Kjo0lLS+PatWtUqVKFSpUqAdC2bVs2bNhgDZyDg4MZMGAAH330kTmtN1F++FCIiIjO5yJiP9maquHk5MT06dP54osvaNmyJRcvXsTNzc16v7u7O9HR0QB8+eWXPP3009Sr93Ce0HRJWkRERCTr8kucY5cEKBn8/Px455136Nu3LydPnsRisVjvMwwDi8XCsWPH+Pbbb5k3bx4XLlzIbpUiIiJ3pYEQkdxREKaDZDlw/u2330hOTuapp56iSJEiNG/enA0bNuDg4GB9TExMDO7u7mzYsIGYmBg6depESkoKFy9epHv37nz11VemdEJERCSDgloRsZdCWX3imTNnCA4OJjk5meTkZLZs2ULXrl35/fff+eOPP0hLS2PNmjU0btwYPz8/Nm7cSGRkJBEREbi7uytoFhEREZE8Jcsjzl5eXuzfv59XX30VBwcHmjdvjre3NyVLlmTgwIEkJSXh5eVFy5YtzWyviIiIiEiuUMrt/9KcOBGR/EHnc5HbFYT5x2ZRym0RERERsauCkLBOgbOIiOQrGg0WyR25HdTmhCwvDhQRERERKUiyFThPmzaN1q1b4+3tzdy5cwHYsWMH7dq1o02bNgQEBJCcnAzA4cOH6dixIy1atGD48OGkpqZmv/UiIiIiIjkky1M19uzZw7///W9WrVpFamoqrVu3xsvLi+HDh/PFF19QrVo1/Pz8iIyMpHPnzvj7+zNu3Djq169PUFAQS5YsoXv37jbVVRCG/kVExBxaHCgi9pLlwPlvf/sbX375JY6OjkRHR5OWlkbRokVJS0sjLi6OtLQ0kpKScHFx4ezZsyQmJlK/fn0AOnbsyPTp020OnAvCZHMRETGHgloRsZdsLQ50cnJi+vTpfPHFF7Rs2ZIyZcowatQofHx8cHV1pWLFirRs2ZKDBw/i5uZmfZ6bmxvR0dE216OgVkRERERyW7YXB/r5+bFr1y7Onz/PrFmzCA8PZ82aNezYsYN69eoRGhpKeno6FovF+hzDMDLdFhERERF52GV5xPm3334jOTmZp556iiJFitC8eXO++uoratSoQeXKlQHo0qULgwcPpk+fPsTExFife+nSJdzd3W2uS1M1RERERCS3ZTlwPnPmDNOnT2fRokUAbNmyhXbt2rFo0SIuXbpE6dKl2bJlC3Xq1KFChQq4uLgQFRVFgwYNiIyMpHHjxjbXpaBWRERspcWBImIvWQ6cvby82L9/P6+++ioODg40b94cX19f3N3d6dmzJw4ODlSpUoUxY8YAEB4eTnBwMHFxcdSqVYuePXvaXJdGnEVEREQkt1kMwzByuxH306xQZ7vXoREKERERya80QGi7QmWP3f2+HGyHiIiIiEiepcBZRERERMQG2drHOcPEiRO5fPkyYWFhDBs2jKioKIoUKQLAgAEDaNasGSdOnCAkJISrV6/i5ubGxx9/TPHixc2oXkRERETE7rI94rxr1y5WrFhhvX3gwAEWLFhAZGQkkZGRNGvWDMMw6NevH++88w6rVq3iqaeeIiIiIrtVi4iIiIjkmGyNOF+5coUpU6bQt29fjhw5QkJCAufOnSMoKIjo6GiaNWvGgAEDOHToEEWLFrVuQde3b1+uXbtmSgdERERERHJCtgLnkSNHMmTIEM6fPw/cTGzSsGFDQkJCeOSRR/D19WXZsmW4urpSunRpgoKCOHz4MFWrVmXEiBGmdEBEREREJCdkearG0qVLKVeuHI0aNbIeq1SpErNmzcLd3Z0iRYrg4+PD9u3bSU1NZc+ePXTr1o0VK1ZQqVIlwsLCTOmAiIiIiEhOyPKI87p164iJiaF9+/ZcvXqVGzdu0L9/f9q1a0eLFi0AMAwDR0dH3NzcqFKlCnXq1AGgTZs2+Pn5mdMDERGRW2hffhGxlywHznPnzrX+/zfffMOePXt466238PX1pWHDhhQtWpTFixfToUMHnnnmGWJjYzly5AgeHh5s3bqVWrVqmdIBERGRWymoFRF7MWU7ugweHh68++67dOvWjdTUVJo3b06bNm0AmDVrFsHBwSQkJFC2bFkmTZpkZtUiIiIiInaVJ1Jup1+okdtNMIVGQURERCQ3KOW27ZRyW0REREQkmxQ4i4iIiIjYIFtznH18fIiNjcXR8WYxY8aM4eDBgyxcuBDDMPDy8iIgIACLxcLmzZuZMWMGhmFQsWJFQkNDbU65nRNTHHQJQ0RERETuJcuBs2EYnDx5km3btlkD59OnTzNv3jxWrlyJi4sLPXr04IcffqB+/fqMGjWK5cuXU6ZMGaZNm8aMGTMIDg42rSMiIiIiIvaU5cD5xIkTAPTq1YsrV67QpUsX3njjDdauXYuTkxOXL18mLi6ORx99lJSUFEJCQihTpgwANWvWZPXq1eb0IA/JD6PaWuAoIg877eMsIvaS5cD52rVrNGrUiBEjRpCSkkLPnj154oknePHFF1myZAkTJ06kbt26eHh44OzsTLNmzQBITEwkIiICHx8f0zqRV+hEKyJifzrXioi9mLYd3bx58zh37hxBQUEApKamMmzYMMqVK8f7778PwPXr1+nfvz8VK1ZkwoQJNpfdrFBnM5p4TxqhEBHJH3Q+F7ldfrjqnVPssh3d3r172bVrl/W2YRhcv36dqKgoABwdHfH29ubo0aMAXLx4ke7du1OzZk3Gjx+f1WpFRERERHJFlqdqXL9+nenTp/P111+TkpLCihUrGDlyJP7+/qxcuZJHHnmEjRs30qBBA9LS0ujbty+tWrXivffeM7P9IiIimWg0WETsJcuBc5MmTdi3bx+vvvoq6enpdO/eHU9PT9599126du2Kg4MDnp6evP3222zdupVDhw6RlpbGxo0bAahdu7ZGnvMgXep5uNg7QNAlbxERkf9Ryu0cpABBRMT+9INP5Hb55XORE/241xznbCVAERERedgoqBURe8kTgXN++QUjIiL2l19G1kTymoIQS2UrcN66dSszZ84kISGBF198keDgYHbu3EloaChJSUm0atWKIUOGAHDw4EFGjhxJSkoK5cqVY/LkyTz66KM21VMQXggRETGHglqR3FEQBjqzPMf59OnTdO/enaVLl1KqVCnefPNNfH19CQkJYf78+ZQrVw5fX1969uyJl5cX3bt3x9fXFy8vL8LCwnBxcbEG1fejfZxFREREsi63A868xC77OG/atInWrVtTtmxZnJycmDJlCkWKFKFKlSpUqlQJR0dH2rZty4YNGwBIT08nPj4egISEBAoXLpzVqkVEREREclyWp2r88ccfODk50bdvX86fP8/f//53nnzySdzc3KyPcXd3Jzo6GoDAwEB69erFhAkTKFKkCEuWLLG5Lv1KEhEREZHcluXAOS0tjb179zJ//nyKFi1Kv379KFy4MBaLxfoYwzCwWCwkJiYyfPhw5s2bR926dZk7dy5Dhw4lIiLCproKwpwZERExh6beiYi9ZDlwLl26NI0aNaJkyZIANG3alA0bNuDg4GB9TExMDO7u7hw7dgwXFxfq1q0LwOuvv860adOy2XQREREReVgUhIHObGUOHDp0KNeuXaNYsWL861//omXLlkRERPDHH39QsWJF1qxZQ6dOnahSpQoXLlzgxIkTVK1alS1btlCnTh0z+yEiIgJoNFgkt+R2UJsTshw416tXjz59+tC9e3dSUlJ48cUX6datG1WrVmXgwIEkJSXh5eVFy5YtsVgshIaGMnjwYAzDoFSpUkyYMMHMfoiIiIhILioII85KuZ2DNAoiIiIiuSG3A868JM+n3C4Iv2BERERE5OGW5X2cRUREREQKkjwx4iwiImIrbUcnkjsKwgyBbAXOW7duZebMmSQkJPDiiy8SHBzMjh07mDRpEunp6Tz99NOMGzcOZ2dn63O+++47xowZw9atW7PdeDPpJCgiIiIi95LlwPn06dOEhISwdOlSSpUqxZtvvsn27dsZOXIkX3zxBdWqVcPPz4/IyEg6d+4MwKVLl5g4caJpjRcRERGRh0NujwbnhCwHzps2baJ169aULVsWgClTpuDi4kJaWhpxcXGkpaWRlJSEi4uL9TnBwcEMGDCAjz76KPstN5ku7YmIiIjIvWQ5cP7jjz9wcnKib9++nD9/nr///e8MHjyYUaNG4ePjg6urKxUrVqRly5YAfPnllzz99NPUq6fgUURERCS/0Rzne0hLS2Pv3r3Mnz+fokWL0q9fPz7//HO++eYb1qxZQ8WKFQkNDSU0NJRu3brx7bffMm/ePC5cuGBm+0VERETkIZDbQW1OyHLgXLp0aRo1akTJkiUBaNq0KQsWLKBGjRpUrlwZgC5dujB48GBKlChBTEwMnTp1IiUlhYsXL9K9e3e++uorc3phAk2jEBEREck6jTjfQ5MmTRg6dCjXrl2jWLFi/Otf/+KNN97g888/59KlS5QuXZotW7ZQp04d/Pz88PPzA+DMmTP07NnzoQqaQXOcRURERLIjt4PanJDlwLlevXr06dOH7t27k5KSwosvvki3bt0oWrQoPXv2xMHBgSpVqjBmzBgz2ysiIiIikisshmEYud2I+2lWqLPd69CIs4hI/qDzucjtCsJosFkKlT121/uUOfC/dBIUEckfdD4XEXtR4PxfGqEQEckfNLL28Mgv33t6T9lGiwPvYenSpSxYsMB6+8yZM7Rv3562bdsSGhpKfHw8NWvWJCwsDGdnZw4fPszw4cOJj4/H09OT0aNH4+iouF1ERPKe/BIQim3yw+udEwFnbge1OaFQVp/YuXNnIiMjiYyMJDw8nFKlStGnTx8GDhzImDFjWLt2LQDLli0DwN/fn5EjR7Jx40YMw2DJkiXm9EBEREREJAdkOXC+1ahRoxgyZAj/+c9/qF+/Ph4eHsDNFNvNmjXj7NmzJCYmUr9+fQA6duzIhg0bzKhaRERERCRHZHuuxM6dO0lMTKRVq1ZERERQtGhRhgwZwokTJ3j22WcJDAzk0KFDuLm5WZ/j5uZGdHR0dqs2VX64DCMiIjmjIFySNkN++W7V6y0Zsh04f/3117z99tvAzTTcO3bsYPHixZQvX57hw4cTERHBCy+8gMVisT7HMIxMt0VERPKS/BIQim3yw+ut4N8c2Qqck5OT+fHHHwkLCwNupuGuV68elSpVAqBVq1YsWLCAjh07EhMTY33epUuXcHd3z07VptOuGiIiIiJyL9kKnI8ePcrjjz9O0aJFAXjppZeYMWMG58+fp1y5cmzbto1atWpRoUIFXFxciIqKokGDBkRGRtK4cWOb69GvJBERsZUGKUTEXrIVOJ8+fZqyZctab5crV44xY8bQt29fkpKSeOqppxg6dCgA4eHhBAcHExcXR61atejZs2f2Wi65Qj9iHi72DhB0JUbyIp2nHh755fOt95RkyBMpt9Mv1MjtJpgiP5xAdPJ4uChwFrmd3rcit9P3t+3ulXI7TwTOzQp1tnsdOtGKiIhIfpVf4pyc6Me9Amel7hMRERGRbMsvwfmm9Lvfl63AOTIykoiICAAaN27M0KFD+eqrr1i4cCGGYeDl5UVAQAAWi4UTJ04QEhLC1atXcXNz4+OPP6Z48eLZqV5ygS71PFw0VUPkdnrfiuRfuR2HZDlzYEJCAuPHj2f+/PlERkayd+9elixZwrx581i6dCmrV6/m559/5ocffsAwDPr168c777zDqlWreOqpp6wBt4iIiIhIXpDlEee0tDTS09NJSEigaNGipKamUq1aNdauXYuTkxOXL18mLi6ORx99lIMHD1K0aFHrFnR9+/bl2rVrpnVCco5GWQoWvd6SF+l9KyL2kuURZ1dXVwYNGkSrVq3w8vKiQoUKPPvsszg5ObFkyRKaNm2Km5sbHh4enDp1itKlSxMUFESHDh0ICQmx7v0sIiIiIpIXZHlXjSNHjhAYGMicOXN45JFH+PDDD6lbty59+vQBIDU1lWHDhlGuXDmqV6/OiBEjWLBgAXXq1GHq1KlcuHDBmnHwfrQdnYiI2EpznEVul9tzg/MSu+yqsWPHDho1akSpUqUA6NixI3PnzuWZZ56hQYMGODo64u3tzaJFi2jUqBFVqlShTp06ALRp0wY/Pz+b68ov25uIiIiISN6V5akaHh4e7Ny5kxs3bmAYBlu3bqV48eL4+/tz7do1DMNg48aNNGjQgGeeeYbY2FiOHDkCwNatW6lVq5ZpnRARERERsbcsjzi/9NJLHDp0iI4dO+Lk5ESdOnWYPHkyK1asoGvXrjg4OODp6cnbb7+Nk5MTs2bNIjg4mISEBMqWLcukSZPM7IeIiIiIiF0pc+B/aU6ciEj+oPO5yO3yy+dCmQMLkPwwj1pfFiIiInIn+SHOuR8FzjlIQaeIiP3pXCsi9qLAWURE8pX8cklaRB4+2QqcIyIiWL58Oc7OzrRu3Zp+/foBkJKSQp8+fXjvvfd4/vnnAdi8eTMzZszAMAwqVqxIaGgoxYsXz34PRERERCTX5Zc5zveS5e3odu7cyerVq1m+fDkrV65k3759fPvtt5w4cQIfHx9+/vln62Pj4uIYNWoUERERrFq1ipo1azJjxgxTOiAiIiIikhOyPOJ86NAhXnrpJVxdXQH4v//7PzZv3swvv/xCnz59+Oc//2l9bEpKCiEhIZQpUwaAmjVrsnr1apvryu1fFyIiIiIiWQ6ca9WqxYQJE/D19aVIkSJs3boVwzCs+zPfGjiXKFGCZs2aAZCYmEhERAQ+Pj4211UQhv5FRMQcmn8sIvaS5cC5UaNGdOzYER8fHx577DEaNWrEvn33Dj6vX79O//798fDwoEOHDlmtWkREREQeMgVhEDLLc5zj4uJo3rw5q1evZv78+Tg7O1OpUqW7Pv7ixYt0796dmjVrMn78+KxWKyIiIiKSK7IcOJ85c4b33nuP1NRUrl+/zrJly2jVqtUdH5uWlkbfvn1p1aoVw4cPx2KxZLnBIiIiIiK5IctTNTw8PGjevDnt2rUjLS2Nt956iwYNGtzxsVu3buXQoUOkpaWxceNGAGrXrq2RZxEREZF8oiCsSbMYhmHkagts0KxQZ7vXoQ3zRUTyh9z+YpX/yS/fe3pP2Sa/BM6Fyh67633KHCgiIvlKfgnW5OGRH95TORFwFoQfGHkicC4IL4SIiIiIPNxMT7m9Y8cOJk2aRHp6Ok8//TTjxo3D2dmZgwcPMnLkSFJSUihXrhyTJ0/m0Ucftame/DL0LyIiIiJ5V5YD51tTbhcpUoT+/fvz7bffMn78eL744guqVauGn58fkZGRdO7cmfHjx+Pn54eXlxdhYWHMmTOHIUOGmNkXERERrVkRySUFYaDT9JTbaWlpxMXFkZaWRlJSEi4uLgCkp6cTHx8PQEJCAsWLFzeh+SIiIiLyMMjtoDYnZHlXjV27djFhwgTmz59PkSJFeO+99zAMg+7du/P+++/j6upKxYoVWbBgAc7Ozvzyyy/06tWLokWLUqRIEZYsWUKJEiVsqiv9Qo2sNPGhoxEKERERyQ0FIag1y7121cjWdnRz587lm2++sabc3rNnDxcuXCAiIoKKFSsSGhpKamoqQ4cOpVOnToSGhlK3bl3mzp3Lrl27iIiIsKkebUcnIiIiknUKnG1nl+3oMlJuv/322wD84x//ICYmhho1alC5cmUAunTpwuDBgzl27BguLi7UrVsXgNdff51p06bZXJdebBERERHJbVkOnM+cOcPQoUNZvnw5CQkJLFu2jPHjx/PBBx9w6dIlSpcuzZYtW6hTpw5VqlThwoULnDhxgqpVq1qP26ogTDYXERFz6AqiiNiL6Sm3Bw0aRM+ePXFwcKBKlSqMGTOG4sWLExoayuDBgzEMg1KlSjFhwgQz+yEiIgIoqBUR+1HK7f/SCIWIiIjkV/klzlHKbRtoGoWIiIjIw60gxGt5InDOL79gRERERPKrghCv2RQ4x8XF0bVrVz799FMqVqzIzp07CQ0NJSkpiVatWlkzAJ44cYKQkBCuXr2Km5sbH3/8caZEJ4cOHaJLly4cOHDAPr0REZECL79ckhbJa3I7qM0Jhe73gH379tGtWzdOnjwJQGJiIkFBQXzyySesW7eOAwcOsH37dgzDoF+/frzzzjusWrWKp556KtM+zQkJCYwdO5aUlBS7dUZERERExF7uO+K8ZMkSQkJCCAgIAGD//v1UqVKFSpUqAdC2bVs2bNhAqVKlKFq0KI0bNwagb9++XLt2zVpOWFgYb775Jj/99NMDN7Ig/IIRERERycs0VQMYP358ptsXL17Ezc3Netvd3Z3o6GhOnTpF6dKlCQoK4vDhw1StWpURI0YAsGXLFhITE2nZsmWWGlkQXggRETGHplGI5I6CEEs98OLA9PR0LBaL9bZhGFgsFlJTU9mzZw8LFiygTp06TJ06lbCwMD744ANmz57NvHnzzGy3iIiIiNhIg5DmeODAuWzZssTExFhvx8TE4O7ujpubG1WqVLFmBGzTpg1+fn589913XLlyhR49elif0759exYuXIirq6sJXRARERGReykIQW1OeODAuV69evz+++/88ccfVKxYkTVr1tCpUyeeeeYZYmNjOXLkCB4eHmzdupVatWrRuXNnOnf+XwKTmjVrEhkZaWonRERERETs7YEDZxcXF8LCwhg4cCBJSUl4eXnRsmVLLBYLs2bNIjg4mISEBMqWLcukSZPs0WYRERERkRyXJ1Jup1+okdtNMIUWrIiIiEhu0FQN2+X5lNua0C4iIiIiue2+CVBEREREROQBRpz/mnYbICAggIYNG9KxY8dMj/1rau1r167x4Ycfcvr0aUqWLMnUqVMz7QUtIiJiFqXcFhF7sSlw3rdvH8HBwda029HR0YSEhLBr1y4aNmyY6bF3Sq09depUPD09iYiIYOXKlYwfP56pU6ea1gkREZEMCmpFxF5smqqRkXbb3d0dgNWrV/PKK6/QqlWr2x6bkVr7Vt999x1t27YFbu7v/P3332cKrEVEREREHnY2jTj/Ne12nz59AIiKisp0/G6ptW9N0+3o6IirqyuxsbGUKVMmyw0XERG5E03VEBF7MW1XjZiYGJtTaxuGQaFCWpcoIiIiInmHadHrram127dvD9xMrR0XF4e7uzuXLl0CIDU1lfj4eB577DGzqhYRERERsTvTRpzvlVrby8uLlStX0rdvX9atW4enpydOTk42l609lkVEREQkt+VIApRBgwYRGBiIt7c3jzzyCOHh4TlRrYiIFECafywi9pInUm43K9T5/g8SERFBiwNF7kRX722X51Nu5wSdaEVE8geda0XEXhQ4/5dOtCIiIiJyL3kicNblhYeHfmCIiIhIQWVT4BwXF0fXrl359NNPqVixIosXL2b+/PlYLBZq167N6NGjcXZ2tj4+ICCAhg0b0rFjR+BmApTg4GAuXrxI4cKFCQ8Pp2LFijY3MieCNU3VEBEREZF7uW/gvG/fPoKDgzl58iQAv//+O3PmzOGbb76hWLFiBAYG8tVXX/HWW28RHR1NSEgIu3btomHDhtYyAgICaNGiBd26dWPRokWEh4czdepUmxupEWcREbGVBkJExF7uGzgvWbKEkJAQAgICAHB2diYkJARXV1cAatSowblz5wBYvXo1r7zySqbkJrGxsRw5coS5c+cC0KlTJxo1avRAjcwvI875gf5ODxd7fzYUgIiIiK0KQrx238B5/PjxmW5XqFCBChUqADeD4oULFxIaGgpAnz59AIiKirI+/vTp05QvX56wsDD27t2Lm5sbI0aMMK0DkrMU5BQser1FRET+J8uLA6Ojo+nTpw+dOnXi+eefv+vjUlNTOXToEAMHDmTYsGEsXbqUwMBA5s+fb3Nduf3rQkREREQkS4Hzb7/9Rp8+ffDx8aFXr173fKybmxvFihWjSZMmALRp04Zx48Y9UH0FYehfRETMoSslIrmjIMRSDxw4x8XF0bt3bwYPHsyrr75638dXrlyZsmXLsn37dry8vNi2bRu1atXKSltFRERE5CFVEAY6HzhwXrZsGZcuXWLu3LnWBX8vv/wygwYNuutzZsyYQUhICJMnT8bV1ZWwsLCst1hEROQetKhVJHfkdlCbEyyGYRi53Yj7aVaos93r0IlWRCR/0Plc5Hb55XORE/0oVPbYXe/LE5kDRUREROThVhBGnBU4/5dGD0RE8gedz0VyR34Zcb4XU1Nub9++nfDwcOBmYpQxY8ZQrFgxoqKiCA0NJSUlhccee4wJEyZY94J+WOSXSxgiIiIiuSG3g9qcUOh+D9i3bx/dunW7LeX2119/zapVq0hPT+err77i2rVrBAYGMmXKFFavXo2HhwdTpkwBwN/fn3HjxhEZGUnbtm0feDs6EREREZHcZlrK7ZMnT1K+fHmqV68OQJMmTejTpw8BAQEMGjQIDw8PAGrWrMmCBQvs1R8RESngdAVRROzFtJTbjz/+OBcuXODIkSN4eHiwfv16Ll26hLOzM+3btwcgPT2dmTNn0rRpUzt0JXt0EhQRyR90PhcRezE15fbEiRMZMWIE6enpdOnSBScnJ+vjk5OTCQwMJDU1FV9f3+y33GQaoRARyR90PhcRezEt5XZaWhply5Zl6dKlAOzfv59KlSoBEB8fT79+/XjssceYPXt2poBaRERERCQvMC3ltsVioVevXixduhR3d3fmzZtH69atgZuLA6tUqcLo0aMpVOi+6xFFREQeagVh9wAz5JeReb3etikI29HZnDnw5Zdf5ssvv2Tz5s2Eh4dTrVq1TPcNGjSI7777jo8++ojk5GQaNWrE8OHDOX78OB06dKB69eo4Ot6M093d3fn8889tbmROZA4UEZH8QVM1RG6X2wFnXnKvzIF5IuV2+oUaud0EU+hEKyIiIrlBgbPt8nzK7YIw9C8iIubQiLOI2IsmHIuIiIiI2MCmwDkuLo42bdpw5swZAL766iu8vb1p3bo1EydOJGO2x4kTJ/Dx8aFdu3b07t2bq1evAnDmzBl69OhB+/bt8fHx4ezZs3bqjoiIiIiIfTxwyu3Tp08zb948li5dyurVq/n555/54YcfMAyDfv368c4777Bq1SqeeuopIiIiAJg2bRre3t5ERkbSvHlzaypuEREREZG84oFTbleqVIm1a9fi5OTE5cuXiYuL49FHH+XgwYMULVqUxo0bA9C3b1+uXbsG3MwYGBcXB0BCQgKFCxe2V3+yTPPVREREROReHjjlNoCTkxNLlixh4sSJ1K1bFw8PDzZv3kzp0qUJCgri8OHDVK1alREjRgAwaNAgunbtyvz580lJSWHx4sUP1Mj8snBPwbmIiIhI3pXlXTW6dOlCx44dGTZsGDNnzqR69ers2bOHBQsWUKdOHaZOnUpYWBhhYWEMHTqUMWPG0LRpUzZu3MiAAQNYtWoVFovFprq0q4aIiIjIw60gxGsPHDifP3+ec+fO0aBBAxwdHfH29mbRokU0atSIKlWqUKdOHQDatGmDn58fsbGxnDhxgqZNmwLQokULQkJCuHz5MiVLljS3NyIiUuDp6p5I7sjtoDYnPHDgfP36dfz9/Vm5ciWPPPIIGzdupEGDBjzzzDPExsZy5MgRPDw82Lp1K7Vq1aJEiRK4uLiwd+9ePD09iYqKolixYgqaRUTELrSPs0juyC+fi03pd7/vgQPnGjVq8O6779K1a1ccHBzw9PTk7bffxsnJiVmzZhEcHExCQgJly5Zl0qRJWCwWZs6cydixY0lMTKRYsWLMmDEjO/0RERERkYdMQRhxzhMpt5sV6mz3OjRCISKSP+h8LnK7ghDUmiXPp9wWERGxlYJaEbEXpdwWEREREbGBRpz/SyMUIiL5g6ZqiOQObUf3X3FxcXTt2pVPP/2UihUrWo8vWLCAjRs3Mn/+/EyP/+677xgzZgxbt27NdPzQoUN06dKFAwcOmNB0c+lEKyKSP+hcK5I7cjuozQn3naqxb98+unXrxsmTJzMd//XXX4mIiLjt8ZcuXWLixIm3HU9ISGDs2LGkpKRkvbUiIiIiIrnkviPOS5YsISQkhICAAOux5ORkRo4ciZ+fH5GRkZkeHxwczIABA/joo48yHQ8LC+PNN9/kp59+MqnpIiIit9MVRBGxl/sGzuPHj7/t2EcffUSnTp0yTdsA+PLLL3n66aepVy/zCWXLli0kJibSsmXLbDZXRETk3hTUioi9PPDiwB9++IHz588zbNgwdu/ebT1+7Ngxvv32W+bNm8eFCxesx2NiYpg9ezbz5s3LciMLwpwZERExh0acRXJHQVgcaHMClJdffpkvv/ySWbNm8csvv+Ds7MyNGze4dOkSXl5eVK1albVr11K4cGFSUlI4deoUdevWpUOHDnz22WcUK1YMwJqSe+HChbi6utrUyPySACU/0JeFiIhI3qM4x3b3SoDywIHzrdMzdu/ezcyZM2/bVePMmTP07Nnztl01AGrWrMnRo0dtbTsA6RdqPNDjH1YKOkVERCQ3KHC2XZ7PHFgQhv5FRERE5OFm84hzbsovUzU04iwiYn86n4vcTgOEtsvzI856sUVExFYKakXEXvJE4KypGiIiYiuNOIvkjoIQr9k0VeOvKbeHDRtGVFQURYoUAWDAgAE0a9aMzZs3M2PGDAzDoGLFioSGhlK8eHHOnTuHv78/f/75J0888QTh4eHWXTZsocWBIiIiIlmX2wFnXpKtXTX27dtHcHAwv//+Oxs2bKBixYq0bduWOXPm4O7ubn1cXFwcLVu2ZPny5ZQpU4Zp06Zx/fp1goOD8fX1pV27dnh7ezNr1ixu3LiBv7+/zR3QHOeHhz54Dxd7v6f0uZC8SOeph0d++XzrPVWwZGuO819TbickJHDu3DmCgoKIjo6mWbNmDBgwgJSUFEJCQihTpgxwc9u51atXk5KSwo8//sisWbMA6NixI2+88cYDBc7y8MgvJ0GxjV5vkTvTZ6NgyQ+vt4J/czxwyu1Lly7RsGFDQkJCeOSRR/D19WXZsmV06dKFZs2aAZCYmEhERAQ+Pj5cvnwZV1dXHB1vVuXm5kZ0dLQdupI9+eFDISIiOUNBiG3yy3erXm/J8MCLAytVqmQdPQbw8fFh5cqVdOnSBYDr16/Tv39/PDw86NChA9HR0Vgslkxl/PX2w0CXpEVExFY6nxcs+eH1VvBvjgcOnI8ePcrJkydp0aIFAIZhWEeTL168SO/evWnYsCFBQUEAlCxZkuvXr5OWloaDgwMxMTGZ5kaLiIiYKT8EOSJ5UUHYVaPQgz7BMAwmTJjA1atXSUlJYfHixTRr1oy0tDT69u1Lq1atGD58uHVU2cnJCU9PT9atWwfAypUrady4sbm9EBERERGxswcecfbw8ODdd9+lW7dupKam0rx5c9q0acOmTZs4dOgQaWlpbNy4EYDatWszfvx4QkJCCAwMZPbs2ZQrV46PP/74gerM7V8XIiIiInJvBSFeU8rt/9IcZxEREcmvCkJQa5Y8n3I7JyioFRHJHzQQIpI7CsIcZwXO/6UTrYhI/qBzrUjuyO2gNifYFDjbmnJ7+/bthIeHA1CjRg3GjBlDsWLFuHjxIsHBwVy8eJHChQsTHh5OxYoV7dcrsZuC8KHIS5Q5UOR2et+KiL2YlnL72rVrtGjRgvnz51O9enU+//xzoqOjCQ4O5q233qJFixZ069aNRYsWsXv3bqZOnWpzIzXHWURERCTrNPBlu3vNcb7vdnQZKbczguRbU263bduW6dOnk56ezsmTJylfvjzVq1cHoEmTJmzevJnY2FiOHDlC165dAejUqRODBw82oVsiIiIiIjnHtJTbLVu25MKFCxw5cgQPDw/Wr1/PpUuXOH36NOXLlycsLIy9e/fi5ubGiBEj7NYhEREp2HQFUUTsxdSU2xMnTmTEiBGkp6fTpUsXnJycSE1N5dChQwwcOJBhw4axdOlSAgMDmT9/vqkdERERAQW1ImI/pqXcTktLo2zZsixduhSA/fv3U6lSJdzc3ChWrBhNmjQBoE2bNowbN87ELoiIiPyPRpxFcoe2o7uDjJTbDRs2pGjRoixevJgOHTpgsVjo1asXS5cuxd3dnXnz5tG6dWsqV65M2bJl2b59O15eXmzbto1atWo9UJ25/UcSEZG8Q0GtSP6VE5/vTel3v8+0lNsAY8aMoU+fPiQnJ9OoUSN69+4NwIwZMwgJCWHy5Mm4uroSFhaWtZ6IiIiIyEOpIAx05omU2+kXauR2E0yhURARERHJDQUhqDVLtrajExERERGRPJJyuyBMNhcRERGRh1uWUm7//PPPhIaGEh8fT82aNQkLC+O3334jMDDQ+pzY2FiKFy/OmjVriIqKIjQ0lJSUFB577DEmTJhAhQoV7NYpERERERGz3Xeqxr59++jWrRsnT54EbgbRAwcOZMyYMaxduxaAZcuW8dRTTxEZGUlkZCRff/01xYsXZ9SoUQD4+/szbtw4IiMjadu2rbajExEREZE854FTbv/www/Ur18fDw8PAIKDg2nWrFmm53z22Wc899xzeHp6kpyczKBBg6yPr1mzJufPnze7HyIiIiIidvXAKbf/+OMPihYtypAhQzhx4gTPPvtspika169fZ8mSJaxevRoAZ2dn2rdvD0B6ejozZ86kadOmD9RIzT8WERFbKQGKiNjLA++qkZaWxo4dO3j//ff55ptvSEhIICIiwnr/qlWraNq0KaVKlcr0vOTkZD788ENSU1Px9fXNfstFRERERHLQA++qUbp0aerVq0elSpUAaNWqFQsWLLDev3nz5tsC4/j4ePr168djjz3G7NmzcXJyeqA6tauGiIiIiOS2Bx5xfumllzh48KB1nvKtKbQNw+DgwYM888wzmZ7j7+9PlSpVmDp1Ks7OziY0W0REREQkZz3wiHO5cuUYM2YMffv2JSkpiaeeeoqhQ4cCN7egc3JywsXFxfr4Q4cOsWXLFqpXr06HDh0AcHd35/PPPzepCyIiIv+j+cciYi95IuV2s0Kd7V6HFpOIiIhIfqUpqbZTym0RERERkWxS4CwiIiIiYgMFziIiIiIiNrApcI6Li6NNmzacOXOG7du30759e+u/hg0b3rb93HfffcfLL79svX3mzBl69OhB+/bt8fHx4ezZs+b2QkRERETEzu67q8a+ffsIDg7m5MmTAHh5eeHl5QVATEwM3bp1Y9iwYdbHX7p0iYkTJ2YqY9q0aXh7e9O9e3fmz5/PlClTCA8PN7EbIiIiN2mxt4jYy30D5yVLlhASEkJAQMBt902aNImuXbvy+OOPW48FBwczYMAAPvroI+ux9PR04uLiAEhISKBw4cImNF1EROR2CmpFxF7uGziPHz/+jsdPnjzJnj17Mt3/5Zdf8vTTT1OvXuaT1qBBg+jatSvz588nJSWFxYsXP1AjtYWKiIiIiOS2B06AkmHx4sV0797dmgnw2LFjfPvtt8ybN48LFy5keuzQoUMZM2YMTZs2ZePGjQwYMIBVq1ZhsVhsqkspt0VEREQkt2U5cN6yZQtz5syx3t6wYQMxMTF06tSJlJQULl68SPfu3Zk5cyYnTpygadOmALRo0YKQkBAuX75MyZIlbapLQa2IiNhKc5xFxF6yFDjHxsaSmJhIpUqVrMf8/Pzw8/MDbu6i0bNnT7766isMw8DFxYW9e/fi6elJVFQUxYoVszloBo04i4iI7RTUioi9ZClwPnPmDGXLlrXpsRaLhZkzZzJ27FgSExMpVqwYM2bMyEq1IiIiIiK5xmIYhpHbjbifZoU6270OXdoTERGR/EpX1m1XqOyxu9+Xg+0QEREREcmzsrw4UERE5GGkK4giYi82Bc5xcXF07dqVTz/9lIoVK7Jjxw4mTZpEeno6Tz/9NOPGjcPZ2ZnNmzczY8YMDMOgYsWKhIaGUrx4cWs5hw4dokuXLhw4cMBuHRIRkYJNQa2I2Mt9p2rs27ePbt26WVNuAwwfPpwpU6awZs0aEhMTiYyMJC4ujlGjRhEREcGqVauoWbNmpkWACQkJjB07lpSUFLt0RERERETEnrKUcjstLY24uDjS0tJISkrCxcWFlJQUQkJCKFOmDAA1a9Zk9erV1ueEhYXx5ptv8tNPPz1wIzWhXUREbKWpGiK5oyBsH5yllNujRo3Cx8cHV1dXKlasSMuWLXF2dqZZs2YAJCYmEhERgY+PD3AzWUpiYiItW7bMUiMLwguRV+jv9HCx92dDAYjkRXpPieSOghAjPPDiwJiYGMLDw1mzZo11HnNoaCghISEAXL9+nf79++Ph4UGHDh2IiYlh9uzZzJs3z+y2Sy7QF1LBotdb8iL94BMRe3ngwHnv3r3UqFGDypUrA9ClSxcGDx4MwMWLF+nduzcNGzYkKCgIgO+++44rV67Qo0cPaxnt27dn4cKFuLq6mtAFERGR/1FQKyL28sCBc40aNZg4cSKXLl2idOnSbNmyhTp16pCWlkbfvn1p1aoV7733nvXxnTt3pnPn/yUwqVmzJpGRkea03kQ60YqIiIjIvTxw4FytWjUGDRpEz549cXBwoEqVKowZM4atW7dy6NAh0tLS2LhxIwC1a9e+4xzpB5Vf5swoOBcRERHJu/JEyu30CzXsXoeCWhEREcmv8ssgZE64V8rtPJE5ML/sqqHgXERERCTvyhOBs34liYiIrTQQIiL2kqWU29988w3/+Mc/cHBw4PnnnycwMBBHR0cOHz7M8OHDiY+Px9PTk9GjR+Po6Mi5c+fw9/fnzz//5IknniA8PJxixYrZ3Mj8MuIsIiL2p6BWJHfkl8/epvS733ffOc779u0jODiY33//nQ0bNpCcnMxbb73FsmXLcHd3Z9SoUVSpUoW3336bNm3aMG7cOOrXr09QUBC1a9eme/fu+Pr60q5dO7y9vZk1axY3btzA39/f5g7kxBznnJBf3lAiIg8zjTiL3E4DhLbL1hznv6bcPnr0KPXr18fd3R2AJk2aEBERQfPmzUlMTKR+/foAdOzYkenTp9O5c2d+/PFHZs2aZT3+xhtvPFDgrBFnERGxlYJakdxREOK1B0657eHhQVhYGOfPn8fd3Z0NGzZw6dIlLl68iJubm/Vxbm5uREdHc/nyZVxdXXF0dMx0XERExB404iwi9vLAiwOfeOIJPvjgA/r160fhwoVp2bIl//nPf0hPT8disVgfZxgGFovF+t9b/fW25B25/UtPMrP3l7cCEBERsVVBiBEeOHBOSkqibt26rFy5EoD169dTqVIlypYtS0xMjPVxly5dwt3dnZIlS3L9+nXS0tJwcHAgJibGOs1D8h4FOQWLXm/Ji/S+FckdmqpxBzdu3OCtt95izZo1ODs7s2DBArp27UqFChVwcXEhKiqKBg0aEBkZSePGjXFycsLT05N169bRtm1bVq5cSePGje3RFxERERHJJbkd1OaEBw6cS5QoQf/+/Xn99ddJTU2lTZs2tG3bFoDw8HCCg4OJi4ujVq1a9OzZE4CQkBACAwOZPXs25cqV4+OPPza3FyIiIv+lKUYiYi95IuV2s0Kd7V6HTrQiIvmDzucit8svn4uc6EeeT7ktIiIiIg+3gjBVo1BuN0BEREREJC8wLeX28ePHCQwMtD4nNjaW4sWLs2bNGi5evEhwcDAXL16kcOHChIeHU7FiRbt1SkRERETEbPcNnDNSbp88eRKAEydOMHXq1Ewpt+fPn8/bb79NZGQkAAkJCXTu3JlRo0YBEBAQQIsWLejWrRuLFi0iPDycqVOn2qtPIiJSgGn+sUjuyC9znO/FtJTbb7/9tvU5n332Gc899xyenp7ExsZy5MgR5s6dC0CnTp1o1KiRPfoiIiKSbxZBieQ1uR3U5gTTUm5nuH79OkuWLGH16tUAnD59mvLlyxMWFsbevXtxc3NjxIgRJndDRETkJgW1IrlDI853cLeU2xlWrVpF06ZNKVWqFACpqakcOnSIgQMHMmzYMJYuXUpgYCDz5883rxciIiIikqtyO6jNCaal3M6wefNmfH19rbfd3NwoVqwYTZo0AaBNmzaMGzcum802n0YoRETyB03VEMm/cuKztyn97veZlnIbwDAMDh48yDPPPGN9fOXKlSlbtizbt2/Hy8uLbdu2UatWrQfvhZ3pRCsiIiKSdZqqcQf3SrkdGxuLk5MTLi4umZ4zY8YMQkJCmDx5Mq6uroSFhZnTehMpqBURERHJutwOanOCUm6LiEi+oiuIIrcrCEGtWZRy2wY60YqIiIjIveSJwFm/kkRExFYapBARe8kTgXNBmGwuIiIiIg83mwLnmTNnsn79egC8vLwICAhg586dhIaGkpSURKtWrRgyZIj1scuXL+fRRx8FoEuXLvTo0YOoqChCQ0NJSUnhscceY8KECVSoUMGmRiqoFREREXm4FYSBzvsGzjt37mTHjh2sWLECi8VCnz59WLNmDeHh4cyfP59y5crh6+tr3W7uwIEDfPzxx5m2pAPw9/fnk08+wcPDg2XLljFu3Dhmz55tUyMLwgshIiLm0Pn84ZFfps3oPWWbgvB3um/g7ObmRmBgIM7OzgBUq1aNkydPUqVKFWvik7Zt27JhwwZr4PzZZ59x9uxZnnvuOYYOHYrFYmHQoEF4eHgAULNmTRYsWGBzIwvCCyEiInlHfgkIxTb54fVWLGWO+wbOTz75pPX/T548yfr163njjTdwc3OzHnd3dyc6Opr4+Hieeuop/P39qVKlCoGBgXzyyScMGTKE9u3bA5Cens7MmTNp2rSpzY3UiLOIiIjIw60gxGs2Lw48fvw4vr6+BAQE4ODgwMmTJ633GYaBxWKhWLFifP7559bjvXr1IigoyDr/OTk5mcDAQFJTUzOl5b6f3P4jiYiIiIjYFDhHRUXh5+dHUFAQ3t7e7Nmzh5iYGOv9MTExuLu7c+7cOXbu3Mlrr70G3AyoHR1vVhEfH0+/fv147LHHmD17Nk5OTjY3siD8ghERERGRh9t9A+fz58/Tv39/pkyZQqNGjQCoV68ev//+O3/88QcVK1ZkzZo1dOrUicKFCzN58mSef/55KlasyMKFC2nWrBmAdfrG6NGjKVSokH17JSIiBVZ+mI8qIg+n+6bcHjduHMuXL6dy5crWY127duXxxx+3bkfn5eXFsGHDsFgsbNy4kRkzZpCSksKzzz7L6NGj+fXXX+nQoQPVq1e3jkC7u7tnmtZxL+kXamSjiw8PncxFREQkN+jKuu3ulXL7voHzw6BZoc52r0Mpt0VE8gedz0Vup8DZdvcKnPNE5kARERERebgVhDVpCpxFRCRf0WiwSO7I7aA2J9i0Sm/mzJl4e3vj7e3NpEmTrMdTUlJ488032b17t/XY5s2bad++Pe3ateO9997j6tWrAJw5c4YePXrQvn17fHx8OHv2rMldERERERGxnyyl3N60aRPVqlUjKCiIQ4cOWR8bFxfHqFGjWL58OWXKlGHatGnMmDGD4OBgpk2bhre3N927d2f+/PlMmTKF8PBwu3ZOREQKHs1xFhF7yVLK7XPnzvHzzz/Tp08f/vnPf1ofm5KSQkhICGXKlAFuptZevXo1cDNjYFxcHAAJCQkULlzY5kYWhKF/ERExh4JakdyhOc7cOeX2okWLePzxxwEyBc4lSpSw7tucmJhIREQEPj4+AAwaNIiuXbsyf/58UlJSWLx4sc2NLAgvhIiImEMjziK5oyDEUjZnIjl+/Di9evUiICDAGjTfzfXr13n33Xfx8PCgQ4cOAAwdOpQxY8bwr3/9i9GjRzNgwADywE54IiIiIiKAjYFzVFQUb731Fh988IE1EL6bixcv0r17d2rWrMn48eMBiI2N5cSJEzRt2hSAFi1aEBMTw+XLl7PZfBERERGRnJGllNt3k5aWRt++fWnVqhXvvfee9XiJEiVwcXFh7969eHp6EhUVRbFixShZsmT2eyAiIiIiua4gTK29b+A8Z84ckpKSCAsLsx7r2rUr3bp1u+2xW7du5dChQ6SlpbFx40YAateuzfjx45k5cyZjx44lMTGRYsWKMWPGDBO7ISIicpPmH4vkjtwOanOCUm7/lxaTiIiISH5VEIJasyjltoiIFBgaCBERe1HgLCIi+YqCWpH8Kyc+35vS736fTYHzzJkzWb9+PQBeXl4EBASwePFi5s+fj8VioXbt2owePRpnZ2cOHz7M8OHDiY+Px9PTk9GjR+Po+L9qDh06RJcuXThw4IDNHdDlBREREZGHmxYHcueU2xERESxbtoxvvvmGYsWKERgYyFdffcVbb72Fv78/48aNo379+gQFBbFkyRK6d+8O3MwYOHbsWFJSUh6okQXhhRARERHJywpCLHXffZxvTbnt5OREtWrVSE5OJiQkBFdXVywWCzVq1ODcuXOcPXuWxMRE6tevD0DHjh3ZsGGDtaywsDDefPNNu3VGRERERMResp1yOzY2loULFxIaGsrFixdxc3OzPt7NzY3o6GgAtmzZQmJiIi1btjS5CyIiIv9TEEa98or8Mt9c76mHR56Y4ww3U277+vpmSrkdHR1Nnz596NSpE88//zxRUVFYLBbrcwzDwGKxEBMTw+zZs5k3b15W+yAiImKT/BKsycMjP7yn8kvwn9v9sClwjoqKws/Pj6CgILy9vQH47bff6NOnDz4+PvTq1QuAsmXLEhMTY33epUuXcHd357vvvuPKlSv06NHDel/79u1ZuHAhrq6uZvZHRERERHJBQViTlqWU23FxcfTu3ZvBgwfz6quvWh9boUIFXFxciIqKokGDBkRGRtK4cWM6d+5M587/S2JSs2ZNIiMjze+NiIiIiOSK3A5qc0KWUm63bt2aS5cuMXfuXObOnQvAyy+/zKBBgwgPDyc4OJi4uDhq1apFz549s93IgvBCiIiIiORlBWHEOU+k3E6/UCO3m2CK/DBHSkRERPKe/JJRMyf6kedTbueXF0JEROwvvwQIIvLwyROBs4iIyMNEgy22yS8/MPR626Yg/J0UOIuIiDyg/BIQim3yw+tdEILanGBT4Dxz5kzWr18PgJeXFwEBASxevJj58+djsVioXbs2o0ePxtnZmYMHDzJy5EhSUlIoV64ckydP5tFHH+XcuXP4+/vz559/8sQTTxAeHk6xYsXs2jkRESl48kOQIyIPp/um3N65cyc7duxgxYoVrFy5koMHDxIREcGcOXP4+uuvWbVqFenp6Xz11VcAjB8/Hj8/P1atWsUTTzzBnDlzABg9ejTdu3dnw4YN1K5dm08++cS+PRMRERERMdF9A2c3NzcCAwNxdnbGycmJatWqkZycTEhICK6urlgsFmrUqMG5c+cASE9PJz4+HoCEhAQKFy5MSkoKP/74Iy1atACgY8eObNiwwY7dEhEREREx132najz55JPW/z958iTr169n0aJF1rTbsbGxLFy4kNDQUAACAwPp1asXEyZMoEiRIixZsoTLly/j6uqKo+PN6tzc3IiOjrZDd0RERERE7MPmxYHHjx/H19eXgIAAa9AcHR1Nnz596NSpE88//zyJiYkMHz6cefPmUbduXebOncvQoUMZO3YsFoslU3l/vX0vmtAuIiIiIrnNpsA5KioKPz8/goKC8Pb2BuC3336jT58++Pj40KtXLwCOHTuGi4sLdevWBeD1119n2rRplCxZkuvXr5OWloaDgwMxMTG4u7vb3Ejt4ywiIrbS+fzhkV8Wauo9ZZuCEK/dd47z+fPn6d+/P+Hh4dagOS4ujt69ezNo0CBr0AxQpUoVLly4wIkTJwDYsmULderUwcnJCU9PT9atWwfAypUrady4sT36IyIiIiJiF/cdcZ4zZw5JSUmEhYVZj7Vu3ZpLly4xd+5c5s6dC8DLL7/MoEGDCA0NZfDgwRiGQalSpZgwYQIAISEhBAYGMnv2bMqVK8fHH39spy6JiIiIiJjPYhiGkduNuJ9mhTrbvQ6laBUREZH8KrenOOQlhcoeu/t9OdgOEREREZE8K0+k3NavJBEREZGHW0FYHJjllNtfffUVCxcuxDAM6zGLxcLMmTNZvnw5jz76KABdunShR48eXLx4keDgYC5evEjhwoUJDw+nYsWKNjWyILwQIiIiInlZQYil7hs435py22Kx0KdPH+bNm8dXX33FypUrcXFxoUePHvzwww+89NJLHDhwgI8//phnnnkmUzkBAQG0aNGCbt26sWjRIsLDw5k6daq9+iUiIiIiYqr7Bs63ptwGqFatGhaLhbVr1+Lk5MTly5eJi4uzjjAfOHCAzz77jLNnz/Lcc88xdOhQ4uPjOXLkiHUHjk6dOtGoUSObG1kQfsGIiIg5tNhbROwlyym3nZycWLJkCRMnTqRu3bp4eHgQHx/PU089hb+/P1WqVCEwMJBPPvmEl19+mfLlyxMWFsbevXtxc3NjxIgRNjdSUzVERMRWCmpFbqfPhe02pd/9Ppu3o8tIuT1w4EA6dOhgPZ6amsqwYcMoV64c77//fqbnHDp0iKCgIEaMGEGPHj2YPXs2TZo0YenSpaxatYr58+fb1AFtRyciIiKSdfklzsmJftxrO7ospdw+f/48586do0GDBjg6OuLt7c2iRYs4d+4cO3fu5LXXXgPAMAwcHR1xc3OjWLFiNGnSBIA2bdowbtw4E7omIiKSWX4JEETymoJw9T5LKbevX7+Ov78/165dwzAMNm7cSIMGDShcuDCTJ0/m9OnTGIbBwoULadasGZUrV6Zs2bJs374dgG3btlGrVi379kxERERExET3naoxbtw4li9fTuXKla3HunbtisVi4csvv8TBwQFPT0+CgoJwcnJi48aNzJgxg5SUFJ599llGjx6Ns7MzJ06cICQkhMuXL+Pq6kpYWBiPP/64TY3UVA0RERGRrCsIo8FmuddUDaXc/i8FziIi+YPO5yK3U+Bsu2zPcRYREckrFNSKiL3cd46ziIiIiIjYGDjPnDkTb29vvL29mTRpUqb7FixYgI+Pj/X2pk2baNu2Ld7e3gQGBpKcnAzc3Jnjtddeo3379rz55pucPXvWxG6IiIiIiNjXfQPnW1Nur1y5koMHD7Jp0yYAfv31VyIiIqyPvXHjBmPGjGHu3LmsXbuWpKQkVqxYAYC/vz/jxo0jMjKStm3bajs6EREREclT7hs435py28nJiWrVqnHu3DmSk5MZOXIkfn5+1scWLVqUrVu3Urp0aRISEvjzzz959NFHSU5OZtCgQXh4eABQs2ZNzp8/b79eiYiIiIiYLMsptz/66CM6depExYoVMz3eycmJ7du3ExAQgLu7Oy+99BLOzs60b98egPT0dGbOnEnTpk1tbqRWgoqIiIhIbrN5ceDx48fp1asXAQEBnD17lvPnz9OpU6c7PtbLy4vdu3fTpEkTRo0aZT2enJzMhx9+SGpqKr6+vtluvIiIiIhITrEpcI6KiuKtt97igw8+oEOHDqxZs4bjx4/Tvn17goODOXDgAIMHD+bKlSvs2LHD+ry2bdty9OhRAOLj4+nTpw+pqanMnj0bJycn+/RIRERERMQO7jtVIyPl9pQpU2jUqBEAoaGh1vt3797NzJkzmTp1KpcvX8bf35/ly5dTvnx5NmzYwLPPPgvcXBxYpUoVRo8eTaFCD7YLXk7syanpICIiIiJyL/cNnOfMmUNSUhJhYWHWY127dqVbt263PbZEiRKMHTsWX19fLBYL1atXZ/To0Rw6dIgtW7ZQvXp1OnToAIC7uzuff/65TY1UUCsiIiLycCsIA51Kuf1fStEqIpI/6HwucrvcDjjzknul3FbmQBERERERGyhwFhERERGxwX3nOMPNlNvr168Hbm41FxAQwLBhw4iKiqJIkSIADBgwgGbNmnH48GGGDx9OfHw8np6ejB49GkdHR86cOcPQoUOJi4vj0UcfJSwsjAoVKtivZyIiIiIiJrpv4Hxrym2LxUKfPn3YtGkTBw4cYMGCBbi7u2d6fEZq7fr16xMUFMSSJUvo3r0706ZNw9vbm+7duzN//nymTJlCeHi43TomIiIiIjmnICwOzHLK7XPnzhEUFETbtm2ZPn066enpnD17lsTEROrXrw9Ax44d2bBhA3AzY2BcXBwACQkJFC5c2H69EhERERExWZZSbi9cuJA9e/YQEhLCI488gq+vL8uWLePJJ5/Ezc3N+ng3Nzeio6MBGDRoEF27dmX+/PmkpKSwePFiO3RHREQKOu14IXI7fS7MYdMcZ7iZctvX15eAgACqVq3KrFmzrPf5+PiwcuVKqlWrhsVisR43DMN6e+jQoYwZM4amTZuyceNGBgwYwKpVqzI9PjfpDSUiIiL5VW5PccgvbAqco6Ki8PPzIygoCG9vb44ePcrJkydp0aIFcDNAdnR0pGzZssTExFifd+nSJdzd3YmNjeXEiRM0bdoUgBYtWhASEsLly5cpWbKkHbr14LTvp4hI/qDzuYjYS5ZSbhuGwYQJE2jYsCFFixZl8eLFdOjQgQoVKuDi4kJUVBQNGjQgMjKSxo0bU6JECVxcXNi7dy+enp5ERUVRrFgxm4Nm/UoSERFbKagVEXvJcsrtd999l27dupGamkrz5s1p06YNAOHh4QQHBxMXF0etWrXo2bMnFouFmTNnMnbsWBITEylWrBgzZsywX69EREREREymlNv/pUt7IiL5g87nIrfT1XvbKeW2iIiIiEg22byrhoiISF6g0WCR3JFfPnub0u9+X54InHV5QUREROThVhDiNZsC55kzZ7J+/XoAvLy8CAgIYNiwYURFRVGkSBEABgwYQLNmzTh48CAjR44kJSWFcuXKMXnyZB599FFrWYcOHaJLly4cOHDA5kYWhBSOIiIiInlZQYjX7hs479y5kx07drBixQosFgt9+vRh06ZNHDhwgAULFuDu7p7p8ePHj8fPzw8vLy/CwsKYM2cOQ4YMAW6m2h47diwpKSkP1Mjc/iOJiEjeocWBIrmjIMRr9w2c3dzcCAwMxNnZGYBq1apx7tw5zp07R1BQENHR0TRr1owBAwZQqFAh0tPTiY+PB24GysWLF7eWFRYWxptvvslPP/30QI0sCL9gRERERPKyghCv3TdwfvLJJ63/f/LkSdavX8/ChQvZs2cPISEhPPLII/j6+rJs2TK6dOlCYGAgvXr1YsKECRQpUoQlS5YAsGXLFhITE2nZsqX9eiMiIgWeRoNFckduB7U5webFgcePH8fX15eAgACqVq3KrFmzrPf5+PiwcuVK2rVrx/Dhw5k3bx5169Zl7ty5DB06lPHjxzN79mzmzZtnjz6IiIhYaaqGSO7QiPN/RUVF4efnR1BQEN7e3hw9epSTJ0/SokUL4GYKbkdHR44dO4aLiwt169YF4PXXX2fatGl89913XLlyhR49eljLbN++PQsXLsTV1dUO3RIRkYJKQa1I7sjtoDYn3DdwPn/+PP3792fKlCk0atQIuBkoT5gwgYYNG1K0aFEWL15Mhw4dqFKlChcuXODEiRNUrVqVLVu2UKdOHTp37kznzv/L/lezZk0iIyPt1ysRESmwNOIsIvZy38B5zpw5JCUlERYWZj3WtWtX3n33Xbp160ZqairNmzenTZs2AISGhjJ48GAMw6BUqVJMmDDBfq0XERH5CwW1IrmjIEzVsBiGYeRqC2zQrFDn+z8omzRCISKSP+h8LnK73A4485JCZY/d/b4cbIeIiIiISJ6VJ1Juy8NDv1gfLvYe9dLInYiIyP9kOeX2zz//TGhoKPHx8dSsWZOwsDCcnZ05ceIEISEhXL16FTc3Nz7++GOKFy/OuXPn8Pf3588//+SJJ54gPDycYsWK2bVzYj4FOQWLXm8REbGV5jhzM+X29OnT+fLLL60pt1999VU++ugj/vGPf+Dh4cH777+Pp6cn3bp1o2XLlgwfPpzGjRsTHh6OYRj4+/vj6+tLu3bt8Pb2ZtasWdy4cQN/f3+bGpkTc5xFRCR/0JUSkdvldsCZl2RrjvOtKbednJyoVq0aZ8+epX79+nh4eAAQHBxMs2bNOHjwIEWLFqVx48YA9O3blx49epCSksKPP/5o3fe5Y8eObNiwwYy+iYiIiIjkiCyl3H777bcpWrQoQ4YM4cSJEzz77LMEBgby448/Urp0aYKCgjh8+DBVq1ZlxIgRXL58GVdXVxwdb1bn5uZGdHS0/XqVBRqhEBEREZF7sXlXjePHj9OrVy8CAgJIS0tjx44dvP/++3zzzTckJCQQERFBamoqe/bsoVu3bqxYsYJKlSoRFhaGYRhYLJZM5f31toiIiIjIwyxLKbeXLl1KvXr1qFSpEgCtWrViwYIFeHp6UqVKFerUqQNAmzZt8PPzo2TJkly/fp20tDQcHByIiYnB3d3dfr0SEZECS1f3RHJHQVgcmKWU2y+99BIzZszg/PnzlCtXjm3btlGrVi2eeeYZYmNjOXLkCB4eHmzdupVatWrh5OSEp6cn69ato23btqxcudI6D1pERERE8r7cDmpzwn131Rg3bhzLly+ncuXK1mNdu3alXLlyTJkyhaSkJJ566ikmTJhAkSJF2LdvH2PHjiUhIYGyZcsyadIkSpUqxdmzZwkMDOTPP/+kXLly1m3qbKHMgSIiIiJZVxCCWrPca1cNpdz+LwXOIiL5g87nIrdT4Gy7ewXOyhwoIiL5ioJaEbEXBc7yQPSL9eGilNsiIlKQ5MR3xqb0u9+XpZTbzz//PB9//LH1/ujoaOrVq8dnn33Gpk2bmD59Ounp6dSpU4cxY8bg7OzMxYsXCQ4O5uLFixQuXJjw8HAqVqyYvZ5JjlOQU7Do9Za8SD/4RHKHdtXgZsrtHTt2sGLFCmvK7WeeeYbIyEgAYmJi6NatG8OGDePGjRuMGTOGFStWULp0aYYMGcKKFSt4/fXXCQgIoEWLFnTr1o1FixYRHh7O1KlTbWpkbv+RREQk71BQKyL2ct/A+daU2wDVqlXj3Llz1vsnTZpE165defzxxwHYunUrTk5OJCQk8Oeff/Loo49at6ibO3cuAJ06dbJubWeLgvALRkREREQebllKub1o0SLr7T179jB+/HjrY5ycnNi+fTsBAQG4u7vz0ksvceLECcqXL09YWBh79+7Fzc2NESNG2KE7IiIiIpIbCsIgpM2LA48fP46vry8BAQHW0eXFixfTvXt362h0Bi8vL3bv3s3HH3/MqFGj6N69O4cOHWLgwIEMGzaMpUuXEhgYyPz5803tjIiIiOY4i4i9FLLlQVFRUbz11lt88MEHdOjQwXp8y5YttG7d2nr7ypUr7Nixw3q7bdu2HD16FDc3N4oVK0aTJk2Am6m49+/fb1YfRERERETsLksptwFiY2NJTEykUqVK1mOGYeDv78/y5cspX748GzZs4Nlnn6Vy5cqULVuW7du34+XlZU3RLSIiYjaNBovkjoKwJu2+gfOcOXNISkoiLCzMeqxr167UqlWLsmXLZnpsiRIlGDt2LL6+vlgsFqpXr87o0aMBmDFjBiEhIUyePBlXV9dM5YmIiJhFUzVEckduB7U5QSm3/0snWhEREcmvCkJQa5Z7pdy2aY6ziIiIiEhBp5TbIiKSr+gKoojYi0acRURERERsYNOI88yZM1m/fj1wc4/mgIAAduzYwaRJk0hPT+fpp59m3LhxmfZzDggIoGHDhnTs2BG4uaVdaGgoKSkpPPbYY0yYMIEKFSrY1EjNyxERERF5uGlXDWDnzp3s2LGDFStWYLFY6NOnD5s2bWLcuHF88cUXVKtWDT8/PyIjI+ncuTPR0dGEhISwa9cuGjZsaC3H39+fTz75BA8PD5YtW8a4ceOYPXu2TY0sCC+EiIiISF5WEGKp+wbObm5uBAYGWkeTq1Wrxrlz50hLSyMuLo60tDSSkpJwcXEBYPXq1bzyyis89thj1jKSk5MZNGgQHh4eANSsWZMFCxbYoTsiIlLQaf6xiNjLfQPnJ5980vr/J0+eZP369SxatIgKFSrg4+ODq6srFStWpGXLlgD06dMHuDk1I4OzszPt27cHID09nZkzZ9K0aVNTOyIiIgJaHCgi9mPzrhrHjx/H19eXgIAAihUrRnh4OGvWrKFixYqEhoYSGhpKSEjIPctITk4mMDCQ1NRUfH19s914ERGRv1JQKyL2YlPgHBUVhZ+fH0FBQXh7e7N+/Xpq1KhB5cqVAejSpQuDBw++Zxnx8fH069ePxx57jNmzZ+Pk5JTtxouIiPyVRpxFxF7uux3d+fPn6d+/P+Hh4Xh7ewNQo0YN9u/fz6VLlwDYsmULderUuWc5/v7+VKlShalTp2bafUNEREREJC+474jznDlzSEpKIiwszHqsa9euDBo0iJ49e+Lg4ECVKlUYM2bMXcs4dOgQW7ZsoXr16nTo0AEAd3d3Pv/8cxO6ICIiIiJifxbDMIzcbsT9NCvU2e516NKeiEj+oPO5yO0KwlZxZilU9tjd78vBdoiIiIiI5Fk276ohIiKSF2g0WETsxaYR55kzZ+Lt7Y23tzeTJk0CYMeOHbRr1442bdoQEBBAcnIyAAcPHqRTp060a9cOX19frl27BsCZM2fo0aMH7du3x8fHh7Nnz9qpSyIiIiIi5rtv4Hxryu2VK1dy8OBBNm3axPDhw5kyZQpr1qwhMTGRyMhIAMaPH4+fnx+rVq3iiSeeYM6cOQBMmzYNb29vIiMjad68OVOmTLFvz0RERERETGR6yu309HTi4+MBSEhIoHjx4tbjcXFx1uOFCxe2S4dERKRg0+JAkdyRE5+L3F7k+EC7apw8eZJu3bqxaNEifv31V95//31ryu0FCxbg7OzML7/8Qq9evShatChFihRhyZIllChRglOnTtG1a1ccHBxISUlh8eLFVKlSxaZ6tauGiIjYKre/WOV/8sv3nt5TBcu9dtWwOXDOSLk9cOBAXnrpJXx8fIiIiLCm3E5NTWXo0KF06tSJ0NBQ6taty9y5c9m1axcRERF069aN3r1707RpUzZu3MjMmTNZtWoVFovlvnUrcBYREVvpfC5yOwX/trtX4Gxqyu1jx47h4uJC3bp1AXj99deZNm0asbGxnDhxgqZNmwLQokULQkJCuHz5MiVLlsxu/0RERKwU1IqIvZiacrtKlSpcuHCBEydOZDpeokQJXFxc2Lt3L3AzEC9WrJiCZhERERHJM0xNuV28eHFCQ0MZPHgwhmFQqlQpJkyYgMViYebMmYwdO5bExESKFSvGjBkz7NoxEREREREzKeX2f2lOnIhI/qC5nA+P/PK9p/dUwZLtOc4iIiLyP/klIBTb5IfXW8G/ORQ4i4hIvpIfghwReTjliakaIiIiIiK57b67aoiIiIiIiAJnERERERGbKHAWEREREbGBAmcRERERERsocBYRERERsYECZxERERERGyhwFhERERGxgQJnEREREREbKHAWEREREbGBAmcRETu7ceNGbjdBRERMoMD5AfzjH/8gJiYmt5shIiZbt24dALGxsXYpv0ePHgCMGjXKLuVLwbRixYrbji1cuDAXWpI3JSYm5nYTHlqHDh0C4Pr16+zatSuXW/NwccztBpjl7NmzBAcHc/bsWRYsWMCHH37IhAkTqFixoml1JCYm4uPjQ+XKlenQoQNNmzbFycnJtPIBkpOTmTNnDr///jsjR45k3rx5vPvuuzg7O5tazy+//MJnn33GjRs3MAyD9PR0zp07x9atW7NV7o8//njP+5977rlslZ9TdQBcvXqVyZMnc+rUKaZPn87EiRMJDAykePHippSfXxw+fJjz58/z3HPP8cgjj1iPb9u2jSZNmmS7/CNHjjB06FAuXLhA06ZNGTZsGK6urgB06NDhjsHDg5oyZQrNmzend+/eppT3VwkJCXz44Yf861//Iikp6bb7Q0NDs1W+h4cHFosFAMMwMt1nsVg4fPhwtsr/q5SUFHbu3Mnly5czHX/11VdNq2PJkiVMmTKFK1euADf7ZWZfZs6cecfjAwYMMKV8sN85ZN68ecTFxfH1119z9uxZ6/HU1FTWrFlj/aFmhqtXr7J27VouX76c6b1l5t/p1KlT/PLLL7Rt25aRI0dy6NAhRo0aRZ06dUyrY+vWrUyZMoWEhATrd15CQgL//ve/s132sGHD7nl/dj/f9i7/r8LDwzl06BBffPEFCQkJfPLJJ+zdu5eBAweaVkdUVBTHjh2jU6dO7Nu3z7Tv7VvZK57KN4HzyJEj6d27Nx999BFubm60adOGoUOHmvrre8CAAQwYMIC9e/eyZs0aZsyYQcOGDencuTNPPfWUKXWMGTOGkiVLcujQIRwcHDh16hRBQUGEh4ebUn6GoKAga5Dg4+PDt99+y9NPP53tcqdPn37X+ywWC19++aVpdVy5coVTp07x7LPPUqhQIX7++Wdq1KjB119/ne06AEaMGMGLL77I/v37KVq0KO7u7vj7+xMREWFK+TnB3ifcf/7znyxZsoRKlSoxYsQIwsPDadSoEXDzdTIjcB41ahTDhg2jZs2aTJs2jZ49ezJ//nyKFSt2W5CYVZ6entSpUwfDMDJ9ls0K1ubOncvu3buJiorib3/7W3abe5sjR46YXua9DBo0iJiYGKpVq2YN2MHcwPnTTz/lyy+/5MknnzStzLtJSUnhX//6F/Xq1TO1XHudQx5//HEOHDhw23EXFxfCwsKyVfZf9e/fn5IlS/Lkk09meq3NNGzYMDp37syWLVs4efIkw4YNY/z48aady+HmuW7s2LHMnTuXvn37snnzZhISEkwp2x6f6TuVv23bNuLj42nXrh2Ojo6sW7cu02CFWb777jsiIyMBcHd3Z+7cuXTo0MG0wPmf//wnmzdv5uLFi7Rs2ZKRI0fy2muv0bt3b1PKz2C3eMrIJzp06GAYhmG0b9/eeqxdu3am1xMfH2+sWLHC6NWrl+Ht7W1MnTrV6NGjhxEeHm5K+a+++qphGP/rR3p6uuHt7W1K2bfKKH/atGnGzp07jdTUVKNVq1am12NPffr0MU6ePGm9febMGaNXr16mlX+n91Tbtm1NKfvFF180PDw8bvtXs2ZNw8PDw5Q6DMMwlixZYjzzzDPGokWLjG+++ea2f9nVpk0b48aNG4ZhGEZUVJTx4osvGj/++KNhGJn/btnx13LCwsIMHx8fIzk52bQ6MvTt29fU8v7q8OHD1v+/fv26cezYMVPL//PPP425c+caM2fONGbMmGFMmzbN8Pf3N7UOwzCMFi1amF7mX7322mt2r+NWSUlJRo8ePUwt057nEMMwjF9//dW0su6mTZs2dq+jU6dOhmEYRlBQkLF48WLDMP73tzNLRnmzZs0ytm/fbhiGYZfvvMuXLxvnzp0zzp49a5w6dcrYuXOnaWW/9tprRlpamvV2Wlqa9W9nphYtWhhxcXHW2zdu3DD1fdC+fXsjKSnJ+rmIi4uzy2thr3gq34w4Fy5cmAsXLlh/Ee/du9f06Q0ffvghu3btwsvLi379+uHp6QncvBzw0ksv8cEHH2S7DovFQnJysrUfly9ftsuvfBcXF65cucITTzzBvn37aNSoEWlpaaaVb6+pILc6d+4cVapUsd4uX748586dM618BwcHrl+/bv37nzx5kkKFzFkWsHz5cnr27MmsWbOoXr26KWXeSefOnfnjjz84c+YMH374oV3qKFKkCADPPvssU6ZMYfDgwXzxxRemvW9dXV35/vvv+b//+z8sFgtDhw7lgw8+YODAgaaNGGWYNm0aR44cwcPDg9WrV3Po0CHeeecdSpYsaUr5//nPf5g3bx4BAQG8+uqrFCtWjPbt29O3b19Tyh88eDDlypXjl19+oWnTpnz33XemXu7OULlyZc6dO0f58uVNL3vlypXAzc9zv379eOWVV3B0/N9XlZmj2reKj4839fwB9juHvPzyy/f8fG3ZsiXbdWSoUaMGBw4coHbt2qaV+VcODg5s3LiR7777jkGDBrF582bTzrUZChcuzO+//061atXYs2cPDRs2JCUlxdQ6ZsyYwbx580hNTaVEiRJER0dTu3Ztli5dakr5169f58qVK9bz0aVLl+yy8Lhr16507NiRl19+GYDvv//e1Ok/hQoVyhSfubi44ODgYFr5GewVT1kMw6Rrnbls//79jBgxglOnTlG5cmWuXr3K1KlTqV+/vml1LFu2jNatW1O0aNHb7ouJicHNzS3bdaxcuZKlS5fyxx9/0KpVKzZv3kz//v157bXXsl32rdavX8+SJUuYMWMGnTt3plChQnh4ePDRRx+ZUn7r1q1vmwpSqlQpgoKCTCkfICAgAIvFQqtWrTAMg9WrV1OsWDHGjh1rSvn/+te/+Oijjzh//jwNGjTgl19+YcKECfz97383pfzt27ezfPnye05vMUNycjI//vgjL774oulljxo1iqtXr9K/f3/rD4Bvv/2W0aNHk5aWZsr8wd9++40RI0bQpUsXa9CUlpZGWFgYX331FQcPHsx2HRkGDRpExYoVad68Of7+/rRv3579+/fz2WefmVJ+x44d+fTTT9mwYQO///47w4cPp0uXLnzzzTemlN+yZUs2bNjAxIkTadmyJZUrV+bNN99k1apVppTv4+ODxWIhNjaW8+fP4+HhkekLz4ypWDk1n/PW4NMwDK5evUrv3r157733TCkf7HcOuXVe851UqFAhW+XD//4+iYmJxMbGUqZMGRwcHKzTl8wMzo8ePcq8efP4+9//TosWLRgyZAi+vr54eHiYVseePXtYuHAhkydPplu3bpw6dYrXXnuNoUOHmlbHyy+/zKpVqxg/fjz9+vXjxIkTfPXVV6ZN71u5ciXh4eE8++yzGIbBL7/8QnBwMC1atDCl/Fv95z//4ccff8TR0RFPT09TpnJmCAsLw2KxsHXrVvz9/Vm8eDGPP/44w4cPN60OsF88lW8CZ7g5T+3kyZOkpaVRtWpV00eck5OT+eKLL/j9998ZMWKE3Rbu/frrr+zevZv09HSee+45U08et8o4Ad64cYOTJ0/i4eFh2q/8V199lZUrVzJ9+nSee+45/va3v9G2bVvr7gVmSE5OZsGCBezZsweAF154ge7du2cancqOI0eO4O7uzv79+0lLS6NevXqULl3alLIfJjNmzMjy3LX09HSWL19OzZo1qVu3rvX4/v37+fTTT/nkk0/MauYdxcbGUrJkyWz14VadOnVi+fLlTJ48meLFi/Puu+9aj5mhY8eOfPPNN/Tu3ZuePXvi5eWFt7c3a9euNaX8119/ncWLF7NkyRIMw+D111+nXbt2pgXOGZ+1uzFzrucPP/xw24+9b7/9lubNm5tS/q3Bp8Vi4dFHH7UuOjVTbGws+/fvJz09nbp165p+Dtm6dSt79uzB0dGRF154gRdeeMGUcnMiOM/Qu3dv5syZY1p5trh69arpC727du3K119/zRdffGH9Ad62bVtWr15tWh0XL17k559/xmKx0KBBA0qVKmVa2RkyrvrcTXav+qSnp7NkyRJ27txJeno6jRo14vXXXzftuztDbGwssbGx7N69m7S0NP72t7+ZEk/lm6kafx2lsFgsFC5cmGrVqtG5c2dTgtuMieYHDx6028K9lJQUduzYwb///W8cHR1xcXGhZs2apk/X+Otq7/nz55u6Y4S9p4IAODs706VLF+uIM9w8qZh1+XjIkCGsX7/etBHmB2XWjhH3s3Xr1iwHnYUKFaJz5863Ha9bt641aLZnPzIuWWanD7dKS0sjNjaWzZs3M2PGDGJiYu64C0ZWVa9eHV9fX86cOUOjRo0YPHhwph8c2dWwYUP8/PwYOnQovXr14uDBgxQuXNi08jMC47FjxzJixIhM9w0dOtSUwHndunUkJyczffp0/Pz8rMdTU1P57LPPTAuc77c7jxlTQq5du8bs2bOt5/PGjRvTr18/016Tjz76iKioKFq1akV6ejrTpk3jP//5D76+vtkuOyMwvnLlCocOHeKFF17gs88+4+DBg6ZP+0pISOD8+fOUK1fO1HJvdevOWwsXLuSDDz4wfectV1dXVq5cSa1atViwYAHu7u6mbnl37do1Nm3axJUrVzAMg2PHjgHm7nACNxcH7t27l5dffhlHR0e2b9+Om5sbTzzxBJD9z0ZCQgJpaWlMnz6d6Ohovv76a1JSUkwPnHv06MH69etNnw6ZbwJnBwcHrl69an1B161bR3x8PIUKFSIkJMSUy3sHDx5kxYoVfP/99xQpUoSJEyfStm3bbJd7q+DgYBITE+nSpQvp6elERkZy/Phx0y9h2HvHiLfeeoshQ4ZYp4KsXr3a9Dlyn376KRERETz22GNYLBbTLyFWr16dmTNnUq9evUxfdPbYNudOcupikL3ryYl+mFVH79696dKlCy+//DI1atSgRYsWDBo0yJSyASZMmMDPP//Mk08+ibOzM+3ataNx48aAOdv3DRkyhFOnTlGhQgU+/vhjfvzxR/r3729G0wEYPnw4p0+f5sCBAxw/ftx6PC0tjWvXrplSR3x8PD/99BPx8fHs3r3betzBwYEhQ4aYUgfYPzgA8Pf3p2rVqoSHh2MYBsuXL2f48OGmTYn77rvv+Oabb6zbonbt2pVOnTqZEjhn+OCDD6yj2Bs2bODNN99k+PDhzJ8/37Q6Ll++zMsvv0ypUqVwcXGxy3SQjJ23wsPDKV26tF123ho/fjxr167l1VdfZdu2bYwcOZLBgwebVv6gQYN45JFH7LrDCdwcqY2MjLSOZl+/fp2+ffuaNk3qgw8+oGbNmgAUK1aM9PR0AgICmDFjhinlZ/Dw8GDlypXUrVs303d4tgfXsr288CHRsWPHTLfT09Otq03NWsXcoUMHIykpybpS888//zR9xfFfV6unpaXZZbWpvVd7G8bN18Awbu5EcvDgQetts7zyyivGn3/+aWqZt3rjjTdu++fj42O3+v4q432W1+vJiX7Yq47U1FTr/wcHB9uljgxm9OHo0aPG4MGDDcO4ueNCt27djN9++y3b5WY4ffq08e9//9to27atsXv3buu/vXv3GpcvXzatHsMwTN2N4E58fHyMS5cuWW9fu3bN6N69u6l13GkFv5m7JPXo0SPT3/369evG66+/blr5hvG/HS/GjBlj/POf/zQMw/wdL86cOXPHf2bKqZ237CkndjgxDMNo3rx5pt07kpKSTH3f3inWsMdr0aRJk9v+vfzyy9kuN9+MON+4cSPTAr0///zTeonVrCkCPXv25O233yYmJobx48dbJ5qbqWLFivzxxx/W3SIuXbpEmTJlTK0D7LtjBNx9gY+ZG7WXK1fOrslIzBxRkbzp1oVvd9o310yGCaPmwcHB1su21apVo3///gwfPpxFixZlu2y4eX6qWLEiq1at4sqVK9ZkEmlpaRw+fNi6h7cZihQpQr9+/ey2M090dDQlSpSw3nZxceHq1aumlJ2hevXq7N2717oD05EjRzLtBJRVGefX9PR02rdvz8svv4yDgwPff/89VatWzXb5t0pPT+fAgQNs3ryZBQsWcPjwYdOn3bm5ubF9+3bi4+OBm9/ZZ86cMfVqT07svHVrIqIM7u7ubN++3ZTyn3rqKeuuP/b097//nTfffNO66HDt2rW0a9fOtPItFgtHjx61jjr/9ttvpk/TAEzdxetW+SZwHjhwIB07duSZZ56xftCHDx/OjBkzTFss8eqrr1K7dm3rRPPZs2eb/gZOTU2lffv2eHp64ujoSFRUFG5ubvTs2RMwZ9U6gJ+fHz4+Ppw/f5733nvPutrbLLfOdUxNTWXLli2mn9Aff/xxunfvzvPPP5/pBGjWfK+MHQT+yqzXQORWZlx6TUhIsE79AHjxxReZPHlytsv9q1u33Xrssce4ePGiqdtugf2SNGWwd3AANwOCN954gyeeeAIHBwd+//13ihcvbt2xIqtTETLOr3+dU16rVq1st/mv/P39mTRpEm+//TaVKlWiS5cuBAYGmlrH+++/z9WrVzl16hSenp7s3r2bZ5991tQ6hg0bhq+vL6dOnaJ9+/ZcvXqVadOmmVrHrYmIUlJS2Lx5M7/88otp5R8/fpwOHTrYdUoL3PxbrV+/nh9//BEXFxcGDhxojaPM2EEsYw1GxqDg5cuXmTRpUrbb/Vf2GsDLN4Fz69atadiwIVFRURQqVMi6kO+5557jsccey1bZf11hWqxYMeDmh+TIkSOm7iv6162QevXqZVrZt3Jzc+OLL76w7hgxZswYU1d7d+jQIdPt1157jW7duplWPkCZMmXsMhqf4dbFZhnB/6OPPmq3+v7KjBHIyZMn4+/vz/fff58poLpVtWrVsl3PvWS3Hw9DH/KKkiVLsmjRImsAuG7dOrusul+xYgXbt2+/bdstMzk7O9OpUyfOnj3Lo48+yqRJk0xdU2Lv4ABursOwh7+eX+/2GDMW5TZq1CjTlYQlS5Zku8y/Onr0KN9++y3jx4+nU6dODB482NS5wXDzKvSyZcvsuvPWrZycnGjVqpWp74G7pYm3h1atWtGqVavbjr/77rvZfl+98MILbNu2jWPHjuHo6Gi318JeA3j5JnCOjY1l1apVxMfHYxgGBw8e5MyZM6b8irl1gcqdmBk4f/7553Ts2JFXXnnFrh/qnN4x4rfffuPixYumljlgwABiY2PZt28faWlp1K9f39Tg/6+jOS+88AKdO3c29fIh3JxmdOrUKWrWrElCQoJ1n/B3330322WvXr2aF198kfHjx1O0aNHbgtjnnnvOtF1h7NWPnOxDXhcaGsro0aOZNGkSTk5OPPfcc4wfP970etzd3XF1deXJJ5/kyJEjNG/e3LQFbxlyYmceewYHGeV07NiRdu3amRKIP4js/mDNCLxvnX6QUaYZaehvVapUKSwWC0888QRHjx7l1VdfNT05yeTJk/n73/9u1xTutw6yGYbB8ePHTZ2CUL58eRYtWsS///1vUlNTadiwIW+88YZp5dvCjAGds2fPsmDBAq5evZqpPDOncoL9BvDyTeBsz4xZZr+Y9/LOO++wcuVKJk+ejJeXFx06dDB1u6oM9t4xIuNkm/GhKFmyJO+//74pZWf417/+RVBQEPXr1yc9PZ2RI0cyfvz4bO9MkOHWLGKGYfDrr79y5coVU8rOsGvXLkaOHElaWhqLFy+mTZs2fPTRR7z00ku0bt062+UPGDCAzz77jIsXL952WdJisZg27cSe/cipPtyPGV8Y9i6/fPnypiVruRd7b7sFObMzz92Y9VpHRESwcuVKevbsSaVKlayDIhm7YNhTdqf+ZPxwuHX6gb08+eSTjB07lm7duvHhhx9y8eJF0z9vlSpVYtiwYbd955k58PXXQbYSJUowdepU08qfNGkSf/zxB506dcIwDL755htOnz5t+q5b92LGlLLBgwfj6emJp6enXXcH+SuzBvDyTQIUe2bMuld6U4vFwubNm7Ndx18lJiayYcMGpkyZwiOPPMJrr71G9+7dTRuF9vHxue1YTgYhZujYsSPTpk2jUqVKAJw+fZoBAwYQGRlpSvkZ6Ubh5t+mRIkSDBw4EC8vL1PKh5spsT/55BPrD6Zff/2V999/37SEFRlmzZpl+kLWW+VEP+zZhw8//JDw8HCWLVt216xSkyZNIiAgIFv1DBw48LYtl958803++c9/kpSUhIuLS5bK9fX15bPPPrvrucrsOZDR0dGsXbuWXr16ERYWxs6dO/H19cXb29vUejLmcNojSdO92GPv8U2bNjFu3DgSExNp164d7733XqbFiWYzqw/Xrl1j9erV1r2DM5i5d3BaWho///wznp6ebN26lV27dtG5c2dq1KhhWh05sWDd3tq1a8fKlSutn4HU1FTatm3L+vXrc6wNZryvcipHwV+vlmQM4GU3c2C+GXHO2F3hiSee4MiRI9SrV8+0sjN2V0hMTOT7778nPj6eChUqkJaWdt9pHFmxe/duIiMj+eGHH2jcuDGtW7dm586d9OvXz7TsSvbeMeJ+c7HMOOmmpqZag2a4OaKQnp6e7XIz2GtF7q3S09MzXcI1e6P2DG3atGHVqlW0bduWkJAQDh48yOjRo00bwcuJftizD3v27GHp0qXMnj37jpdWX3311WwFzQMGDODw4cNcvHiRV155xXo8LS2NsmXLAmQ5aAasaeanTp1qlznNf1WmTBl8fHw4evQonTt3xt/fP9MOJGa4fv06s2bNsmbFa9SoEU888QRFihQxtR57io+PZ+PGjURGRhIdHU23bt3w9vbm+++/p3fv3qalWrennNg7+NKlS2zbtg1PT0+efPJJ1q9fb01uZJY7BchmXyW52w9XsxbxpaWlkZqaah1AS0tLM/1zlxMaNGjA1q1beemll+w6JfVOV0uSk5OzXW6+CZztmTErI4PSgAED7L7yt0mTJlSsWJFOnToxcuRIax+ef/55OnXqZFo9v/zyC5999pndtno6f/48+/fvp02bNjg6OvLtt9/i6urKM888Y0r5cPOy9Lx586y/HpctW2ZqGtj9+/cTFRVFjx496Nu3L4cOHWLSpEl3XaCWFWXLlmXbtm1YLBauXbvGwoULTct8eKugoCA6d+7Mli1b+P333xk2bBjjxo3j66+/NqX8nOiHPfswduxYNm7ceFvSjQzZvZwbFhbGlStXGD9+PMHBwdbjjo6OpgS67u7uwM3V6jkx+rRnzx78/f0pVaoU6enp3Lhxg48++si06XFwM9lKxYoVCQ0NtSYPGTFiRJ6az/7KK6/QpEkTBgwYkGkaXPfu3dm5c6dd6zbrYvKlS5eYO3euKWXdzYcffmi9WlGmTBmee+45AgIC+OKLL0yrY+vWrUydOjXTd15iYiK7du0yrY62bdvi5OREly5dcHR0ZPXq1fznP/8xLXFP27Zt6dmzp/VvtXbtWtq0aWNK2bYy4321YcMGFixYAJApeZmZ8+YBXn/9dRYvXmy9nZ6eTqdOnbKfAj3bO0E/RP744w/DMAzjP//5jzF37lwjOjra1PKbNm1qpKenG2PHjjUOHTpknDp16rbEK9l19OjR2479/PPPptZhGIbRqlUrY9myZUaPHj2MDRs2GO+//74xfvx408p//fXXjfj4eOvtpKQko0uXLqaVbxiGcenSJWPQoEHG888/b/ztb38z/Pz8TH3NO3fubHz//ffGqlWrjL59+xpnz541/fW+dOmSMWTIEGsfBg4caPr71jD+l8QgKCjIWLx4sWEY5iYxyIl+2LsPhmEYS5YsMbW8Ozly5IixZ8+eTP/MMnjwYGPFihXGb7/9Zpw9e9b6z2wdOnQwjhw5Yr29f/9+6+tjljslRMipBBC3JsnIjs2bN992bOPGjaaUbRiGERgYeNf71q5da0od/v7+xuHDh00p627ulBDD7KRGTZs2NXbt2mW8++67xk8//WRMmjTJGD16tKl13Ol8ZPY5avv27UZYWJgRGhpqfPfdd6aWfes5407/DMMwfvzxR1PrtAcfHx+jZs2at/2rVauWMXDgwGyXn29GnG+dO1i7dm1q165tnTtoFnuu/I2KiiI9PZ3g4GDGjx9v/VWXmprKqFGj2Lhxoyn1ZLD3Vk+XL1/OdMkqOTmZGzdumFY+3Hw93n33XaZOncr169c5cOCAdeTNDOnp6fzf//0fH3zwAS1atKB8+fKmr+ovVaoUkyZN4siRIzg6OlKzZk27XA51cHBg48aNfPfddwwaNIjNmzebOlc0J/ph7z7Aza23Jk6caLfV3u+//z4HDx7M9D41c23Bvn372LdvX6Zj9tjn1TAMa/ICgDp16pj+2XjiiSf46aefrFf1jhw5wuOPP25qHWfOnOHXX3/l//7v/zh37px16tetVwWyYt26dSQnJzN9+nSuX79uPZ6SkkJERATNmzfPVvkZjh07Rnx8vHWL1FuZsbgYcmbv4MKFC7N9+3br+pGdO3eaPiXnkUceoWHDhvz0009cv34df39/0/5Gt9q5c6d1W8Nt27bd8bXJqujoaHbv3s3QoUM5ffo0M2bMoFatWqbtJvXGG29kWtR/q4zXPCOZT3YkJyfzxRdf8PvvvzNixAjmzZvHu+++a9q0jYzz6bhx47L9Wb6TPB84Z8wdjI6OvuvcQbPYc+Xvzp072bNnz207Bzg6OvL666+bUset7L3V02uvvUbHjh2t291t27aNvn37mlY+QHh4OIcOHeKLL74gISGBTz75hL1792bafzk7ihQpwhdffMG///1vRo4cyZdffmnqSRDghx9+YOjQobi7u5Oens61a9eYOnWq6TupjBkzhnnz5jFy5Ejc3d1Zu3Yt48aNM638nOiHvfsAN7dptOdq78OHD7Nu3Tq7zUv85ptvbtu3/syZM6aV/+OPPwJQtWpVRo4cyWuvvWa9JG3WNI2MeaJJSUls3LiRqlWr4uDgwG+//WZK1r0M69atY/bs2SQkJLB48WK6du1KQECANQFVdsTHx/PTTz/dNvXHwcHBtMv2cDOYadKkCU888USmOfJmLvLOib2Dx4wZw4cffkhAQAAWi4WyZcuanrincOHC/P7771SrVo09e/bQsGFD07e8GzNmDEOHDuXSpUvAzc/JxIkTTSv/r1NaPD09TZ3SkhPregBrno2DBw/i4ODAH3/8QVBQkOnTsPz9/dm0aZP5GSmzPWady65fv26cPn3a6Nu3b6Yc9xcuXDBSUlJMrSs1NdV6mWLz5s3G2LFj7zi1IjtWrFhx1/u+/vpr0+pZt26d8dZbbxnXr183WrZsabRu3dp4//33TSvfMAxj3759xj/+8Q9jwYIFxq+//mo9fuDAAVPK9/b2NlJTU623U1JSTL2Ue+HCBWPGjBnGTz/9ZBiGYUyaNMk4f/68aeUbxs0+3HoZdP/+/aZf2rsfMy6J5nY/zLqsa/bl4b8aOnSo8dtvv5le7rlz54yzZ88a3t7e1v8/e/ascerUKaNFixam1fPGG2/c9Z+Pj48pddx6Hr/TP8Mw5xzy6quvGtevX7dOy4iOjjZat26d7XJvtXPnzrveN3369GyXv3v37jv+M8PWrVsNw7j5nXSnf/YQGxtrXL9+PdMxM/5OhnHzb+Xn52ckJSUZHTt2NDw9PY2wsDBTyv6rP//8M9NURcMwpx85MaXFMG62f9CgQcbf/vY3o0GDBkb//v2NmJgY08rPaHPGZy89Pd3w9vY2rfwM/fv3N9544w2jcePGxvvvv2+8+OKLmqoBN/cTdXV1Zfbs2Rw/fjzTJdZTp06Zti8x3BwtyBiJeOWVVzKNcJvlXouQvv76a9NGn1u1akXLli2xWCwsX77cutUTwOLFi02pp27duncccQwODjZlK5rU1FQSExOto8Bmjx6UKVOGOnXq8O2337Ju3Tqef/55069iODs7Z0rbbubiKlsZJlw1ye1+mNEHsP9q74YNG9KmTRvc3d1xcHAw7bL39OnT2b17NxcvXqRHjx7W446OjqYmObJlN54ZM2Zk66qPLQt8zTiHFCpUCFdXV+ttd3d3u0z9uZutW7dm++qYPRNmHThwgCZNmtx15ygz9z/OcKft+cz4O8HNhFYZSa2WL1/O1atXrbtxZfc9+1d32hHEjH7kxJQWgJEjR/LMM88wbtw40tPTWbx4McOHDzdtj3iLxUJycrL1qt5fp3aaxV4ZKfN84JxhzJgxbN26NdP2ZHltX+L7MSs4yJDxRi1atChPP/209biZAfqdmNWPrl270rFjR+t+y99//32moCG7Pv/8c7799lvatm2LYRh8+umnHD9+nH79+plWh6enJ8OHD6dLly44ODiwdu1aKlSoYL0kbuYPv7sx44SV2/0w66R762rvW8s2a7X3Z599xj//+U/TdxzJmIMdERFhzdSYEZTnNLMCnXsx4xzy5JNPsmDBAlJTUzl8+DBfffVVph9/9mZGH+yZMGvPnj3AzW0+33vvPVPKzAqzv/cyZATNkHfeszkxpQVu5kS4dYrOO++8Y8qe/OvWraN169b07NmTt99+m5iYGMaPH8+mTZvsske/vdal5ZvAeceOHWzYsMG0LegeRjn1JWivE1UGs/rx1ltv0aBBA3788UccHR2ZPHmy9QfAwYMHqVWrVrbKX7VqFUuXLrW+p7p06ULHjh1NDZwzArK/zu2aPn16nvrhl1/6sWPHDruWX6JECbtmy6pbty5du3bl66+/5vfff+edd95h8uTJpm+beS/2Pn+AOeeQkSNHMnv2bFxcXBg+fDjPP/88Q4cONaF1tjGjDxmjqBkJswYOHGhawqwzZ84wZcoUli9ffsf98c1MgHIvOfG9l1fesx4eHqxZs4bLly/j5OSU6YqJmaPmFouF8+fPU65cOeBmFl0zUodPmTKF5s2b889//pPw8HD+/e9/k56ezmeffZZpsbFZ7LUuLd8EzpUqVcqRN39BkBujVFlVp06dO04LMONSrmEYmX6Iubi4mHLyuJW/v79dUqrntPzSj7sthDIrSHj88cfp0qULL7zwQqa0y2aVP3HiROtipKpVqxIREUFAQADLly83pXxb5JXzh4uLC/Xr1+eDDz4gNjaWrVu3mr74NyfYK2HWrFmz2LZtm4ktfXjllfdsBntOaYGbSW9ef/116tWrh2EY7Nu3z5pkKTs8PT2pU6cOhmHQpk2bTDGbPfZxHjVqFD///DPVq1dn4MCB7Nq1i48++ijb5eabwLl48eJ4e3vzzDPPZPqVnZfSaYp5zPgR1bBhQwYOHEiHDh0AWLlyJc8//3y2y73V5MmTuXLlCu3bt6d9+/aZsu/lFDP+VrndD3v8aE5JSeFf//qXqVlIy5cvb5cENxmSkpIypSmuVq0aqampdqsvLwsO/v/2zjys6mr7/+8DfBVzKjRwysQwlSwtIRGHUEhJxgMmJIOKmJhChAoik0KACFp5K4fyhgMOaDiRepXEa7cciEJlkLpdhkAQU2RWhrN/f/A7nzhMkmfvDef0eT2PTw+f07PXXvt8zue8z9prrxUMmUwmnFW5evUqbty4gfDw8G6eWddh2TDL0NAQhoaGmDBhgpBT2xraucEiTw7NZ+CsWbMwceJE3LhxA4QQbNy4kUqjpujoaERHR2PFihXYvn07hZl2jqamJiQSCQ4ePAhHR0cMGDCASht3tRHOM2bMwIwZM7p7Gkpz69atDvPs+vfvz3k2bFCVbbGgoCAcPHgQx48fB9D8ZUQ793vfvn0oLi7GiRMn4OHhgWHDhkEqlcLc3FwhIskSeU6sMnS3HzR8ANpGfleuXAkPDw8qY8vHr6+vR69evVBQUIC8vDyqnShHjx6N2NhY2NnZQSKRIDk5mXrtY9akpaU9NieexjMkMzNT6CCmo6OD2NhYqrXsH8cLL7yg9Bh79uzByJEj21zX0NAQzn4oS0eiGeCTG0xjnXoCrP2gGTWvq6vD7t27cfnyZTQ1NcHExATvv/8+nnrqKSrj8xDNQPPnIyUlBWVlZbC0tBRKaC5dulSpcekeIe5GpFIpXnrpJdTU1KCiogLjxo0TIoWqRGc1PmnmibbXw10ODYHe3raOPH9Q3qimpyORSPDqq69i0qRJMDIygomJCfVUDaC5ioC9vT1sbGzw66+/Yt++fbC2tsb58+ep2UhKSsKUKVMwfvx4jB8/HuPGjcP48eMB0GuUwNoPHj60pqamBrdv36Y23meffYZ169bh9u3bcHFxwZ49e6juikVGRqKurg6rV6+Gv78/amtrqde6fhzKCoTQ0FAAzbXgO4LGM0Qmk6GsrEz4+969e9SralRUVCA4OBju7u548OABAgMDUVFRAaDteYAnoT3RLIdHTV5aQRDW6/Q4aIna7vaDFuHh4airq0NUVBRiYmLQ0NCAsLCw7p7WX+bYsWPYvXs3+vTpg2eeeQZHjx6lkramNhHn48eP49NPP4WFhQVkMhlWrVqFFStWdPrw7YkYGBjg008/xcSJExXya2lXJfjggw9w5syZdl9TRqAHBQXh999/R2ZmJn799VfhemNjo9BBq2Xlk57M7t27cfjwYZibm6OpqQkrVqzA8uXLld4CbcmRI0dw4sQJ3L17F/b29jhw4ACGDBmCO3fuQCqV4s0336Ri5/PPP8e+ffuobFO1Bw8/WPsA/Nl8A2gWBRUVFfD09KQ2/rfffosDBw5g7969sLW1hb+/PxwcHKiNP3DgQKxZswaFhYV48cUX8fDhQ2pRIgAIDAzs9PXo6GilBcKwYcMwc+ZMlJeXK5T8bFm6j8YzxMvLC1KpFJMnTwbQ3HVx/fr1So/bkpCQEEybNg03btzAU089BV1dXaxduxa7du2iaqc9VGVnD+CzThUVFYiNjUVhYSG2bduGmJgYrFu3DgMHDqQmarvz/aZJVlaWQhWN0NBQZsEJlmhoaCik7vbu3ZtK8ym1Ec5fffUVjhw5IiTNe3l5wd3dXeWE84MHD3D16lWF2pksqhKwEugrVqxAcXExIiMjFba9NTU1uW650fjSSExMRFJSknByeeXKlXjnnXeoCue0tDR4e3u3yZ3W09Oj+gtfV1eXqeDk4QdrHwDFOsUSiQQDBgwQ3n8alVpkMhm0tbWRmpoKX19fyGQy1NXVKTVmSy5fvozQ0FA0NTUhMTERVlZW2LJlC6ZPn05lfHkdXJZ88cUXKC0thZeXF9MtXRsbG7z++uvIyMiAlpYWgoODFVqh06CoqAhOTk44ePAgevXqhQ8++AC2trZUbXSEKh1447FOPERtd77fNL9fCSGorKzEgAEDAACVlZXMup2y5PXXX0dMTAzq6uqQkpKCw4cPw8TEROlx1UY4y2QyhZOmOjo6KvXgkNOVBgM0YCXQR4wYgREjRuDkyZOorq5GZWWl8FptbW2bdsDKEBERgZCQEIVrAQEBiImJobKV+/TTTyukZvTp04f6qfv+/fu3EZtyH+bOnUvNzksvvQQfHx9MmzZNoTUvrSYGPPxg7QPQefMNGpVapk6dCmtra2hra8PY2Biurq7UclEBYOvWrThw4ACWLVuGwYMHIyEhAX5+ftSEM+3Dse1RWloKANixYwdTO/fv38eZM2dQU1MDQgiysrJQVFSEzZs3U7OhqamJqqoq4bsoPz+fejqIOsBjnXiIWtZ+8IiaA82lXt9++23Mnj0bhBBcuHCB2jkSHhQUFOD555+Hv78/EhMTMXbsWBw/fhxvvPEGnJ2dlR5fbYTz2LFjERkZKUSYjx49yrWYPS2ys7OxY8cOhQ6IAN38ZoC9QI+JiUFiYiKefvppwQ8aHdIAfukgo0ePhpOTE6ysrKClpYXz58+jX79+QskyZUqIdeRDU1OTwo8NWlRXV6Nv377IyMhQuK6s6OTpBysfugqNXYyAgAC4ublhyJAh0NDQQEhIiJCnTQOZTKZQ0cTAwIDa2ADg6uoKiUTS7lrQ+nzLbQBt15yWDQDw9fXF0KFDkZGRAQsLC1y8eJF6x0tvb2+4ubmhpKQE7733HjIyMhAVFUXVRndCK8rJY514iHPWfvBKBbGxsUFJSQm2b98OQggCAwOp7rSyZtWqVTh16hRWrVqFzz//nIpYbomEqEnx44cPH+If//gHrly5AkIITExM8N577ykUCFcFbGxs4OTkhDFjxihEzGlvkbIW6G+++SaOHz/OpC5qUVGRkA4SHBwsXJeng9CKandU01eOMsKZlw+sURc/uoJUKlU64lxVVYXPPvsM165dg5aWFqZOnQovLy9qbXNXrlyJ+fPnY9u2bdizZw8SEhJw/fp15tFbVcTS0hJnz55FTEwMLC0tMXLkSCxatIhKh7SW3L9/Hzdu3EBTUxMmTpyIwYMHUx2/I9asWUMlCtlZlJMmrNfp0qVL2Lp1K0pKSjB58mRB1NJsSQ+w9cPBwQFJSUmwt7cXqj3Z2tpSv2cDAgLw6NEj2NraQiaT4cSJExgyZAiCgoKo2mGFg4MDevfujdzcXEyYMKHN68rqHLWJOG/cuFEtajZra2vD1dWVuZ2AgIB2BTotxo0bh/r6eibCmVc6iIWFRZtdi7Nnz8LS0lLpsVv60BE0hNry5cuxc+dOhUNvLVE2esfDD9Y+8CQoKAgjRoxAdHQ0CCH4+uuvERISQm2bNTw8HJGRkSgpKYGFhQVMTEyY1CXu6JAgzWdwfn4+9u/fj9raWhBCIJPJUFRUhISEBCrjy4Wfvr4+bt26RbVet5zWP75v3boFbW1tvPDCC1QEm7oceGO9TgAwc+ZMTJgwQRC14eHh1MU5az94pf5cv34dZ8+eFf6ePXs2rK2tqdthxd69e5GTk4OgoCAmHS7VRjj/8ssvqKmpUcnOTy2ZPn069u3bh+nTpyvkcdJumsBaoNvZ2WHOnDl48cUXFQ4V0Ew5YZkOAgDvvfceFi5cCE9PTzx48AAbNmxAQUEBFeHcFWhsBsnr0n788cdUCtg/Ccr60RN8oEVBQQG2bdsm/B0UFES1dvCgQYOwdetWauN1RMsdsMbGRnz77bcYPXo0VRt+fn4wMzNDeno6pFIpzp8/jzFjxlAb38TEBD4+PggICICHhweysrIUDkrToLCwEAUFBbCysgIAnDt3Dv369UN6ejquXbsGf39/pcZXlwNvrNcJ4CPOWfvBK/VnxIgRQp4wAPzxxx/Q09OjbocV/fr1g7GxMQ4dOgQdHZ12/x95QOZJUBvhLJFIMGvWLOjr6ysITtq5waw5ceIEgOYqIXJoikE5rAX6Rx99hKCgIKZd0lJSUnDp0iVmP5aSkpLw4YcfwtnZGffu3cPChQuptOvsKjR2Aj755BNYWloiLCxM6ej1k6KsHz3BB4DODxl9fX389NNPeO211wA0f3nTaFDSUTReDu3nR+sa+fPnz8c777xD1UZDQwN8fHzQ2NgIQ0NDLFiwgGqe5QcffIDCwkIMHz4cW7duRVpaGvXoVF5eHhISEoSSWM7OznBzc8Phw4eFcoTKoA4H3gD26wTwEees/eARNQeafwzb2dnByMgIWlpaSE9Px7PPPgt3d3cAqqOrOhLNAHDnzp0nHlflhbO8yxSNm74ncPTo0U7fbFqwFuj9+/dnfmiLZToI0CyU/u///g91dXVCDVlVOxFvZGSEl19+GYQQhUNocn9ycnK6cXZdg6cPrCq1yIXto0eP8K9//QujR4+GpqYmfvvtNyGqowzyw76EEJw6dQr//e9/4eXlhczMTOo14Nvjt99+U2gmQoM+ffqgvr4eo0aNQlZWFoyMjKiMK88NlfPTTz8BaK6i88MPP1B9blVWVqKxsVEQUg0NDaitrQVA54eYOhx4A9ivE8BHnLP2g0fUHGjebW0Jze6pPQVlAjoqL5xDQ0Nx5swZbN68GUePHu3u6SiNVCrF+PHjYWtrC3Nzc4VoME1YC3RDQ0N4e3tj5syZCi2XaX4psU4HsbGxgbOzMyIiIlBVVYWNGzfi1KlTVDoP8SI6OhrR0dFYsWIFtzantOHhA+tKLV2pYqNMnWh5Gb24uDiUlpYiOzsbQ4cORXh4OHJzc7Fu3bonGrcjxo0bp1D5QkdHB35+flRt2NrawsvLC3FxcXBycsJ3331HZbu4ZQnO9qD5jHJxcYGjoyPMzMwgk8lw6dIluLq6Ij4+nkpNch6ilkeUk/U6AXzEOWs/eETNAT712lUZla+qsXTpUvz6668oLy9XKF7fssuUKiGTyXDlyhUkJyfjypUrmDJlCmxtbTF16lSqdt544w2mAp3H4SErKyssW7asTToIrQ99dnY2DA0NFa6dOXMGb731FpXxH0fLk9PK0lkklTW0/GDpQ0+oDkLjMKi9vT2OHTsGqVSK48ePo7GxEba2tjh9+jSVOcbHx2Px4sW4desWl3Kf1dXV6NevH0pLS3Hz5k1Mnz6dWgUSoPmHUW5uLjQ1NTF27FgmB6Vzc3Nx+fJlaGhoYOrUqRgzZgzy8/MxbNgwha5mTwrrahSto5wSiYRJlJP1Ou3duxcHDx5sI2obGhpw8+ZNaml4LP14++23FaLm9fX1ClFz2tU11BllnrcqH3Hm1WWKFxoaGjA1NYWpqSmuXr2KmJgYrFq1Cunp6VTtpKamCgI9Li6OukBvKZCrq6tRUlJC9WAPwD4dxMDAANu3b0deXh5CQ0MRHx/PtQg8DVtdiaSyRlk/ePjAs3FPR9CIYci36eUCsL6+nurW/d69ezFr1iysWbMGX3zxRZs50zzTUFFRgW+++Qbl5eWCndzcXGp5yD/88AP8/f2hq6sLmUyGyspKfPzxx3jllVeojA80r39hYaFw/9y4cQOnT5/G+++/T2V8dTjwBrBfJwBwd3fHlClTBFG7bds2QdQuXLiQig3WfvCImv9dUGa9VF44a2hoYNiwYczLevEiOzsbp06dwvnz56Gvr48lS5bgzTffpG6HtUA/cuQI0tPT4e/vD3t7e/Tt2xd2dnbw8vKiMj7APh0kPDwcOjo6yM7OhqamJgoLCxEUFITY2Fgq4wPNBxBjYmIEodYyb3fevHlKj8+rBTpLP3i2cWddqaUzaEQ7LS0t4evri4qKCsTHx+PkyZNUy0jZ29tj6dKlKC0thYuLi8JrtNdp5cqV0NHRYVYyMyoqCl9++aUQOb958ybCwsKQlJREzYafnx8qKipQWFgIIyMjXL16VTgYSgN1OPAGsF8ngI84Z+0Hj5QWdUO+c1xVVYXMzEwhOKiUTiB/A+zs7Lp7Cl1GKpWS+Ph4cvfuXaZ2srKyyKZNm4i5uTnx9PQkJ0+eJHV1ddTGl0ql5M6dO2TPnj1kw4YNpKGhgUilUmrjE0LIunXr2v1HC3t7e0LIn/ePTCYjVlZW1MYnhBBzc3OSm5tLdcyOqKqqIsXFxQr/aMHLD5Y+EEKIhYUFqa6upjpmV5Hfb8py6dIlsmnTJhIVFUUuXLhAZczWhIaGdvhaZmYmFRvW1tZUxumI9p5HtJ9RFhYWRCaTkYiICJKdnU0KCwuJg4MDtfHnz59PHj16JPz96NEjsmDBAkIIITY2NlRszJkzh9TU1Ah/V1dXC+8NrfeI9ToRQsjKlSuJq6srmTlzJvHz8yPTpk0j3t7eVG3w8OPWrVvkq6++Inv27CG//PILIYSQvLw8hftApJnY2FiyZMkSQgghd+7cIa6urmTbtm1Kj6vyEeeuwCJawYrOoh00I+fBwcGws7PDoUOHmHWy0tXVxb///W+4u7tDS0sLjx49ojo+63QQiUSC+vp64f4pLy+nfi/p6upyiRSwjqTy8INHNJh1pRYezJgxAzNmzGBqY+PGjR2+FhwcTOU59eKLLyIzM7Pdzl80MDIyQlBQEBYsWABNTU188803GD58ONLS0gCASjWSQYMGQSKRQF9fH7m5ubC3t0dDQ4PS48pRhwNvAPt1AprTfM6dO4fIyEg4OjrC19cXvr6+VG2w9oNH1FyduHjxolBBTFdXF1999RWkUim8vb2VGvdvIZzVBVoPQoC9QDcwMICXlxeKiopgamoKX19fvPzyy0qN2RrW6SDu7u5YsmQJ7t69i8jISKSkpGDlypVUxpbz0ksvwcfHB9OmTVM4oEk7d5t1zWsefrD2AeDTuKcjaH6+uxNl/ZCX7nv48CFOnz4NPT09aGpqUj/wLS9j2LrD3rZt2yCRSKi852PGjEFERATeeecdrFmzBmVlZVTfZx6ilkduMOt1AviIc9Z+8EhpUScaGxvx8OFD4TuD1vstCmcVglfknMYH/cMPP8SuXbtQW1sLf39/GBkZwcnJicLs/uTgwYPYsWMHkpOTYW5uLkSPaAlne3t7TJgwAVevXkVTUxO2b98u5EMqUzqsJdXV1ejbty8yMjLa2KYJ60gqDz94RINZNe6RRzE7wtjYWKk60T0JZZ9TrEv3/RU7yhIWFoaMjAwYGBjA29sbly9fptpESR0OvAHs1wngI85Z+8Ejaq5OODs7w8HBAbNnzwYAXLp0qc3ZjCfhbyGc1SWSwwsaAj0iIgI1NTVYvHgxZDIZTpw4gYKCAgQFBVGY4Z+wTgcxMDCAgYFBm+u0tqNplufrDNaRVB5+8IgGs6rU0rLNdmvk0U1l6kSrE/Ka1J1B4/NXXFyM4OBgFBcXIyEhAatXr0ZUVBRGjBih1Lgtefvtt4V5mpubw9zcnNrYgHoceAPYrxPAR5yz9oNH1FydWLx4MSZPnoy0tDRoaWkhLi5OoYnWk6I2wlleu7QlCQkJcHFx4VpCTKSZjIwMnDp1Svh79uzZsLOzo2qDRzpIRyj7Y2z58uXYuXNnh62SaVdxYBVJ5ekHjzburCq18Ihu/p2gEQwJDQ3F0qVLERcXh8GDB8Pa2hoBAQFISEigMMNmBg8ejB9//BGvvPIKlVrEreEhanlEOVmvE8BHnLP2g0fUXJ148OABqqqq4OHhgR07dmD79u1Ys2YNRo4cqdS4Ki+c4+PjUV1djUOHDqG4uFi43tjYiOTkZLi4uFAp69UTUKUPiJ6eHn7//XchilZWVoZnn32Wqg0e6SAdoWxU3sbGBgDw8ccfY9CgQTSm1CmsIqk8/eDRxr2urg79+vUT2jDLoWU3IyMDO3fuRG1tLQghkMlkuH37Ni5cuEBl/J4Aj+cUjV2x8vJyTJ8+HXFxcZBIJFiwYAFV0Qw0l7hzdXVVuEazTbw6HHgD2K8TwEecs/aDR9RcnVi9ejVMTU0hkUhw7tw5uLu7IygoSOlAhsoL51GjRiEzM7PN9d69e2PTpk3dMCPlqa+vR69evVBQUIC8vDzMnDkTGhoa3CLnynzxubm5QSKRoLy8HLa2tjA2NoampibS09OpN0DhlQ7Cgk8++QSWlpYICwvjUmOcVSSVpx882rizrtSyfv16LF26FMeOHYObmxvOnTvXpjulKtBZF0dVydXW1tZGaWmpIMJ//PFH6oLqypUrVMdrjToceAPYrxPAR5yz9oNH1FydqKiowNKlSxEREQF7e3vY29tTSe1TeeFsZmYGMzMzvPXWWxg5ciTy8vLQ1NSEMWPGQEtL9dz79NNP8b///Q9r1qyBi4sLDAwM8J///AfBwcHUI+csBHpHZV6WLFnyxGN2BI90EFYYGRnh5ZdfBiFEIeeKtGgcQhNWkVSefrCOBgPsK7X06tULjo6OKC4uxoABA7B582Yhaq8KdKWLo6rkagcGBmL58uUoLCyEnZ0dKioq8Mknn1C1cf/+fZw8eRI1NTXCDkNRURE2b95MZXx1OPAGsF8ngI84Z+0Hj6i5OiGTyZCZmYmUlBTs378fOTk5aGpqUnpc1VOWHVBbW4u5c+fi6aefhkwmwx9//IHPPvsMEydO7O6p/SUuXLiAAwcOYO/evUJXJgcHB+p2WAn0119/neIsO4dHOkhHKPvlFB0djejoaKxYsYJLq3hWkVSefvBo4866Ukvv3r3x4MED6Ovr4/r165g6dSqVBzkveHZx7Awa4vDevXs4evQo8vPz0dTUhNGjR1MXI76+vhg6dCgyMjJgYWGBixcvUj2HoQ4H3gD26wTwEees/eARNVcn1q5di82bN2PJkiV47rnnsGDBAqxbt075gZVuodJDcHJyIhkZGcLfP//8M3F0dOzGGT0Z8i51zs7O5MqVK6SpqYlYWlpStyOVSkldXR3ZuXMniYmJEa6pAq6ursTNzY1YW1uTSZMmkWXLlhEvLy9ibGxMFi5cSM1OeHh4m2v+/v6EEEIKCwuZ26BJYmIiCQgIIPfu3SMzZswglpaWZPv27dTG5+EHax8I+fMz4OHhQS5evEgIIWTevHnUxj99+jRZvHgxqaqqIpaWlmTevHnEz8+P2vg8Yd3FkfXnj+b72hFz584lhBCyadMmkpGRQe7fv0+tox8h9LpNdoanpydJS0tj2pmO9ToRQoibmxvx9/cnc+bMIZs3bybz5s0jAQEBVG3w8EOk+1GriHPL6PKkSZOolybjwdSpU2FtbQ1tbW0YGxvD1dUVs2bNom5HJpNBW1sbqamp8PX1hUwmQ11dHXU7LGCdDsJjO7orNmjCKpLK0w/W0WCAfaUWU1NTWFpaQiKR4Ouvv0Z+fj769+9PbXxesOziyCsd5LnnnkNgYCAmTpwIbW1t4TrN1J+BAwcCAPT19XHr1i1MnDiRaiqFOhx4A9ivE9C8I7l3717ExMRgzpw58PT0xKJFi6jaYO0Hj6i5OiBv4jZu3Lg2B4klEgmys7OVGl9thPPAgQORkpICCwsLAMD58+eF2paqREBAANzc3KCnpwcNDQ2EhIRQqTvYGl4CnQWs00F4bEd3x5Y3i5rXvP1gXbebVaWWkpISEELw7rvv4osvvhC+TPv3749ly5bh7NmzStvgCcsujrzuqWeeeQYAcP36dYXrNIWziYkJfHx8EBAQAA8PD2RlZeGpp56iNr46HHgD2K8TwEecs/aDR0qLOiBPLfr+++/xzTffoLKykur4EkL7zukm8vPzsXbtWhQWFgJojibExsZCX1+/m2f218jPz8f+/fsVylUVFRVRL5MEALdv3xba2ebk5DAR6KpOdXV1mw8d7TrCPGz4+/ujsrISeXl5SE5Oxtq1a6GtrU218gxrP3j4EBISgpqaGlhbWwuVWoYMGaJ0pZbAwEBcvXoVZWVl0NXVFa5raWnBzMwM69evV3bqXPH29kZ4eLggPlnB47PBkmPHjqGpqQlaWlooLy9HbW0thg8fDkNDQ2otsVnDI8rJY50++ugj5OXlCaJ2ypQpyM3NxeHDh6mMD7D3w9LSEmfPnkVMTAwsLS0xcuRILFq0CCdPnqQwe/XD0dERY8eObfPMaPmD/ElQeeEsL38GNB8YkQvOvn37Ch25VAkHBweYmZkhNTUVUqkU58+fxwsvvIANGzZQtcNToKsqLLejedoAmiuo7Nq1C9euXcOgQYMwefJkODk5KZR1UwYefrD2AWiuS92yUotMJoOdnZ3CNWXYtWuXWjRkSklJQWBgINMujqzuqfHjxyMnJwevvvoqdHR0hOvk/1eCoXnPent7IycnRzhQd/HiRejq6qK2thY2NjZYvHixUuPzELXu7u7tRjlp/mBlvU4AH3HO2g8nJyccPnwYiYmJIITAycmpzTNL5E8cHR3x9ddfUx9X5VM1Osp3VVUaGhrg4+ODxsZGGBoaYsGCBXB0dKRux8/PD2ZmZkhPTxcEOu0KBaoOy+1onjYA9jWvefjBo24360otrq6uiI2NxeXLl9HU1AQTExO8//771LelWcOjiyOre2r48OFobGyElpYW9u3bJwhm+X9pcvfuXSQlJWHAgAEAmr+vvLy8cPjwYTg4OCgtpHhs3fPIDWa9TkBzxar2RO2+ffuoiXPWfvBIaVEnLCwscOTIEZiYmCj8wFf2uaXywpln+TMe9OnTB/X19Rg1ahSysrJgZGTExA4vga7KjBs3DvX19UzFIA8bAPua1zz8YOkDr8Y9ERER6NOnD6KiogAAiYmJCAsLQ2xsLDUbPODRxZHVPWVsbCyIy5al1QiD2uPl5eUK8+/duzcqKiqgpaVFRaSrw4E3gP06AXzEOWs/Ro0aheeeew5paWlwdnZGbW0tXnvtNfzyyy8qk/rDk9raWkRFRSmklNHYVVJ54axu2NrawsvLC3FxcXBycsJ3332HIUOGULfDS6CrMnZ2dpgzZw7T7WgeNgD2kVQefrD0gVfjnqysLIV8xNDQUOqNjXjAo4sjq3uKZ+3xOXPmYNGiRXjrrbcgk8lw7tw5mJub4/jx41TuXXU48AawXyeAjzhn7QePqLk6kZqaisuXLytUzaGByuc4qxv3799HcnIyKisrUVJSgps3b2L69Onw9/enamf//v24cOGCINCff/55EEKwe/duqnZUGSsrKyxbtqzNtg7NXQ7WNlpGUouKitpEUmnltLP0g5cPPLCxsUFCQoIQ9aqsrISLi4vK5SgGBga2e71lkxpl4fH540Fqaiq+//57aGpqwtTUFG+88QYyMjKgr68vCN8nRR0OvMlhuU4AsGXLFvz8888Konby5MkYNWoUkpOT8eWXX1Lwgq0fzs7O2LVrl/D8qK6uhpeXF+Lj4+Hg4CAeEmzF8uXLER4eDj09ParjisK5h8HqFGhreAl0VcbZ2RmHDh1SaRvXrl3r9HVaIoSlH7x84EFSUhJ27NiB2bNngxCC1NRUvPvuu5g/f353T+2JYdXFkcfnT9VRhwNvPGEtzlkzd+5cnD59WtiBaWhogIODA06dOgU7OzucOHGim2fYs/Dw8MCNGzcwZswYhZ0xZXetROHcw2B1CrQ9OzwEuioTHh6Ou3fvMt2O5mGDB+riB2u8vb3h4+ODa9eugRACY2NjREVFYc+ePd09tb/EkSNHkJ6eDn9/f9jb26Nv376ws7Oj2oxGvKceDw9RK0Y5ew68oubqQkdBF2WDLWKOcw+D1SnQ9pAfUBJpn7q6OvTr1w8//fSTwnWaX9w8bPBAXfxgxapVq5CTk4OysjJkZ2cLeahffvklhg4d2s2z++vw6OIo3lOPRx0OvIl0ndWrVytEzT09PYWo+ZYtW7p7ej0OVruRonDuYbA6BdoangJdVWmZr8lqO5qHDR6oix+s2LRpEx48eIDIyEgEBwcL17W0tDBo0KBunNmTw7qLo3hPPR51OPAm8teYNWtWmy6/kyZN6p7J/E0RUzV6GNbW1jh69Cj1U6Ct2bJlC/bv389coKsyPLajedjggbr4IdI1eHRxFO+px6MOB95ERFQNUTj3MFidAm0NL4Guyjg4OGDHjh04e/Ys8vLyhO3opKQklbLBA3XxQ6Rr8OjiKN5TXUMUtSIifBFTNXoYDQ0NsLKyon4KtDXDhw9HRUWFKJwfA+vtaF42eKAufog8Hh5dHAHxnuoK4ta9iAhfROHcw+C1DclLoKsyBgYG8PLyQlFREUxNTeHr60u9nS0PGzxQFz9EugbrTpSAeE+JiIj0TMRUjb8prMq0qBM8tqN52OCBuvgh0jU8PT0RFhYmdHEsLS3F+vXr8c9//pOaDfGeEhER6YmIwllEpANCQkJQU1MDa2trYTt6yJAhVLejedjggbr4IdI5PLs4iveUiIhIT0RM1RAR6QAe29E8bPBAXfwQ6Rxvb+92ry9ZsoS6LfGeEhER6YmIwllEpAP09PTw+++/C9vRZWVl1OuW8rDBA3XxQ6RzeKZyifeUiIhIT0QUziIirWi5HW1ra9tmO1pVbPBAXfwQ6TmI95SIiEhPRsxxFhFpRUcHJ+XQiLrxsMEDdfFDpOcg3lMiIiI9GVE4i4iIiIiIiIiIiHQBje6egIiIiIiIiIiIiIgqIApnERERERERERERkS4gCmcRERERERERERGRLiAKZxEREREREREREZEuIApnERERERERERERkS7w/wAYofkDmGHGYQAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAFCCAYAAAAZoN0UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABPZklEQVR4nO2dedxt5fj/3+dUSFQoGkhIH76GUuIbTYbQT4ZQISpNogzRN0OlElFJVFQaNGfO0IRKmpQpSvIRkWZTaVCc6vz+uNY+Zz/72Wvvtdbez36efZ7r/Xqd13n22vda9732Xvu67/u6r/tzzZk/fz5JkiTJ7GLudDcgSZIkGT1p/JMkSWYhafyTJElmIWn8kyRJZiFp/JMkSWYhafyTJElmIYuPsjJJbwX2Ah4GHGr7C6OsP0mSJAnmjCrOX9LKwCXA2sB/gMuAt9j+7UgakCRJkixglG6flwMX2P6n7XuBbwBvGmH9SZIkScEojf9KwK1tr28FnjjC+pMkSZKCURr/OV2OPTTC+pMkSZKCUS743gys3/Z6ReCWKiduPHfz2gsT37/l17XKv3KlNepWkSRJsoC6NmcUzF3h990G3cBojf95wL6SlgfuBd4I7DTC+pNkkSMHOUlTRmb8bd8saU/gR0So57G2fzqq+pNkUSSNedKUkcb52z4NOG2UdSZJkiSTyR2+SZIks5CRjvyTJBku6fNPmjIWxn8mrqInSZIMQpOOeJi2cGDjL2lpQqphU9t/lnQ8EdJ5b1FkP9tnlB0ftP4kmc3kSH58me5B7UDGX9ILgWOA1dsOrwNsYPvWjuJlx5MkSZIRM+jIf0dgF+BkAElLAasAx0haBTgD2A9Ysttx25V2+E739ChJZirp80+aMpDxt70DgKTWoScAFwDvBO4BzgS2B84vOX5MlXrSkCdJsqgx3YPaoS742r4e2Kz1WtLhwNa2j+l2nIrGf7o/pCRJkmEz3TZqqHH+kp4j6Y1th+YA88qOD7PuJEmSpDrDDvWcA3xO0gWEe2cn4MQexysx3T1kkiTJosaw3T5XSfoUcCmwBPBN26cDlB2vQrp9kiRZ1JhuuzayNI6DkJLOSZLMdEZhc+rW0UvSObV9kiRJZiFjIe+QJEmyqNHEhVN3tvDDHjupBt3h+3EiCft84Djbny2OLwGcC+xv+8Li2JpEaOcywEXAzrYfGKT+JEmScWW6ff6Njb+kDYGXAs8lFnF/K+ms4u3jgbU6TjkF2MH25ZKOI3YHH9m0/iRJcm0raU5jn7/tHwMvKUbvjyc6knuJnbsHA1e0ykp6MrCk7cuLQycAmzetO0mSJBmMQeUd5knaD9gd+Dpws+09ACS9v63oSkC7oNutwBMHqbsfOcJJZgP5nI8v0x2OPvCCr+19JB0IfI9w5XypS7Fu4UaVRN2aktPhZDaQz/n4Ms4+/2cAj7D9K9v/lvQtwv/fjZuBFdperwjc0rTuJEmCNObjyziP/J8K7CdpPSLa53XEQu8kbN8g6X5JL7Z9KSHqds4AdSdJQo78k+Y0Nv62zy6SuVwJPEhINnylxylbEXr+jy7OOaxp3UmSBGnMk6akvENB/oiSJBmE6XbjdCPlHZIkSZIJjIW8w0zsUZMkScaZsTD+SZJ0J92bSVOGYvwlHQwsb3tbRULfo4HHALcBb7Z9h6StgQOB24vTzrK9Z5XrT3c8bJLMVNKYJ00Z2Ocv6WXAtsXfc4DvAp+2vQYR1fPhoug6wAdsr1n8q2T4kyRJkuEzqKrnY4FPAgcAaxBibvfaPrcocgCwbPH3OsBqkj4MXA28x/Ydg9SfJEmSNGPQkf/RwJ5Ay4ivBtwm6URJVxGqnfcU790K7AusCdwIHDFg3UmSJElDBpF32AG40fb5krZtu95GwAa2fy5pf+CzwLa2N2s79yDg+satTpIEyAXfpDmDuH22BFaU9CvgscCjCNfPdbZ/XpQ5HfiGpGWA7WwfWhyfA8wboO4kSUhjnjRnEHmHjVt/FyP/jYB3AX+UtIbtXwOvAX5BuH72kHSZ7SuAXYEzqtaVkTtJkiTDZag7fG3fB2xGaPhcQ2T6+qDtB4EtgCMlXQusDewxzLqTJEmS6qS2zwjJKXoybNLnP3OYiTanl7bPIrvDNx/yJEmSchZZ458jomQ2kM9t0pRBN3m9hojdXwr4vu33SdoJeC+R4OXnwDtt/1fSmsAxwDLARcDORfL3vszE6VSSzARykJM0ZZA4/6cCRwEvJPR6LpD0PiKSZ23gbuAEYBfgUOAUYAfbl0s6jsj3e2SVulLbJ0mSZLgMMvLfDPiq7ZsAJG0JLAFcY/uu4tjVwCqSngwsafvy4twTgP2oaPzTkCdJd3IknzRlEOO/GvBfSd8nkrN/D9jb9g0AkpYnZgHbAisR8g4tbgWeOEDdSZIkyQAMYvwXBzYgNnfdA3wH2AY4QdLKRIL242xfKOlFXc5/qGpF6fZJku6kz398mW67Nojxvw04z/bfACR9G3iBpMuBc4HDbR9SlL2ZmB20WBG4ZYC6kyQhjXnSnEGM/5nAiZKWJRZ3NwHOA34AfNT2Ka2Ctm+QdL+kF9u+FNiamBkkSZLMSqbbOzGIts8VhTrnJcRC7w+L6z0B2F3S7kXR79r+GLAVIfvwaCLJy2EDtTxJknT7jDHT7fZZZOUdkmQ2kMZ/5jDdI/luzEp5h/xRJEkyk5nukf8ia/zTmCdJkpSzyBr/HPknSZKU09jnX6Rx3LXt0FOAfwB3tR1bGbjC9qaSPgZsz8J8v8fY/kKVutLnnyTJTGfW+PxtHwscCyDpWcC3gXVt/704tgJwKbBbcco6wJtt/6RuXaP4UHPknyTJbGJYbp8jidj+v7cdOxg4yvZ1xevnAx8qBOEuAna3fX+Vi0/3wkiSzFTSvZk0ZWDjL+nlhGjb19uOPZ2QfdiheP0oIrZ/d+DPhLDb3sCeg9ZfRj7kSTKZmTgoGsVvdSbe93QzcJy/pK8D37J9etuxg4F/2v5UyTnPA463/bwqdTx02+pT7vPPziJJkkGYiR3MlMX5S3oYsCGh3NnO64FXtJVbBXi57eOLQ3OAeYPUPY7MxIejCXU7ynRNJMnMY1C3z3OB39u+t3VA0nKEG+hPbeXuAw6S9CPC7bMLcEbVShYVn/9sNWqz9b6TZNjU/S39sId28qDG/6nATf2O2f6bpHcSmv8PI/SADiFJkiSpTGr7VCBdDUmSjJKZ6G2Yldo+STIbyEFO0pS5092AJEmSZPQMGu3zYeAdwH+IZO6flLQZkZx9MeBnwE62/1tE/JwCPB4wsJXtewZq/RDJXcRJkswmGhv/YnPXWwnZhnuBMyRtBRwErGX7dklfIcJAvwR8Efii7a9I2pvY5PWhAds/NNIwJ0kymxhk5P884Pu27wKQdC7wSmBV2/MkLUWM8u+QtASR7P31xbknAD9mBhn/JEmSUTLdIeyDGP9fAodK+hTwb+C1wNzC8G9CuHhuJnL6LgfcZfuB4txbgScOUHeSJOSMNWnOIKqe50s6AbgQ+CeRvP1/i/fOAR4n6QBC9G33Lpfosf0gSZJk0Wa6Q0MH8fk/mtD0+Wzx+gPAnyS9wvYPimKnAl8F/gYsLWkx2w8CKwK3DNb0JEmS8WWc3T5PAU6S9HxgKULBc0di4ff5tv8CbAFcUriCLga2BE4DtgbOGazpSZIk48vYjvxtXyXpm8BVRFjnobYvlbQTcKak+cBvgZ2LU94NnChpL+AvwFsGa3qSJLnJK2nKQHH+tvcH9u849m0iq1dn2RsIjf8kSZJkmkl5hyQZY3IkP76Ms88/SZJpJt0+48vY+vxHyXR/SEkyU0ljnjSlsvGXtDRwGbCp7T8X8g6fBZYkdH32KsqtBRxN6PbfCLzN9p2SNiASuNxYXPJK2++oUvd0T4+SJEmGzXTbtUrGX9ILgWOA1YvXSwLHEykcbwTOkrRJsbnr88DHbJ8j6RBig9dehAbQZ8ry+iZJUp90+4wv0z1ArTry35FIvXhy8foFwHWtVI2STgE2J2L3FwOWLso9ktj9C2H8Hy9pC6LD2MV2axaQJEkD0pgnTamk5297B9sXtx1aidDnadGu1fMB4FhJtwIbA0cVx+8EPm/7ecDZwFcGaHeSJEkyAE2TuXRLDfZQ4Q46DniZ7RUJGeeTAGzvbPs7xd9HAc+StEzD+pMkSZIBaGr8bwZWaHvd0up5NnCf7Z8Wx48GNpI0V9KekhbruM68hvUnSZIkA9A01PMKQJJWA/5EJHU5HvgD8CRJsm3gdcDPbD9UZPi6DviapK2BK2z/e/BbSJLZSy74Jk1pNPK3fT+RoeubhH7P74Bv2L6jOP41SVcB2xFpHgG2Ad4v6Zri2A4DtTxJkiRpTK2Rv+1V2/4+H5g0jCjCPScpdtq+BnhR/SYmSZIkwyZ3+CZJksxCxsL4p58ySZJkuAwi77AT8F5gPvBz4J22/9tW/tXAEbafUrxelsjs9VQis9cWtm8b1o0kyWwkB0ZJU5rKO6wO/B+wNnA3cAKxA/jQ4v0nAJ9h4n6ATwAX2361pLcTMhBbDuUuupBREEmSJOU0lXf4D/Au23cBSLoaWKWt/LHAfsCn2469Gtig+Pt04AuSlrA9a2L9F5W1i7odZXbEU0d+tuPLWAi72d4BQFLr9Q3ADcWx5YFdiRBPJL0X+CVwecdlFkhC2H5A0l3A8lRI5D5bjeaiwmy97ySZyQy04CtpZSKs8zjbF0p6NvBG4GUs1Ppp0VUSoko9091DJslMJTvWpCmNjb+kZwDnAofbPqQ4vDkh9fBzQs9/JUkX216fhZIQN0lanFD+/McgjU+S2U66fcaX6R6gNjL+kh4N/AD4qO1TWsdt7wPsU5RZFbiwMPwQSp5bAwcQC70XT6W/Px/yZDaQz/n4Mt0ejaYj/x2AJwC7S9q9OPZd2x/rcc7ewAmFvMOdwFYN665EjoiS2UA+5+PLdI/858yfP39aG1CFjeduPvMbmSTJrGa6jXk35q7w+25rrcCY7PBNkqQ7M9Hg1GUUs5FF4XMaNmn8k2QWMVvdPtnBTGaRNf4z0Rc6bg9HGbnJK0nGn0G0fd5FbO6aA5wF7GF7vqRNgAOL064mNH/ukbQBcAaRvB3gStvvYBYxW43abL3vJJnJNNX2eQqRqH1N4H7gImBjST8FTgQ2sv1bSXsQoZ3vBdYBPmP7U8O+iW6kwUmSZCYzLqGeE7R9bP9J0v/YnifpccAyRPjm04EbbP+2OO9MYiNYy/g/XtIWxOh/F9s3MkWkqyFJkqScRto+xbF5knYk1Dt/CvwKeCSRw3cN278GtmBhovc7gdNtf0fSzsBXgBdXqX9R8ZUnSZLMFGrF+Uv6M+HS+XPbscWBLwM32v6opFcA+xP5gY8BPmv7UV2udSfwZNv/6ldvkzj/HPkns4F8zmcOM3GQOvQ4f0lPAlaxfWmh0PkV4F2SFgNusv3CotxawB8lzQU+Anza9oNtl5o1cs5JMhWkMU+aMrfhecsAp0paVtIc4E3AJURWrx9IWrk4/kHgq7YfAjYjFD+RtDVwhe1/D3wHSZIkSW0ajfxt/0bSp4jQzweAi4FDbD8k6Z3EIu/DgfOAg4vTtgGOkbQP8FdC5C1JkgFIt0/SlLHQ9nnottWnvJH5o0jGkTT+M4dRfBd160htnyRZREljPr5M9wLxWBj/6d4MkSQzlRz5J00ZRN7heGB94N6iyH62z+hx/OXAZ4EliUXgvYZ2F0mSJGPGdA9qG8k7FKwDbGD71o7ik45LWhI4HtiQ2N17lqRNbJ8zSOPHjUVlNpLCbuPLTHwGZ6uo4nS3qZG8g6SlgFWI6J1VCMG2/YhRfbfjLwCus/2n4vxTiHy/U2b8Z6IBmYltGgWz9b6TZCbTVN7hCcAFwDuBewgNn+2B80uO3wO0zxBuBZ44cOt7kKPNJJnMbH3OZ+vsohdN4/yvJzZtASDpcGBr28d0Ow58vctlHqpa37h9qEkyKmarMU8Gp6m8w3OA1W1/szg0B5hXdhy4mYUCbwArArdUrW+6F0aSZKaSM9ykKU1DPecAn5N0AeHS2YnQ8S87fgUgSasBfwLeSiwAzyoWlQ4pF3yTZPxp6va5qpB3uBRYAvim7dMBehzfFvgm8AjgbOAbA7d+zJitRm223vcoyM82acpYyDukpHOSJDOdmTizT3mHJFlEyUFO0pSxMP4zsUdNkplAGvOkKWNh/DPaJ0mSZLg00vYB/gc4oO3tlYnkLJtKWpOQglgGuAjYucj2tTVwIHB7cc5Ztvcc/BaSJEmSujTS9rF9NhGxg6QViOie3YripwA72L5c0nGENMSRhObPB1rRP0mSDE76/MeX6fZoNNL26eBg4Cjb10l6MrCk7cuL904gtH1axn81SR8GrgbeY/uOQRqfJEkyrky3a7qptg/F66cDGwE7FIdWolzD51bg08BPCZfREcBWzZqdJAnkSD5pzqALvjsBX7T9n+J1t5jShwBst2v+HARcP2DdSZIkSUPmDnj+64GvtL3uquEjaRlJu7Udb2n+JEmSJNNA45G/pOUI//6fWsds3yDpfkkvtn0poeh5DqHzs4eky2xfAexKaP0nSTIAueCbNGUQt89TgZu6HN+KSObyaOBK4DDbD0raAjiyyOr1e6JjqMR0L4wkyUwljXnSlLHQ9nnottWnvJH5I0rGkRz5zxxm4iB17LV9pjseNklmKmnMk6aMhfEfBaPoLPKHmiTJTKGRvIPtP0t6BbHBazHgl8Su3v9KWhE4loj5/zewVVF+WeBUYq3gb8AWtm8b6t0MQBrmJElmE43kHQqOA15h+1pJ3yAWcI8ldgF/w/ZRknYm9Hy2BD4BXGz71ZLeDny+OJ4kSUPS5580pWqcf0veoT3v7mLA0pIWI7Jz3VeEf64BHF2U+TKwV/H3q4mRP8DpwCaSlhig7UmSJElDBpF3eDdwIXAXkZf3G8CawF+AQyW9pPh716L8AumHQuXzLmB5aiRyr0OOcJLZQD7nSVMaLfgWSp6fBp5NGP7PFv9OA54H7GP7/ZJ2IBK4b0QP6Yd+NFmMzR9FkiRJOU2jfdYHfmP7jwCSjgG+RnQAd9s+syh3GnBY8XdL+uEmSYsDSwP/qFLZKEI9s7NIkmQ20dT4/wY4RNITbN8OvA74me0/SrpZ0ia2zwFeA/yiOOdsYlH4AGKh92LblfR9MmY/SbqTg5ykKY2MfxHhszfwI0kPAH8gFD4BNgOOlnQwsR6wTXF8b+AESdcAd1JDzjk3eSVJsqgx3XZtLOQdNp67ee1G5ogoSZJRMgqbU7eOsZd3SJKkOznIGV+m2zsxqJ5/kiRJMoak8U+SJJmFVJV32AfYonh5lu09JL2cCO1cEviq7b06zjkR+JHtE4rXWxNSD7e3XWfPwW8hSZIkqUtf418Y+VcQm7fmA+dKegthyDcEbgTOaoV3SlqJkHd4GfCjtkutA3zA9ulDvockmbWkDz9pSpWR/63AB23/F0DStYTA23WtFI6STgE2J1I2bgV8h8kbuNYBVpP0YeBq4D227xjKXSTJLCUXfMeX6Q717Gv8bV/T+lvS04kNWodR6PQU3Ao8sSh/cFF2vY5L3UpIQvyU2Oh1BDVi/euSD3mSJDOZ6Y72qaPn/yzgLGB3YB6gjiI9dXpsb9Z2rYOA66vWnYlWkqQ7+dwmTam64Pti4JvA+21/RdKGhE5PixXpoc4paRlgO9uHFofmEB1IkiTJrGTGu30kPQn4NrCl7QuKw1fEW1qNUPV8K3B8j8vcA+wh6TLbVxAyz2dUbeR0f0hJMlNJn//4Mt02qsrIf3ciWctn2/T8jwK2JWYDjyBE275RdgHbD0raAjhS0pLA7wmRt0pM94eUJEkybKZ7UDsW2j4P3bb6lDcyR0TJOJIj/5nDTBykjr22z3T3kEmSJIsaY2H8kyTpTo7kx5fpHtQ2lncoji8BnAvsb/tCSWsCJ7Sdujxwh+1nS1oFOAV4PGBgK9v3DOUukmSWkm6f8WW6vRN9hd065B3WBNaWtJli9fdC4EWtsrZ/ZXtN22sWx+8Adi7e/iLwRdvPAH5OJHdJkiRJpoEqqp4L5B2KtIvXAqsA2wMHE2Gf3fgI8GPblxQzhA1YGBF0AiEHkSRJkkwDTeUdXmT7uuLY+zvPkbQskdbxOcWh5YC7bD9QvF4gB5EkSXPSjZM0pZG8Q8vw92Ar4Nu2/1q87hZu1FMOIkmS/qTPP2lKI3mHCqe8nhBva/E3YGlJi9l+kD5yEEmSVCONedKUKgu+LXmHt1Yx/JLmAGsDP2kdK9YKLiZcRhC7e89p0N4kSZJkCDSWd7B9VEn55YH/2r6/4/i7gRMl7QX8BXhLg/YmSZIsEkx3nP9YyDtsPHfz2o1MX2iSJKNkuuP2uzH28g4z8UNNkiQZhOke+Y+F8Z/uDylJZiqLwnM+iln3TPycprtNY2H8kyTpTrorqzFbO5heNNb2kfQuIinLHCL+fw/b8yW9DtivOP4n4B2275C0NXAgcHvbdfYc4r0kSZIkFamSyatd22c+cK6k3YjonTWB+4GLgI0lXQ4cCaxj+2ZJHwf2Bd4HrAN8wPbpdRs5bj1qkiTJTKfKyH+Btg+ApGuJ3bn/Y3uepMcBywB3AksA77Z9c3HuVcRuXwjjv5qkDwNXA++xfUeVRqbPP0m6syg857PVJTPddm0QbZ95knYEPgP8FPhV0UF8uyi7JPBh4PDi9FuBTxdlDwCOYGHHkCRJA9LnX42Z2MFMd4c0kLaP7WMkfRn4MuHe+WhRdhmiE/i17ROLspu1Xesg4Prh3EKSzF5yP0vSlEbaPoXkwyq2L7X9gKSvAO8qyq4IfB+4ANitOLYMsJ3tQ4tLzgHmDfdWkmT2kcY8aUqVBd+Wts+Wti8oDi8DnFpk7voX8CbgEkmLAWcCX7P9ibbL3APsIeky21cQUUJnDO0ukiRJklo01vYBPgVcBjxAiLYdAryWiApaTNKbirI/t72DpC2AI4u1gN8T4m5JkgxAun2SplRZ8H0fEarZjaM7Xp9BiVKo7YuBtWq1LkmSJJkScodvkowxOZJPmlIlh2+SJEmyiNFY3qHtvV2AzW1vVLxeFTgJWJrY+LWN7RskPQw4Dng+cB+RHOZ3w7mNJEmSpA5VMnm1yzusCawtabPivf8BPtJxyv7A6bbXJMJDP1kcfy9wr+1nAu8HThy8+UmSJEkTqrh9Fsg7FOkYrwVWkfRwYsF3747yixGjfoCliFE+wKuBUwFsXwQsJ2mVAdufJEmSNKCxvAMR6nk8odzZzt7AZZLeCzwMWLc4vhLRkbS4FXgikdIxSZIkGSGN5B2AVYkdvh+QtFFH0ROBnWx/R9IbgTMkPZfY1dvJQ41anSQJkHH+SXOayjscDzxL0q+ARwErSPoqsXP3Gba/A2D7m5KOApYDbgZWAP5QXHZF4JZh3kySJMm4MONVPbvJO9jeru39jYB9bW8paQ5wv6T1bF9SdBp32/6bpLOJXb2XSFoPuN92unySZAByJD9zGLfvorG8g+2jOgsWmbzeABxeyDjcDbyxePtw4GhJ1wD/Ad4+aOOTZLaTbp+Zw3RLNNdlzvz586e7DX156LbVp7yR+aNIkmQQZqLxn7vC77uttQJjIu8w3b6xJJmp5Mg/acpYGP805EnSnTTmSVPGwvgnSdKdHPknTWms7SNpXeBQ4NFEovZtbP+3kH7Yj9jp+zMi5v+/krYGDgRub7vOnlXqT7dPknQnjfn4Mt12rUqoZ7u2z3zgXEnbEMnYX2n7KkmnA9tLOolIzL6W7duL9I7bAl8C1gE+YPv0obU+SZJkTJnuAWqVkf8CbR8ASdcSO3x/Yvuqosx7gMVt3ytpVdvzJC0FPB64oyizDrCapA8DVwPvsX0HU0SOiJIkWdSoa9d+2ENDoam2z2eAeySdATyNSOP4waL8PEmbAKcQu3p/UJx+KzFb+ClwADFD2KrWndQgfaHJbCCf89nFMGcLlZO5FNo+PyQ2fS0OvBL4AOEOWgr4cKus7XNsP45I5n5kcWwz21fYng8cBPy/Yd1EkiRJUo+m2j7bA5fb/lPx/teAXSU9Fni+7dZo/1Tgq5KWAbazfWhxfA4wb5g30kmOcJIkScpppO1DuHL2k/Qk2zcCmwK/IIz6KZKeX+j2bAFcAtwD7CHpMttXEAJwZwz9btrI6XAyG8jnNmlKY20f4J3A9yQ9AvgVsLvtf0vaCThT0nzgt8DOth+UtAVwZKH583tC5C1JkiSZBsZC22fjuZvXbmSO/JMkGSXTHbrZjbHX9llUmIkPRxPqdpTZESfJcBhpqGcyPGarUZut950kw2akO3xhsrwDcCERq99iZeAK25sWMf4HFsevBt5p+x5JyxLRP08F/gZsYfu2ge8gSZIkqU0jeQdid++axfsrAJcCuxUG/kRgI9u/lbQH0Um8F/gEcLHtV0t6O/B5YsNYkiQNSZda0pQqm7wWyDvYngdcC6zS9v7BRGav64CnAzfY/m3x3pnA64u/X02M/AFOBzaRtMSA7U+SJEka0FTe4UVtrzcCdiiKXAc8SdIatn9NuIpWKN5biehIsP2ApLuA5ckk7knSmBzJJ02pvOBbyDucRcTzX1cc3gn4ou3/ANi+s5Bu/pKkucAxwH+Lst1CjnqsRSdJ0o90+yRNaSTv0PbW64n1gFa5xYCbbL+weL0W8Mfi7ZuJWcBNkhYHlgb+MegNJEmSJPXp6/Nvk3d4a7vhl7QcsGRL36dgPvADSStLmkMofX61eO9sFu7q3ZJY/J1SfZ8kSZKkO4PIO/wSuKm9oO2HJL2TiAh6OHAesSAMsDdwgqRrgDuZQjnnJEmSpDdVFnzfB7yv5O3/7VL+LGJtoPP4P4HX1m1gkiRJMnwq6/knSZIkiw4p75AkY0xG7yRNSeOfJGNMhnqOL02+i5Fr+yRJkiTDZbpVftP4J8kYkyP5pCm54JskSTILSeOfJEkyCxmLNI5JkiTJcMmRf5IkySwkjX+SJMksJI1/kiTJLCSNf5IkySwkjX+SJMksJI1/kiTJLCSNf5IkySwkjX+SJMksJI1/kiTJLCSNf7JIIWnL4v/lKpZfampblCQzk0Ve1VPS/wEn276txjkPA/4PELAr8H7g07b/O4T2bNDrfdsXDeOc4rzHAAcBTwM2J/Ipf9D2HZUbPEQkrQk8CbjI9r/ajm9q+8whVbOfpG8CPwDWqlD+QmAdSV+0/e4htaErkpYAXg4sB8xpHbd90hCu/bFux21/vMc5tZ4PSdvYPrHj2C62v9Cnjjcz+Z67tkvS04j0sKcBRwPPA3azfUlZHV2usaTt+7oc/zJQqmdje7tBynep73m2r5S0DLC27Qv6lH8x8Bzgy8ALy37XHec0tlVjZ/wlPRk4FlgV2AA4FdjO9p9LTlkS+LGkPwAnAN+2Pa9PNV8A/kYYjweA1YDjgLf3adt6xBfxKOJBXwx4su1V24rt1+MS84GXdjneOudxRVsuBR4EXgRcDby45HrHEEbwBcDdwK3AKcCre93HVCDpfcBOwPXAMZLe2vZj+DgwyfhLWgM4kegwziCMwN3Fe7+03c24Xwb8B5gj6cG243OA+bYX6yj/KEmnAK+S9IjOi7X/wCU9xEJjMKejaLdrd/J1YEXg2rbrzAe6Gn9JOwKfJL73XvfQ2Z4lgFcBV/RpT6XnQ9L7gaWBnYvfX3s9byV+L2V8G/grcA09DGkbXwYOB14HrA58APgMXfKFF217I7APsBQLf3OPBJbvUvzCCvV3K78p8Gjis3kA2BL4V8k5rXZ9mrAfryja8zFJG9jet6T8+4DXAysTz8nRko6z/Zk+bWxkq2AMjT8xGjgY+DRwG3A68ePpOjouRhgfLwzzW4mR4QXAsbZ/VVLH2rbXkrSJ7X9L2oYwsv04FjgQ2BY4DNgE+GVHe15S4Tqd9/ASAElnA2+w/Yfi9ZOJz6OMp9j+kqR3FSOBPSVNyiAh6RbgCV3O72Vs6o6MdgDWKT7PFwHfkLSl7YuZbEhbfBHYDbgK2B/4kaSNbN9Tdk5R53aSvmP7dWVta+MVwEuA9YEf9ypoe1A36TNsP6NG+Y8CL7F9Tb+CticMKiTtTxj2XlR6PoA/AGsTn3n7534/8az34rG2N+xTpp1H2P66pGOBU21fXMyYyjiIeLY+SHSUryRmGZNon7VIeiwTO4ynlJWX9G5gXdsPFa+/Blze5z42BdYornOrpJcDVwL7lpTfFnghcIXtf0haB/gp0fH1oqmtGkvjv5ztH0g60PZ8YhS5S68TJD2S+HKfCjwE/BP4vKTLbH+kyynzi+lUy7AtR7VRy322vyxpVeAOYEfgFyVtqjJL6OTJLcNf8BfgyWWFgQeKKef8os6nE/ffyTrABcBmtn/b43qdXAx8jriP+/sVtv3v4v/LJL0F+JqkjSn/bB9p+0fF3++W9Bngu5JeWaFtW0h6ru2rJL2VcB8c0un+s30jcJKkX9v+NYCkpYEnlRldSY8HtmLid/cU21v3adMfJa1i+y8V2g/w1yqGv4RHAav0KVPp+ShccmdK+qrt39Vsx9WS1rbd9XfQhQeL0fymwN6SXk/Mcsu4w/aPCpfJMrb3ldSzLkkHALsQM5e/E6PtnxPGtxvLAI8tykIMlB7V5z4WJ7wO9xSv2+1JNx60/V9Jrdf30/u+WzS1VWNp/O+T9EQWPrDrEdP8rkg6FXgZcBbwiZbvUNLDiWluN+P/OeA8YEVJnwM2o7e7psX9xYjCwP/avqDHgmLfWUIXfiHpROBrxGL9WwkDXMbHiKnrKpK+DawLTPJT2r5Z0m7EPW7epw3t5x0vaXXC8H24T/GLJX0F2M/2tbZ/XHTa5xHGsxt3S9oEONf2fNu7F9/nN4mpdC9OBn4nacnivk4q/r2ipPw6xdT7Q8QI7W5J37S9V5ey3wL+SLgivl1cszQnn6QfEc/r4wlj+Gtiig6A7Zd2lG91IjdI+g7wnY7yk9xEkv7Ewh/9XGBZ+o8aKz0f7dduM04LsP3UHuc8EthS0s3FPbRmk5POKdiJmO3tUoyY30yM7Mu4r3gGrwU2Kmb1y/QoD/AWwpX4eeATRCf5wR7lPwlcJelS4ll9IfDePnUcTfxev1e83gQ4okf5HxeDm6WKDm8n4Pw+dcBCW7VCTVs1lsb/A4R/+GmSfkX0yFv0KH8+sJPte9sP2v6PpP/pdoLtk4vRw0uIH9JrbF9VoW2fBb4KvAH4maStiBFFNyrPEtrYAXgPsDPxwzqPcI2UcSuwMfGwLga80/bt3QraPhs4u0/93diHEpdbB7sC7yB8p606vyXpRmDPknPeCXyJ8N+2DN7WwCHEj6kXT7G9haSDCBffgZJ+1qP8u4jP6m2EsX0fMbXvZvyXs71e8WP9FnAA8V2UsW+ftnbScg3eW/xbv+29sjWCjTrK3Gn7rl6V2P5+8Zy/kHjOy56Pjboc60eTcyBmZws6aNtv7lN+L8KAvx34MPHMHNvnnFtt3yXpN8AaxXN4UFnhwh6cR6yxzQd2tv3XXhXYPlTSJcRvYx7wNttX9jjl/wgb8GviGT+L3i7dFucQduMlxG+8qq0az2QuhQ9wdeJmf9drZbsY4X+QWA1/DxVWw4vr70LMGOYRH/CxhZupX9vm2J5fjPhXB37d8hV2lPsJsbD2KmBV2wdIsu3JQ6uJ5y1NjGzaIye6uhEkXWv7mf3aXAWVL7D2O2/fskWuQeqQtJztv5ddX9KVhDG/jOiM/w6cb/tZJdf7he21JZ0LHGb7bEnXdCsv6Se211UsyM4p/Oa/sr1mnzYfbvs9HcdOtL1NSfmNbf+w49gbbH+rS9meLqeS2cKyRMfUes7PBj7pLpEybee8hjDs84DzbPfq9Fq+9bVsnyfpI8TC5D5l7kVJFwNvLdxxtZH0GPeJZpN0DhFNdCNhEw4GTrG9Wkn5ZQk332OpELFUnFPr+5D0KGAb21+QtDLRiX265SrtUU/j3/jYjfwlHd9xaL6k+4hp3zFdjPoRxGr42lRfDT+W8Nd9iRgRbQ08i+g4erXtMcBBinC1zYkH64PEyL6TbrOEfr7KjxKjm38QI5A5xf9lU+jfKkIArwAW/KBdIYSsC2WLsv14LdVHvpXrsN3yv5Zd/2Divr9r+zeSfg/s3eOS10g6k/gsz1Ms6pXNFC6Q9HVgd+AHktaix5qHYvHyqcDzJbV3JosT7pnO8lsCDycCFT7WUf6jxGyjk1cTo8zvEob5/xEzv99TPls4Bfgd4T6cS8zMjiUMXbf7+BSwHuF2nAPsL2kd25/qVr7gdOB7hbtoc+BQ4CjKZ4vLAX+W9Ffime3pJtLE6L/1gdMk9Yr+A9geeEsxon8NMcLuNsNr8XUiuuc3VPSns/D7aLns+n0fpxGBDRCRV3MJ1+Ub+9Tza0lvJxaH23/jfdeVxs74E4sgjyVCACFiiB9dHD+KyT7LJqvhL3RbVEbht/tNhbZVDq10RDR8o5glrE3MEn7V5/rbA0+z/bcKbYH4nF7CQjcClIeT9qPpFLFOp9GkjrKon9OIH1SLZ9p+EEDSl2zv1HHKdsS0/jfFwtvJxIxv0j4E23tKeprtGxQL1xsQ4aplfIIwTp9noj/2AWLQ0snSRVsezcTv7gHKXWTLEy6MvxZtXgb4nu139GjXqrY3bXv9/sIVUsamxCh+XlHHlwi3Zi/j/xjbR0g6HDihMLjv61H+VT3e60Yr+u9A4Hb6RP8B2L6FcB1iu5evv8UKtjeu2a6638eTbb+2aNNdwF6FW7sfL2TyQnWvAeECxtH4P8/281svCsN8ReHf7bbo1mQ1/EZJq3lhZM0TgJsrtK1q6NyCMMkuC2i9No78hYhUqoQbhJVOAVPtV6x0/ZbhL3h+l/cfAC5qe/29trcn7EOQ9GxipPhmYrT1RoqOoqTuPwN/BtbQ5BDDNYlIq/byxxBRbC+zXWXRDyJi5e9tr+8jOv9eXCdpfUe4LZKeC1zXo/w/iQ6p9Qw+jD7x7sDcYnDzemBDxUa/XnbnNmKUPCGSilic7kaT6L/2/RotbrH9pJJTrlQROdbruh3U/T7mS3qO7auLNj6DmMH1xPakENWqjKPxX0rSCl4Ysvd4wkUD3e/nc9RfDV+CmE5dRIy21gNuLSIJJkVntFE1tBImbjhZgnBf9Aujuw64RBE9ssDNUOZ71MIokwn0aH/Snc7ZxbEUribb10r6OOFKXK/XRTQxxPAfwEr0DjH8jyLap0o48FnA+YrdzXOIjUgn97mv1YgoExMzZwH/VBGp03K1aOF+jrnE7+K7LHRl9HtmP0SMzA+xfb2ky4mgjTK+RUQIrUZEsm0A/KRH+ftUI/oPJu7XKNb3Xk9EOpXxbKIDuJ343fWLWIL638fuwA8l3VSUX44KG7W6uMGB/ruPYTyN/z5ECNVlxI/h+cD7JO0L/LCzsCdG7lRdDd+n43W/kLkWlULninZ1bpM/jti524ubWTgDqeJO2bft7yWIXZNNpR2a+vxnWh1N6OxAl7J9buuF7R+qR7RIG3VDDCuHA9v+gKTNgQ2JUeZ+rcXijsFSO5t2OdaNC4v/OzfB9QtNppi5nN/2uutO3TYEPJ34jI4njOI3epTfjcnRf3XClecBX5dU5k6DGDDWou73USyIr0LIO8yLQ+7ZiRW0fydVB5HAGBp/218rRuDrE6OVnYqojx/bXuAS6bLafnfx/5qS1uwW/dDGh4ht5lWkINqpHFrZhWcSW/9Lsb2fpOWL6y8O/KTX9W13/ljPk3QF5VPoltDZ04h1kUd6YYjsJL9uMdX+kKRXtRvDDiZFdVSto+n1R8BfJe1MrOdAuH+qfM+1QgypGQ5s++vE4mQnZ9Nd5+gsQvLklJLOoXXdE8vea6GOSK3Wa3WXxOglhXF7sQ72O+C5tk9SROyV8QRik2Kl6L+ibe22YQ4RzNHrnL8Q4dUvI353F9A7Zh+o930UC9e70hZRJKnvCL7hIBIYQ+Ovybsr15bUbXdlP393L+P/aWAb4GBJZxELVb1ixFt8tQi7OqtfwbYfResH8Te6bzhrP+eVxGjocmIKfrSk7V0iilaMJFq0HvLHdStblH8ZsYC2GLHgeJWkrWz/wPbXupyypaQfAodJ2p6Okbvti2y/bYA6al+/IoPOMN5B7K84mBil/ZjeG5Fa/KuIzPgF8B6FrMZjepSvs2mwF2X3+2oiku1Hkq4nBjzfqTng6VpHqyNwfUmMa4rF4SOBUyWtRIxoyzjI9lmEdlBVOgMg/k64ZUrrIGYjxxP3+Q5iHWK3GnW20+37+Brh5rqYwdbJ+g4iW4yd8afi7so+UQ49cYRCXqTYHfom4FuS/kVMw4/sMR2rHFrZ4EcBsdNwPdt/ApD0VOLzKFPEbB/5tx7y95SUhdistB5wjmN35YZE9ESZRswniQ5rRSZHu5RFFdWpo/b1JZ1s++2KcL+u/lC6uAf70GnY/kJ1l0k7dUMM62wa7EVXY2L7BkIzaX9JmxGupaMUQnf72/7HoHWofoz8u4AX2W79ll5GhKKW8cfC7935mysd3DWwDa8gAk1a2j5nEbPWpsa/22e1hO3d616oy8yq7yCyxTga/0q7KzVxu3sn820/rVclkjYiFlxeQURyfIVw6XyXEI/qRuXQSpVI8LYo+XEs0TL8RZnrJZV2Ig0iAebavk1FBFLxA+zVxlZUyt629x92HQ2vv76kHYhQuQc637R9ku09Oo8rpBze2HHsfNsvo1gMlHSm7U3Lnq0+C4DYvkXSYZKeQ4QF7+GJUUid5buFA5fKSNRFsbHoTcRzvjIx2v4KEW75fbpERTWgboz8E4iO9eLinC0Ig1bGPwij176WUKqUCj1tQ9lC7uLFv/+2va6iu1OHS4oBwff7ua3a6TaIVEQ39mUcjX9rwdKE3/QKdVf926j4f0kWho7dQLgberqEJN1ASA9/GdjVxY5HSRfSY+TleqGVqxD7AU4nXAdvBO4idqSW8ReFvO5xxesdiHvqiqQXEKPsI4jZwfOIrenfLDnlJkmbEmFnyxKRKVVEyE4vRqWnEXst1qJcg71JHXWu/y7CoHXGyEMXoyDpDEJ9caXC9dFicWIHKLZbkVU7Fv9vQcgU16KY5ZxcnDsXeLSkt9ju+kwpIsc+VgxE5hGDHAM9d33W4E/Ec7Ff++xU0pHEQGcY1I2RP5XogABuIcJvT6ZEk6nbKL6YsffiNCIi6Bjic92KWDcoW/Q9FbhQ0unF67cwcQ/JMHgT4fNH0oINnD3WRijK/sT2um2v5xJuxef0q3AcjX+l3ZXFlLY1RasTOgbwatsTNrtI+l/bl9MjQYjqKXU+k5CJvbc493DgQndI83awPaF1vmdx/QsIAagyDiMWr99ETInXJkTRyoz/O4koiycRrrV+129xPAs12EVvDfYmdVS+vu1zgHMUiq3Hdb7fhW2IGdvnmSjW9QAdi7i2by3+PMnNttR/lni2WrHczyfWDl5QUv444jPalvi+tyN2nddd5yjz+W9v+7vtB7RQPqJuhEtZHXVj5B9r+2gI/S1i5veussIKBdCPMfE3tyQRAl7GK922V4hQ+P1Fy2Z04pBeuZKYwc8lBCKb6GC1mPRZ2V6pzgUUQS8bFX+3h5M/QHgn+jJ2xt8Td1e+lTDmvQxm5dAxhSzsYsCxHQuMSxBT4tX7NK+OUufyTJx6Ppw+MrG2/yrp07a31MLsQLf2OGWuQz3zVOAbtv8iqfQ7L67/dmIkPA+42hX0jKihwd6wjroa7xAx1gcz2dc8IXrCsZvyLuB1hTumfQH2abRt/Gqj8Zb6luEv/v55r+8DWM32m9pev19SqRFVRAU9CzgXWKXNRdipJ9QuH7Fs21tLEP7ibvIRSPpyD3952S7fujHy9yl247d2V7+MELcro7KefxtzJL3chS5RMRO9q6xwsei8ke3/k/QUIifIL9wl0k4TgywmUTwjk9bdClfN7lTUIHOxV0fS52332jFdytgZ/3bfrEMj/BeSzicWhrrxV1cPHduYiMvtXGB8gGoKe3VC844t2n4W8YN4NfHwlqKa2YGAf0v6IPHZ7KrYVn93SVkU2vonEtPtxYBlJW3h/pFOlTXYG9ZRV+MdYqG0cvREMaVfm4k7ucsWrWttqdfCNJy/k3QUMaJ/gHA3/LRHsyxpXds/Ka6zBiU7cAuDvhfxXKwL/ETS7rZP6eIeayIfAfBsSY9yJNOZ2NDu0WBQfwbxTiLKp7Uh6kZ6z3Rq6/kTM82TJLUSGP2OmAGW0emKuphyV9SPmRjF18584Kkl7spWRq46GmQAH1Is1nfmlui5pghjZPzbfLMrl/lmS/iNKoaOtYyopLfb7robT9JOtr9UUlfl0DzbByl24LY2gbzeRaIMSWvZ7jZjqJsdaCvCVbSZ7TuKe+8VOXEosIkXJjV5PuFj77fwV0eDvUkddTXeoX70xJq06f/0YW237SmBBaPuMjpnpu2x/ZM6Ji1ckFwSeFMxcHkA+B/K5Rc+RBj0i4rZ1fOINYJTOgu6gnyEuqulzifWnczEGU+3gIaWHtKGJe3tuiBbPBfPlvQ4YJ7bZKlL2nSfaur5F4PGZ0laDri/vTMrqaOyK8rN5RaaZuRq5bao49YGxsj4U8M320F76Ng+9A8do8zwF+xM+F27USs0rxjtdhvxHkv3tYVa2YEcSVp+DryxGBn+yPZNZeWB/7SMcnH+zyX1jYkvXBnbtb1eoMGuyTLNteuoef0WdaMnriB+QC4rIOlJxOjqbEWSmVa7Fyc27nRN0egKgQAdRmejCuU7BwgP2r5bC6Oobu3wBXdrVy/doG5qqf/Xr11tPJ9YTO527z2jcYq2dQsz7damJnr+rTr+3uVwtzrquqJQbMY8gokbw97VzVVU0DQjV90d0QsYG+Pf4Zt9FhN9uWW+2Zag18XF39+l4mJID0oNlXuE5vWZMVSto1Z2IEl7EFFEpxbX3FPSs2wfUHLKFYVf/RiiU30zIa+7QXF/XT/jPnTey7DrKPus2qMnWsd6RU9cQGwwuoXyjFP7EcZsJSY+bw9QvteiKguMjksWHjvoHCBcI2lXYAmFeNq76a8S24tun2udne8tV9cfbX9igHb0bJNjF3trP8s6atPzLxnF166D+q4oiN/qZYTrdy4xez2Ojv0hijzWX2Vy9sA3UC0j1+013NoTGBvj30LSEcQP5XoW9oxNZYqb0LM3bi1eOqJ4rmx7q9eMoVId7pEdqMRV9DZCnroVqnoMsQZRZvxbESyf7ji+H8OTgh52HWWfVa3oCWKz00vpETrrYrFY0odsH1j8PcfVFsX7UXfXcWf5XYhR8H2EkbmA3rpB/eh2T3V2vq8q6RPAduqyF8U9EqHUbFPnddu1q+rkkiito4ErCsK3/4a21wcpggQ62U8h/rYb4aZtRRQtiArrQ90d0QsYO+NPrObLPbINzVAGlRQAaruK5nZ8TvfTlgu2C3tUWNwdlFHUUbqJrofR+RtwcUVD/lNJl9p+MbC6IjPU22z32qPRj7odSGf5+wmtp48UvuzXstA9OBRcb+d7a4F+DtMn2DfUemu4oiDcOE9ykZFMEQXUbbZ0GbHnYA6xqW1BmyX1jfOngVu7xTga/+uZueqPvZhqXftun0lLUvaE4vU2dGjHd3Bg4as8CTjZPcS+BmAUdcDEz2MJYtfqFT3K/xq4XKEltGCNoKSzOITQxMG2Jf0/IvpjnUEbPQDHEiPGllvzJURE0juHWYkq7nwvZqRXSvp5y1fe5VpN3DJ1mOrfHJTbor2JiKsrijIvpMt+lmI2uZ2k79h+Xd3KbT8o6SGF0OCXidzNVRJPjaXx/yehoXMZEzXte6rf1UG9N6XcOax6etCkc+v2oL+fcDdtXVzzR/QIWbX9UoW64NuB7yuSq59Ac7EvmKyLM+w6un5W7tgsJ2l/yjWKIHYZt+L0+33+j2j/gdn+nfrvO5hqnm/7OUV7/g68XT32BFSgmxpr7Z3vZYa/oK5bZhQKrnXrKHM7nllEXL2AeJ56Jn1vYvgBFOHbryfkOb5OiD0eZ7uvDP04Gv9zi39TyVdZ6JuegIeUCEW9k3m/seS0WhQLQT8hQsHmEQnMe7l9cGyeO4lwD+1MRFZ9UtKHbZ/RoBmTNv8MuY5eKQTbeRQhqdEVh1z2wxwpHFcjoijKDNfvJB3IwuQcbyZysw7CAqOj2LvRb+G7s4OaK2lFF5v+FOq3PaN9VOScJgImNidUSj9o+w53V0t9qe0/dh60/ZAiwUtdJnWyDdpUmxHV8Ugi8ublROz9BQqNqp5RQg3YlphVXGH7H5LWIfaOLHrG3/aJijR6GxHtv9D2r4ZcTaPE51VmDCpP5r0ERXyy7esnnd0ASbsT0/7vEA/g9yQdYPvLJeV3JBaJVyQ2Yq1n+6ZiEelKoKthlrQt8bC1dscu0CVxx+afJnXUuX7bOe3iXXOJROkHdytblN8beLqkvYhInmsIOYlu0hPbEwvELV2mi1io+9Pt2l+md0judh1G5wvAcyT91HaZ9EPnAOGThJvlEuLzeQEx8+tF5ZzTRTsnGf42hrK4WrdNfSgbxQ+zjjKOIDSY3kF8HzsS+1n6ZueqyYPFgKX1+n4qis6NnfEvVsz3JeSc5xKLTp9wuXxvEyqrc3ZQZcbwCeol865KN1fFTsTmkbsAFOkGLyWm7d1YH9jH9oXtBx1qlO/uUffHiO3vVXyNTeqoc/0WG7X9PZ/whbY+h26RUa8DXkxEXZxiew/FHolJODbMfYjYF3A1sGSfEd2FNdoNcIsind9ymrihcUH4aecAwfZphftlXaJD2tW9pT+gRs7pCgxrHa5WmxqO4od532UdzNq212h7vaukqXBb/VihcLyUYuf7TrRlTuvF2Bl/InztBa2Vd0mfJH5cQzP+bp74vO+MwROTeT+aiVoyj6JHgvYGrqJ/MjHC4B56yDsA/+o0yq3ru1wJFODmGoa5SR11rg/0jZXvFhm1mO3/KHRe9irCE7vuztbEhDTrAlerSEhTUt+P6rSd2L/xROB7xIi6L4WbZ0v6Jzlqp07O6X4Ma3G1bpuajOJr1dGwg5kraVnbdxbXWJbekXa1kLSa7T8QG+92JAIWtiY2Gx5V5RrjaPwXaw+5cqRwbPrAdqVYqPkok0XB+o38K88YFKJjO7FQj7xVdpI+zACuoj8SEQenEw/eZsBdrTDIViRLj+svTrhL+vELSd8gfoTti/ALdnEOWEff69ekLDLqN8RU/SJi41CZH7s9Ic1t6p/0pq/eS8exJxb/v6b0DiZTKclRB/tQMef0FNFtJFy3TU1G8XXraNLBfJYICf4u8b2/lurrU1X4GjGA+Zbt11NNe2wC42j8f63YAdeS692eISa4KDiJ+DCrJqAAas8YNgNWdheRrC40dRX9vvj3iOJ1K4NVpxEa1BW1DPGjWLftWOcW/kHqqHL9OnTbyLO7pMOAm4oFzPf0WEuqm/Smrt5Lq7OAyd9VmYBcpSRHHe06t3BtNck5XYm6o+YGbao9e2lQR5MO5lRCtnxv4jvcjXJ3axMeLNZ3nqvQM5pAlcCUcTT+OxI+/+MJn//5xFb2YfJv26WyCWXUnDH8mpDV7Wv8B3AVndG5AC3pTbYnaH+0X7+sDSrX0MEV0uINUkeV6w9KYUDeR4iDzSOS3f/edrfEKY2S3ijSDU7Ck2Wm63YWUD3JUXt7OjfCrSHpPuBaR17cOgxlcbVBm2rPXhrU0cQ9dgwx6HoDYae2JjrA9/c5ryovJZIzHUc1GYhJjKPx/+IIjMH3Jb2HSGXX7mbo9wOvM2M4GfiDpKtp8wX26rHruIoKvivpC7YPVqiNHkmIQFUSfuqgW1jeQGkN+9UxBdfvRZ3EKe0Jaa4nBiBVkt78uO3vJQhXwO/KCiumE+9mslzvBl2KV0py1MFqxPPQylDVyia3nqQN3ZHuckSLq7Xa1HD2UqsOmrnHXmh7gdCfQo+r1rpVL2zfTey2fpHtrmkuW7+fsmuMo/Ev1RQfIq1wrA+0HetlZFvUmTEcSow0q4h4tajjKoLwCR6m2BD3eCJrVKWt313o1pmdWvzfKK1hhTqGff0W3XzvlROnODbrvKVupbZPbH8t6Tgi+qqMrxJhuusTG+E2ocSAeGKSo7cQUsr9RoQCNnAhy6DINfBj2+sWBrrTCE754mrdNjWcvdSqo2EHc2PboixEbuKbe53QhDLDX7Byr3PH0fhX1hQfgHXcXe61H3VmDP9qsGBZ2VVUMIeI9nlk8fdDNI/m6MY+xWjz6DKX0HRdv0FkVN/EKWUzkAUXqD8TeSax36GMubb3Kdw3v2ShUmR7m7bueP3i4s9/ELILvZ6xxxA2oKXJ8zAWZpObJMbGaBZX67ap7ii+dh0NO5gliPXJi4iZ/XrArS3//JDtVRk9vQ9jY/y1cNdjHU3xplxZPNQnE7ID/abPLerMGC5R6O6cw0QtmV4/1rquomsIV8+ORETNF1iYrHoYLBClktS+sWTBJqxRX79uZJTqJU7ZqK3+rYoyBxDa9T+mD4qotPaF3L8RaRPL+LdCnvf3RNz4JZIe0VGmV5BBv0XxI4CfSzqTGNFuAhwu6f1At1nPKBZX67ap7uylSR1NOph9Ol733XE7asbG+FPsegQOdvmux2HxZGJB5S2EENmFhAhZv80TdWYMSxEP0IvbjvX7sdZ1FW3iQvIZ+DuwpaTNK57bySRXiQcUpepXR8Pr140q2qjfBVVsCnOxd0CRTvOJhFvtRsKYPJcSCWVJ77f9OeB5bktkU4FTiFj/rYiQ3VfR4TpoX/9S5AN+LnGvfXMj2z5MkU3u5cSu0DfZvqYw6l/scsqUL642aFPdmUKTOmp3MI48AzOacTL+fXc9Dqsi2w8RYXLnKVQMDyHC55bpc2rlGUPHj3Zp4Em2r+lz/bquomsk7Uk8vLtSJIWucX47vWKUJ7m12lwsw6ij8vXrRka5WeKUVxavf2n7LkVe4qso18/ftRhlnqqJGcBabegaSGD7iOI+7y6ew3UIl+IkFCk9T6JGbuRiVrEaMTCYA7xAkVykTA57yhdX67aJ+qP4JnXU7mBmCD13XY+T8a+967EpRaTEW4gF1t8Txr+K4FjlGYOk7YlR/4cITZu7Fcnp9+px/bquolZS6LVYmBT6WAo54i5t2pYaGjpVXCyD1NHk+m3n1o2M6kXnj6jl6miNrB9Ob/fHqYTRfiKTM86VtkkRXfNmhT5/qw3PAT7epfjnqJ8b+VvUyP86isXVum1qMIqvXQcNOphRIul5tq8sXHJr227F/Z/Y67yxMf7FaPwvNIxFr8kxxCjqxRVGNguoOWN4N7Eg9zYiouN9wOVENqYy6rqK6iaFrquh02TjVp06BtkYVjcyqhed7pOvEZE4jy0MwNuB08pOtr0PsXh9pO2uib/VXW/o20SU0zVd2tDJf1w//3Ld/K9Tvrhat00NRvG162jYwYyEwgW5FrGj+5HAx4r10X0LV2MpY2P8K9LvYa+E7bXL3uvVwdSdMdj+pyIRyGG2H1BkSOrVrrquorpJoWtp6NR1sdSto+H1W9SNjKqM7QMlvZJYe1mFEKo7s8J5XQ1/QTe9ocfa3rBis5rkRr7d9fK/jmJxtW6b6o7ia9fRsIMZFZtSDIht31q4/66kgsLqomb8hyUu1YteHUydGcM1io0fTwV+KOlrlCTEaNHAVfQ5YiaygkISYzN6x3430tCp6WKpXUdDF07tTXR1sP19SvzvDen2XF0taW3bv6hwfpPcyHXzv45icbVum+rOXprU0aSDGRWLE5FqrUFO+2Cv74lJPXrFedeZMewAfJhw5ZxM+IL7iTPVchXZPlnSL4hwwMWA17iQeyhxMzTV0KnjYmlSRxMXTpNNdGUMZUbZhwXPlRaGnz6SiNC6mejASoMb3EyJ9t3Auq6e/3UUi6t121R3ptCkjiYdzKg4mhhQfY/4fF9FfE99SeM/OjoNyBHAowkjNYfIr7safbQ/GriKfkt33ZVJbgY3l82oo1PUpI4mLpxKkVEtt0gZhbtkKJnVarBRvwKdnbciNeaxxBrJ+sQaxHaF66yMn7YGJLa/S7mKKUWZUSyu1moT9UfxTepo0sGMBNuHKgTeNiA2dG7lismtFjXjP4oRWlM6Zwz/a/u5rRfFaKpfDHhtV1EPFnxWGlxDp6+LZcA6mrhwqkZG9XKDzSdSFw4ls1pV3Cz89GhCa+dA4HZiUfYkwiiUcbuk9Qlj+J8e5YDRLK7WbRP1R/FN6mjSwYwEhWbXMrYPkfRRYtf1PsWgrydjZ/wlbePJGim72P4Cw9XLLmNYHczNktozMq1EaKX0oomrqIx2Azyohk4VF8sgdTRx4VSKjGroLpkK6j5XneWXs/0DSQc6NncdI2mXPtdYsDNZCyWpe+3MnvLF1QZtqjuKb1JHkw5mVJxOpGedT8xQP0eE+Pac0cIYGf/Cr7g0sHMxxW2xBPFFfMEl+Vwb1jcpmbcjlHOgDqaYNs8Hlmei9sf69Ff9a+QqqsCgGj1VXCyD1FFbB6luZJSk9QjpkHYFzSfbXrVmW0tRfb2hXnTOnu6T9MTW8eJ+eo5qbS9fs84pX1xt0Ka6o/gmdTTpYEbFYxybAQ8HTizW+d5X5cSxMf7AH4C1iR9m+6jnfkKGd2goNrOspoXJvH8LvB7YcYAOptXmfUve/2yFazRxFVVhUI2eKi6WQeqorYPUIDLqWMJlsi1wGLGY2bkg3gg1z8RWh92AM4GnSfoVkVOip5SHIvXjVkyWjC5L/Tjli6sN2lR3FN/ovut2MCNkrqS1Cfu0oaQ1qWjXx8b4O+Kozyz83H8gRiGLA7+xPbTcmAWvpWIy7076zRg8mOZHE1dRGQs6UA+u0dPXxTJgHU10kOpuorvP9pclrUokRtkRqBJiWYVBNqtV5QmE/MPqhDH7nUN5sxd1Uz+OYnG1VpsajOJr10GDDmaEfIhY6znE9vWSLmeisGQpY2P821iKUFv8BxFb/ARJm9m+Yoh1VE7m3c4UzRgau4oauBkaafTUdLHUrqOuC6ftvDqRUfcXi2cmZlgXSOr7nVfBg21WK6PT53+QQ2Kh7+fSRt3Uj6NYXK3Vpgaj+Np1NOxgRoJDOub8ttf/W/XccTT+nwe2bBl7Sf8LHE4kmBgW3ZJ5f6/CeY1nDH3Yt+R4V1dRXTdDlfK9qOJiGaSOBi4cqB8Z9VlCsuENwM8kbdWnfG1Uc7Nazc77j4o0kVcwMc9Fr9nRHa1iLEz9+LAe5UexuFq3TU0S19eqo2EHM6Wo2DekiTLhLebb7mvbx9H4P6p9lG/7ck3WOB8IL0zmfbP7J/Nup9GMoUJ76rqK6roZBnVLVHGxDFJHEx2kupFR5wHfKHzaaxPukzv7tKsulTarNVwjaHUo7SO/fq6x8zU59WO3nMUtRrG4WrdNtRPXN6ijSQczpbQFTaxASHk8pkfxroyj8f+npNfZ/g6ApM2IB39oSAtzpyrEsRaTVJY7tZ2mM4ahUtfNMAy3RD8Xy6B11HThQMXIKElPKt4/G9hEC8XQ/kUsMD+D4VF1s1rtjtLNNs9dR+Qg3pDoGJcCLpX0bHfXXxrF4mrdNtWdKTSpo0kHMyrOInZXt7tTF1l5h52AUxT5T+cQPfLbhlxH5dyp7QwwY5gSGrgZmsogV3axNKyjyea2qpFR+xHyFysxUW75ASJ6ZphU2qxWp6OU9KDtxSTdw8T9E6VSEG28FliTeNYhRMJuJgY9p9k+tKNdo1hcrdUm6o/im9TRpIMZGba3b3Le2Bj/tkVPiC/3T8SC773EpoahCHYV9M2dWtLGpjOGqaKuJk4TDR2o52JpUkeTzW2VIqOKKCQkfcj2gTXa1IRam9UqdpR/UGTwmkfIQswpyrT+78UKhOz3nUV9+xIz1XWJSKcJRnAUi6t120T9UXyTOpp0MKPi25J2AC5g4oBiUmBFJ2Nj/KkgUTpEquRO7UajGcMUUlcTp4mGDtTbfNakjsrXbxoZBRwh6UAigmVx4se0t+17a7SzH3U3q1XpKC9l4WauP7Udbxn/XuGIyxMiey3uI2SkH1DsGO1kyhdXG7Sp7ii+SR1NOphRsQwxMPp727Eqs/XxMf4DxsfX5RQm5069qcJ5jWYMU0hdTZymMsh1Np81qaPO9fctOd5vE93hxGhuO8Jw7kjMKN/e57w61N2s1rej9GD7J74JXFC40eYSEUTflrQ13fePjGJxtW6b6o7im9TRpIMZFW8EHm/7vr4lOxgb4z9ivko8FO8iElaX5k7toOmMYaqoq4nTVAa5zuazJnVUvv4Ag4S1ba/R9npXSX3FsWpSd7Na5Y6ygeHH9keKyLSNCZXOA22fowif7ha/P+WLqw3aVHcU36SOJh3MqLieWBNK4z8kzmbhCvqNxb8qNJ0xTBV13Qy1yjd0sVSuYwAXThPmSlq27Qe+LG0Gdxi4/ma1pp1xnTadScfCtu3LS4qPYnG1bpvqjuKb1FG7gxkh84HfFlGG7bPJvmugafxLaLiC3nTGMFXUdTPULb9vyfFeLpY6dTS5flMOITZ3fZdw+7yGIavEqv5mtdqCdlPMKBZXa9FgFN+ERh3MiPhk0xPT+Hen6Qp60xnDVFHXzVCrfEMXS+U6RrzO8xpCimMjwvi/gZDHPX6IddTdrFZb0G6KGcXiam1qjuKbXH8UHUzTtjX+jaTx707jFfSmMbdTQV03QwO3xJS3aaqRdAaRAHsl4HksDKncgy46RINSc7NaE0G7qWQUi6szkqnuYKaDNP7dabqC3jjmdiqo62Zo4JaY8jaNgG0I+ePPA+9tO/4AkRFrmNTarDbTOkpGs7iajIg0/t1puoLeeMYwRdR1MzTR0JnqNk0ptu8iRtdNpKzrUmuz2gzsKEexuJqMiLnT3YAZSmsF/RJJF7T+VTivNWN4Stu/6TL8QLgZgP8HnOXIe9Av4Xut8qNo0yLEEcAzCffIaYSsxME9yr+biKx5C9FRPgd41RS3sRTbHyHauzrwFGIUvzcR2pyj+DEjR/7dabqC3jjmdoqoq4kzzATx01nHTKV2JraaawRTTo7iFx3S+HdhgBX0xjG3U0RdTZxhJoifzjpmKnUzsc3mjjKZYtL4D5fGMbdTRN2E71OVIH7UdcwoBtisNps7ymSKSeM/REYcl16Fum6GqUoQP+o6Zhr7lhzvt1lt1nWUyehI479oU9fNMMwE8dNZx4xigEHBbOwokxGRxn8RpK6bYRQaOiPW6VlUmHUdZTI60vgvmuxbcrzMzVC3fBNGUcciQXaUySiYM3/+dIvSJUnSjqQNe70/A9eWkjEkjX+SJMksJHf4JkmSzELS+CdJksxC0vgnSZLMQtL4J0mSzELS+CdJksxC/j815Iwzv9F8tgAAAABJRU5ErkJggg==\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {
"filenames": {
"image/png": "/Users/b294776/Desktop/workspace/training/UC/uc-bana-6043/docs/_build/jupyter_execute/03-module/lesson-3b_72_0.png"
- }
+ },
+ "needs_background": "light"
},
"output_type": "display_data"
}
@@ -4816,11 +4817,11 @@
"text": [
"Python implementation: CPython\n",
"Python version : 3.9.12\n",
- "IPython version : 8.2.0\n",
+ "IPython version : 8.4.0\n",
"\n",
"jupyterlab: 3.3.2\n",
"pandas : 1.4.2\n",
- "numpy : 1.21.5\n",
+ "numpy : 1.22.4\n",
"seaborn : 0.11.2\n",
"\n"
]
diff --git a/docs/_build/jupyter_execute/03-module/lesson-3b.py b/docs/_build/jupyter_execute/03-module/lesson-3b.py
index 27bda8d..3889058 100644
--- a/docs/_build/jupyter_execute/03-module/lesson-3b.py
+++ b/docs/_build/jupyter_execute/03-module/lesson-3b.py
@@ -88,7 +88,7 @@
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Calculations using columns
@@ -182,7 +182,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Overwriting columns
@@ -246,7 +246,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Non-numeric column operations
diff --git a/docs/_build/jupyter_execute/03-module/lesson-3b_72_0.png b/docs/_build/jupyter_execute/03-module/lesson-3b_72_0.png
index 01f30db..74f1757 100644
Binary files a/docs/_build/jupyter_execute/03-module/lesson-3b_72_0.png and b/docs/_build/jupyter_execute/03-module/lesson-3b_72_0.png differ
diff --git a/docs/_build/jupyter_execute/03-module/lesson-3c.ipynb b/docs/_build/jupyter_execute/03-module/lesson-3c.ipynb
index f6668c8..8f60a10 100644
--- a/docs/_build/jupyter_execute/03-module/lesson-3c.ipynb
+++ b/docs/_build/jupyter_execute/03-module/lesson-3c.ipynb
@@ -274,7 +274,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -859,7 +859,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1629,7 +1629,7 @@
{
"data": {
"text/plain": [
- ""
+ ""
]
},
"execution_count": 18,
@@ -2318,7 +2318,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -2360,7 +2360,7 @@
"text": [
"Python implementation: CPython\n",
"Python version : 3.9.12\n",
- "IPython version : 8.2.0\n",
+ "IPython version : 8.4.0\n",
"\n",
"jupyterlab: 3.3.2\n",
"pandas : 1.4.2\n",
diff --git a/docs/_build/jupyter_execute/03-module/lesson-3c.py b/docs/_build/jupyter_execute/03-module/lesson-3c.py
index 0a84df9..dfe2520 100644
--- a/docs/_build/jupyter_execute/03-module/lesson-3c.py
+++ b/docs/_build/jupyter_execute/03-module/lesson-3c.py
@@ -109,7 +109,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ### Describe method
@@ -251,7 +251,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ### Describe method
@@ -389,7 +389,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Exercises
diff --git a/docs/_build/jupyter_execute/04-module/lesson-4a.ipynb b/docs/_build/jupyter_execute/04-module/lesson-4a.ipynb
index a295791..300e45b 100644
--- a/docs/_build/jupyter_execute/04-module/lesson-4a.ipynb
+++ b/docs/_build/jupyter_execute/04-module/lesson-4a.ipynb
@@ -23,7 +23,7 @@
"Once a DataFrame is tidy, it becomes much easier to compute summary statistics, join with other datasets, visualize, apply machine learning models, etc. In this lesson we will focus on ways to reshape DataFrames so that they meet the tidy guidelines.\n",
"\n",
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -458,8 +458,8 @@
"source": [
"ames_wide.melt(\n",
" id_vars='neighborhood',\n",
- " value_vars=['2007', '2008', '2009', '2010'], \n",
- " var_name='year', \n",
+ " value_vars=['2007', '2008', '2009', '2010'],\n",
+ " var_name='year',\n",
" value_name='homes_sold'\n",
" )"
]
@@ -579,7 +579,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1365,7 +1365,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/jupyter_execute/04-module/lesson-4a.py b/docs/_build/jupyter_execute/04-module/lesson-4a.py
index 8da72ed..028d4b5 100644
--- a/docs/_build/jupyter_execute/04-module/lesson-4a.py
+++ b/docs/_build/jupyter_execute/04-module/lesson-4a.py
@@ -20,7 +20,7 @@
# Once a DataFrame is tidy, it becomes much easier to compute summary statistics, join with other datasets, visualize, apply machine learning models, etc. In this lesson we will focus on ways to reshape DataFrames so that they meet the tidy guidelines.
#
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Learning objectives
@@ -87,8 +87,8 @@
ames_wide.melt(
id_vars='neighborhood',
- value_vars=['2007', '2008', '2009', '2010'],
- var_name='year',
+ value_vars=['2007', '2008', '2009', '2010'],
+ var_name='year',
value_name='homes_sold'
)
@@ -115,7 +115,7 @@
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Pivoting long data
@@ -162,7 +162,7 @@
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Pivoting with special needs
diff --git a/docs/_build/jupyter_execute/04-module/lesson-4b.ipynb b/docs/_build/jupyter_execute/04-module/lesson-4b.ipynb
index 9ef04f8..8b577c0 100644
--- a/docs/_build/jupyter_execute/04-module/lesson-4b.ipynb
+++ b/docs/_build/jupyter_execute/04-module/lesson-4b.ipynb
@@ -1480,7 +1480,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1655,7 +1655,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
diff --git a/docs/_build/jupyter_execute/04-module/lesson-4b.py b/docs/_build/jupyter_execute/04-module/lesson-4b.py
index 62b09bc..e7823ae 100644
--- a/docs/_build/jupyter_execute/04-module/lesson-4b.py
+++ b/docs/_build/jupyter_execute/04-module/lesson-4b.py
@@ -306,7 +306,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Merge indicator
@@ -352,7 +352,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Exercises
diff --git a/docs/_build/jupyter_execute/04-module/lesson-4c.ipynb b/docs/_build/jupyter_execute/04-module/lesson-4c.ipynb
index ea0512f..5e52d47 100644
--- a/docs/_build/jupyter_execute/04-module/lesson-4c.ipynb
+++ b/docs/_build/jupyter_execute/04-module/lesson-4c.ipynb
@@ -1009,7 +1009,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -2624,7 +2624,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_50389/1279328171.py:2: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.\n",
+ "/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_69791/1279328171.py:2: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.\n",
" products['package_size']\n"
]
},
@@ -3311,7 +3311,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_50389/3233621946.py:1: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.\n",
+ "/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_69791/3233621946.py:1: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.\n",
" prod_id_8s = products['product_id'].astype(str).str.contains('(8)\\\\1', na=False)\n"
]
},
@@ -3442,7 +3442,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_50389/1949681077.py:1: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.\n",
+ "/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_69791/1949681077.py:1: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.\n",
" prod_id_8s = products['product_id'].astype(str).str.contains('(8)\\\\1{2}', na=False)\n"
]
},
@@ -3583,7 +3583,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_50389/3801605409.py:1: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.\n",
+ "/var/folders/8f/c06lv6q17tjbyjv2nkt0_s4s1sh0tg/T/ipykernel_69791/3801605409.py:1: UserWarning: This pattern is interpreted as a regular expression, and has match groups. To actually get the groups, use str.extract.\n",
" size_filter = products['package_size'].str.contains('^\\d{2,}(\\.)?.*lb', case=False, na=False)\n"
]
},
@@ -3686,7 +3686,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -3728,7 +3728,7 @@
"text": [
"Python implementation: CPython\n",
"Python version : 3.9.12\n",
- "IPython version : 8.2.0\n",
+ "IPython version : 8.4.0\n",
"\n",
"jupyterlab : 3.3.2\n",
"pandas : 1.4.2\n",
diff --git a/docs/_build/jupyter_execute/04-module/lesson-4c.py b/docs/_build/jupyter_execute/04-module/lesson-4c.py
index 87399ae..44e9df7 100644
--- a/docs/_build/jupyter_execute/04-module/lesson-4c.py
+++ b/docs/_build/jupyter_execute/04-module/lesson-4c.py
@@ -174,7 +174,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Regular expressions
@@ -579,7 +579,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Exercises
diff --git a/docs/_build/jupyter_execute/06-module/lesson-6a.ipynb b/docs/_build/jupyter_execute/06-module/lesson-6a.ipynb
index 9e99b81..6b36e4f 100644
--- a/docs/_build/jupyter_execute/06-module/lesson-6a.ipynb
+++ b/docs/_build/jupyter_execute/06-module/lesson-6a.ipynb
@@ -120,7 +120,7 @@
}
],
"source": [
- "# multiple lines in the statement are fine as long as they have the \n",
+ "# multiple lines in the statement are fine as long as they have the\n",
"# same indentation\n",
"if x < 0:\n",
" new_value = abs(x)\n",
@@ -254,7 +254,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -339,7 +339,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -520,18 +520,18 @@
"def produce_revenue(sqft, visits, trend):\n",
" total = 9.91 * sqft * visits * trend\n",
" return round(total, 2)\n",
- " \n",
+ "\n",
"def frozen_revenue(sqft, visits, trend):\n",
" prod = produce_revenue(sqft, visits, trend)\n",
- " total = 3.28 * sqft * visits * trend - prod * .005 \n",
+ " total = 3.28 * sqft * visits * trend - prod * .005\n",
" return round(total, 2)\n",
- " \n",
+ "\n",
"expected_annual_revenue = {\n",
- " 'produce': produce_revenue, \n",
- " 'frozen': frozen_revenue, \n",
+ " 'produce': produce_revenue,\n",
+ " 'frozen': frozen_revenue,\n",
" 'pharmacy': lambda: 16.11 * visits * trend\n",
" }\n",
- " \n",
+ "\n",
"choice = 'frozen'\n",
"expected_annual_revenue.get(choice, 'Bad choice')(sqft=937, visits=465, trend=0.98)"
]
@@ -564,7 +564,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1166,7 +1166,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1209,7 +1209,7 @@
"text": [
"Python implementation: CPython\n",
"Python version : 3.9.12\n",
- "IPython version : 8.2.0\n",
+ "IPython version : 8.4.0\n",
"\n",
"pandas : 1.4.2\n",
"jupyterlab : 3.3.2\n",
diff --git a/docs/_build/jupyter_execute/06-module/lesson-6a.py b/docs/_build/jupyter_execute/06-module/lesson-6a.py
index 9cd1cec..b5ca88d 100644
--- a/docs/_build/jupyter_execute/06-module/lesson-6a.py
+++ b/docs/_build/jupyter_execute/06-module/lesson-6a.py
@@ -63,7 +63,7 @@
# In[4]:
-# multiple lines in the statement are fine as long as they have the
+# multiple lines in the statement are fine as long as they have the
# same indentation
if x < 0:
new_value = abs(x)
@@ -134,7 +134,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Multiway branching
@@ -193,7 +193,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Switch statements
@@ -278,18 +278,18 @@
def produce_revenue(sqft, visits, trend):
total = 9.91 * sqft * visits * trend
return round(total, 2)
-
+
def frozen_revenue(sqft, visits, trend):
prod = produce_revenue(sqft, visits, trend)
- total = 3.28 * sqft * visits * trend - prod * .005
+ total = 3.28 * sqft * visits * trend - prod * .005
return round(total, 2)
-
+
expected_annual_revenue = {
- 'produce': produce_revenue,
- 'frozen': frozen_revenue,
+ 'produce': produce_revenue,
+ 'frozen': frozen_revenue,
'pharmacy': lambda: 16.11 * visits * trend
}
-
+
choice = 'frozen'
expected_annual_revenue.get(choice, 'Bad choice')(sqft=937, visits=465, trend=0.98)
@@ -313,7 +313,7 @@ def frozen_revenue(sqft, visits, trend):
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Applying in Pandas
@@ -405,7 +405,7 @@ def flag(df):
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Exercises
diff --git a/docs/_build/jupyter_execute/06-module/lesson-6b.ipynb b/docs/_build/jupyter_execute/06-module/lesson-6b.ipynb
index d56a5b8..ce20615 100644
--- a/docs/_build/jupyter_execute/06-module/lesson-6b.ipynb
+++ b/docs/_build/jupyter_execute/06-module/lesson-6b.ipynb
@@ -285,7 +285,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -405,7 +405,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -539,7 +539,7 @@
],
"source": [
"squared_certain_values = [\n",
- " number * number for number in range(10) \n",
+ " number * number for number in range(10)\n",
" if number % 2 != 0 and number != 5\n",
" ]\n",
"\n",
@@ -611,7 +611,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -643,7 +643,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "After 330 flips: ['tails', 'tails', 'tails', 'tails', 'tails', 'tails', 'tails', 'tails', 'tails', 'tails', 'tails']\n"
+ "After 2335 flips: ['heads', 'heads', 'heads', 'heads', 'heads', 'heads', 'heads', 'heads', 'heads', 'heads', 'heads']\n"
]
}
],
@@ -660,7 +660,7 @@
"while not ten_of_a_kind:\n",
" # flip coin 10 times\n",
" ten_coin_flips = [random.choice(coin) for flip in range(11)]\n",
- " \n",
+ "\n",
" # check if there\n",
" ten_of_a_kind = len(set(ten_coin_flips)) == 1\n",
"\n",
@@ -710,7 +710,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -904,7 +904,7 @@
"for col in range(len(df.columns)):\n",
" value = df.iloc[:, col].nunique()\n",
" unique_values.append(value)\n",
- " \n",
+ "\n",
"unique_values"
]
},
diff --git a/docs/_build/jupyter_execute/06-module/lesson-6b.py b/docs/_build/jupyter_execute/06-module/lesson-6b.py
index 3aa11af..f9d060a 100644
--- a/docs/_build/jupyter_execute/06-module/lesson-6b.py
+++ b/docs/_build/jupyter_execute/06-module/lesson-6b.py
@@ -118,7 +118,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Controlling sequences
@@ -178,7 +178,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## List comprehensions
@@ -235,7 +235,7 @@
squared_certain_values = [
- number * number for number in range(10)
+ number * number for number in range(10)
if number % 2 != 0 and number != 5
]
@@ -274,7 +274,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## `while` loop
@@ -306,7 +306,7 @@
while not ten_of_a_kind:
# flip coin 10 times
ten_coin_flips = [random.choice(coin) for flip in range(11)]
-
+
# check if there
ten_of_a_kind = len(set(ten_coin_flips)) == 1
@@ -347,7 +347,7 @@
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Iterables
@@ -424,7 +424,7 @@
for col in range(len(df.columns)):
value = df.iloc[:, col].nunique()
unique_values.append(value)
-
+
unique_values
diff --git a/docs/_build/jupyter_execute/06-module/lesson-6c.ipynb b/docs/_build/jupyter_execute/06-module/lesson-6c.ipynb
index d2d8766..e8f7f22 100644
--- a/docs/_build/jupyter_execute/06-module/lesson-6c.ipynb
+++ b/docs/_build/jupyter_execute/06-module/lesson-6c.ipynb
@@ -76,7 +76,7 @@
"source": [
"# array containing 4 sets of 10 random numbers\n",
"x = np.random.random_sample((4, 10))\n",
- " \n",
+ "\n",
"x[0] = (x[0] - x[0].min()) / (x[0].max() - x[0].min())\n",
"x[1] = (x[1] - x[1].min()) / (x[1].max() - x[1].min())\n",
"x[2] = (x[2] - x[2].min()) / (x[1].max() - x[2].min())\n",
@@ -98,14 +98,14 @@
{
"data": {
"text/plain": [
- "array([[0. , 0.25838401, 0.41338666, 0.22670219, 0.14207045,\n",
- " 0.6372547 , 1. , 0.66500104, 0.97430082, 0.67975973],\n",
- " [0.23875146, 0.25624387, 0.09282163, 0.39901557, 0.65988219,\n",
- " 0.08264166, 0.53262924, 0. , 0.98924274, 1. ],\n",
- " [0.86209879, 0.83270803, 0.7993648 , 0. , 0.21927493,\n",
- " 0.55366273, 0.00574432, 0.98300226, 1. , 0.64223695],\n",
- " [0.56997021, 0.76553595, 1. , 0. , 0.64481501,\n",
- " 0.68118805, 0.95526039, 0.91795629, 0.39921224, 0.95423523]])"
+ "array([[0.79882196, 0. , 0.63291805, 1. , 0.67628976,\n",
+ " 0.85449383, 0.21740158, 0.3928153 , 0.84347625, 0.05630605],\n",
+ " [1. , 0.38420133, 0.78614167, 0. , 0.60469202,\n",
+ " 0.47085719, 0.39803966, 0.91226131, 0.73877887, 0.9079893 ],\n",
+ " [0.09984341, 1. , 0.13157581, 0.40402155, 0.43002542,\n",
+ " 0. , 0.00857417, 0.87397615, 0.78929133, 0.4674958 ],\n",
+ " [0.65530407, 0.10196804, 0. , 0.83969465, 1. ,\n",
+ " 0.68729707, 0.0015783 , 0.354641 , 0.34662782, 0.52565252]])"
]
},
"execution_count": 3,
@@ -119,7 +119,7 @@
"def rescale(array):\n",
" for index, vector in enumerate(array):\n",
" array[index] = (vector - vector.min()) / (vector.max() - vector.min())\n",
- " \n",
+ "\n",
" return(array)\n",
"\n",
"rescale(x)"
@@ -144,8 +144,8 @@
{
"data": {
"text/plain": [
- "array([1.67082046, 2.11287186, 2.30557308, 0.62571776, 1.66604259,\n",
- " 1.95474713, 2.49363395, 2.56595959, 3.3627558 , 3.27623192])"
+ "array([2.55396944, 1.48616936, 1.55063553, 2.24371621, 2.7110072 ,\n",
+ " 2.01264809, 0.62559371, 2.53369375, 2.71817427, 1.95744367])"
]
},
"execution_count": 4,
@@ -166,8 +166,8 @@
{
"data": {
"text/plain": [
- "array([1.67082046, 2.11287186, 2.30557308, 0.62571776, 1.66604259,\n",
- " 1.95474713, 2.49363395, 2.56595959, 3.3627558 , 3.27623192])"
+ "array([2.55396944, 1.48616936, 1.55063553, 2.24371621, 2.7110072 ,\n",
+ " 2.01264809, 0.62559371, 2.53369375, 2.71817427, 1.95744367])"
]
},
"execution_count": 5,
@@ -176,7 +176,7 @@
}
],
"source": [
- "# method \n",
+ "# method\n",
"x.sum(axis = 0)"
]
},
@@ -195,7 +195,7 @@
{
"data": {
"text/plain": [
- "22.034354137152878"
+ "20.393051216518487"
]
},
"execution_count": 6,
@@ -216,8 +216,8 @@
{
"data": {
"text/plain": [
- "array([1.67082046, 2.11287186, 2.30557308, 0.62571776, 1.66604259,\n",
- " 1.95474713, 2.49363395, 2.56595959, 3.3627558 , 3.27623192])"
+ "array([2.55396944, 1.48616936, 1.55063553, 2.24371621, 2.7110072 ,\n",
+ " 2.01264809, 0.62559371, 2.53369375, 2.71817427, 1.95744367])"
]
},
"execution_count": 7,
@@ -238,7 +238,7 @@
{
"data": {
"text/plain": [
- "array([4.9968596 , 4.25122836, 5.89809281, 6.88817336])"
+ "array([5.47252277, 6.20296134, 4.20480363, 4.51276347])"
]
},
"execution_count": 8,
@@ -292,8 +292,8 @@
"def yell(text):\n",
" new_text = text.upper()\n",
" return new_text\n",
- " \n",
- "yell('hello world!') "
+ "\n",
+ "yell('hello world!')"
]
},
{
@@ -346,7 +346,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -392,7 +392,7 @@
],
"source": [
"# implicitly computing store sales for store 46 during week 43\n",
- "store_sales(df, 46, 43) "
+ "store_sales(df, 46, 43)"
]
},
{
@@ -413,7 +413,7 @@
],
"source": [
"# implicitly computing store sales for store 43 (does not exist) during week 46\n",
- "store_sales(df, 43, 46) "
+ "store_sales(df, 43, 46)"
]
},
{
@@ -445,7 +445,7 @@
],
"source": [
"# explicitly computing store sales for store 46 during week 43\n",
- "store_sales(data=df, week=43, store=46) "
+ "store_sales(data=df, week=43, store=46)"
]
},
{
@@ -543,7 +543,7 @@
"def yell(*args):\n",
" new_text = ' '.join(args).upper()\n",
" return new_text\n",
- " \n",
+ "\n",
"yell('hello world!', 'I', 'love', 'Python!!')"
]
},
@@ -571,7 +571,7 @@
"# **kwargs just creates a dictionary\n",
"def students(**kwargs):\n",
" print(kwargs)\n",
- " \n",
+ "\n",
"students(student1='John', student2='Robert', student3='Sally')"
]
},
@@ -595,8 +595,8 @@
"def print_student_names(**kwargs):\n",
" for key, value in kwargs.items():\n",
" print(f'{key} = {value}')\n",
- " \n",
- "print_student_names(student1='John', student2='Robert', student3='Sally') "
+ "\n",
+ "print_student_names(student1='John', student2='Robert', student3='Sally')"
]
},
{
@@ -629,7 +629,7 @@
"source": [
"def some_function(name, age):\n",
" return f'{name} is {age} years old'\n",
- " \n",
+ "\n",
"some_function('Tom', 27)"
]
},
@@ -661,7 +661,7 @@
"source": [
"def some_function(name: str, age: int) -> str:\n",
" return f'{name} is {age} years old'\n",
- " \n",
+ "\n",
"some_function('Tom', 27)"
]
},
@@ -741,7 +741,7 @@
" filt = (data['store_id'] == store) & (data['week'] == week)\n",
" total_sales = data['sales_value'][filt].sum()\n",
" return total_sales\n",
- " \n",
+ "\n",
"store_sales(data=df, store=309, week=48)"
]
},
@@ -765,7 +765,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -793,11 +793,11 @@
"def store_sales(data: pd.DataFrame, store: int, week: int) -> float:\n",
" \"\"\"\n",
" Compute total store sales.\n",
- " \n",
+ "\n",
" This function computes the total sales for a given\n",
" store and week based on a user supplied DataFrame that\n",
" contains sales in a column named `sales_value`.\n",
- " \n",
+ "\n",
" Parameters\n",
" ----------\n",
" data : DataFrame\n",
@@ -806,16 +806,16 @@
" Integer value representing store number\n",
" week : int\n",
" Integer value representing week of year\n",
- " \n",
+ "\n",
" Returns\n",
" -------\n",
" float\n",
" A float object representing total store sales\n",
- " \n",
+ "\n",
" See Also\n",
" --------\n",
" store_visits : Computes total store visits\n",
- " \n",
+ "\n",
" Examples\n",
" --------\n",
" >>> store_sales(data=df, store=309, week=48)\n",
@@ -849,7 +849,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -897,13 +897,13 @@
" if not isinstance(data, pd.DataFrame): raise Exception('`data` should be a Pandas DataFrame')\n",
" if not isinstance(store, int): raise Exception('`store` should be an integer')\n",
" if not isinstance(week, int): raise Exception('`week` should be an integer')\n",
- " \n",
+ "\n",
" # computation\n",
" filt = (data['store_id'] == store) & (data['week'] == week)\n",
" total_sales = data['sales_value'][filt].sum()\n",
" return total_sales\n",
- " \n",
- "store_sales(data=df, store='309', week=48) "
+ "\n",
+ "store_sales(data=df, store='309', week=48)"
]
},
{
@@ -937,13 +937,13 @@
" if not isinstance(data, pd.DataFrame): raise TypeError('`data` should be a Pandas DataFrame')\n",
" if not isinstance(store, int): raise TypeError('`store` should be an integer')\n",
" if not isinstance(week, int): raise TypeError('`week` should be an integer')\n",
- " \n",
+ "\n",
" # computation\n",
" filt = (data['store_id'] == store) & (data['week'] == week)\n",
" total_sales = data['sales_value'][filt].sum()\n",
" return total_sales\n",
- " \n",
- "store_sales(data=df, store='309', week=48) "
+ "\n",
+ "store_sales(data=df, store='309', week=48)"
]
},
{
@@ -1004,10 +1004,10 @@
" if not isinstance(data, pd.DataFrame): raise TypeError('`data` should be a Pandas DataFrame')\n",
" if not isinstance(store, int): raise TypeError('`store` should be an integer')\n",
" if not isinstance(week, int): raise TypeError('`week` should be an integer')\n",
- " if store not in data.store_id.unique(): \n",
+ " if store not in data.store_id.unique():\n",
" raise ValueError(f'`store` {store} does not exist in the supplied DataFrame')\n",
- " \n",
- " \n",
+ "\n",
+ "\n",
" # computation\n",
" filt = (data['store_id'] == store) & (data['week'] == week)\n",
" total_sales = data['sales_value'][filt].sum()\n",
@@ -1127,8 +1127,8 @@
" price = round(product['price'] * (1.0 - discount), 2)\n",
" assert 0 <= price <= product['price'], 'Invalid discount applied'\n",
" return price\n",
- " \n",
- "apply_discount(milk, 2.00) "
+ "\n",
+ "apply_discount(milk, 2.00)"
]
},
{
@@ -1257,7 +1257,7 @@
"metadata": {},
"source": [
"```{admonition} Video 🎥:\n",
- "\n",
+ "\n",
"```"
]
},
@@ -1300,8 +1300,8 @@
"\n",
"def func(x):\n",
" return x + 1\n",
- " \n",
- "func(x = 50) "
+ "\n",
+ "func(x = 50)"
]
},
{
@@ -1359,8 +1359,8 @@
"\n",
"def func(x):\n",
" return x + ' ' + y\n",
- " \n",
- "func(x = 'Brad') "
+ "\n",
+ "func(x = 'Brad')"
]
},
{
@@ -1404,7 +1404,7 @@
" def my_paste():\n",
" return x + sep + y\n",
" return my_paste()\n",
- " \n",
+ "\n",
"my_name(sep=' ')"
]
},
@@ -1447,7 +1447,7 @@
" y = firstpart + '.' + secondpart\n",
" return y\n",
"\n",
- "convert(8451) "
+ "convert(8451)"
]
},
{
diff --git a/docs/_build/jupyter_execute/06-module/lesson-6c.py b/docs/_build/jupyter_execute/06-module/lesson-6c.py
index df2f1bb..baba78f 100644
--- a/docs/_build/jupyter_execute/06-module/lesson-6c.py
+++ b/docs/_build/jupyter_execute/06-module/lesson-6c.py
@@ -46,7 +46,7 @@
# array containing 4 sets of 10 random numbers
x = np.random.random_sample((4, 10))
-
+
x[0] = (x[0] - x[0].min()) / (x[0].max() - x[0].min())
x[1] = (x[1] - x[1].min()) / (x[1].max() - x[1].min())
x[2] = (x[2] - x[2].min()) / (x[1].max() - x[2].min())
@@ -63,7 +63,7 @@
def rescale(array):
for index, vector in enumerate(array):
array[index] = (vector - vector.min()) / (vector.max() - vector.min())
-
+
return(array)
rescale(x)
@@ -85,7 +85,7 @@ def rescale(array):
# In[5]:
-# method
+# method
x.sum(axis = 0)
@@ -129,8 +129,8 @@ def rescale(array):
def yell(text):
new_text = text.upper()
return new_text
-
-yell('hello world!')
+
+yell('hello world!')
# Of course, your functions will get more complex as you go along: you can add `for` loops, flow control, and more to it to make it more finegrained. Let's build a function that finds the total sales for a store, for a given day. The parameters required for the function are the `data` frame being analyzed, the `store_id`, and the specific `week` for which we need the sales.
@@ -155,7 +155,7 @@ def store_sales(data, store, week):
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Parameters vs arguments
@@ -176,14 +176,14 @@ def store_sales(data, store, week):
# implicitly computing store sales for store 46 during week 43
-store_sales(df, 46, 43)
+store_sales(df, 46, 43)
# In[12]:
# implicitly computing store sales for store 43 (does not exist) during week 46
-store_sales(df, 43, 46)
+store_sales(df, 43, 46)
# Using keyword, rather than positional, arguments makes your function call more explicit and allows you to specify them in different orders.
@@ -196,7 +196,7 @@ def store_sales(data, store, week):
# explicitly computing store sales for store 46 during week 43
-store_sales(data=df, week=43, store=46)
+store_sales(data=df, week=43, store=46)
# ### Default arguments
@@ -242,7 +242,7 @@ def store_sales(data, store, week, qty_greater_than=0):
def yell(*args):
new_text = ' '.join(args).upper()
return new_text
-
+
yell('hello world!', 'I', 'love', 'Python!!')
@@ -254,7 +254,7 @@ def yell(*args):
# **kwargs just creates a dictionary
def students(**kwargs):
print(kwargs)
-
+
students(student1='John', student2='Robert', student3='Sally')
@@ -265,8 +265,8 @@ def students(**kwargs):
def print_student_names(**kwargs):
for key, value in kwargs.items():
print(f'{key} = {value}')
-
-print_student_names(student1='John', student2='Robert', student3='Sally')
+
+print_student_names(student1='John', student2='Robert', student3='Sally')
# ### Type hints
@@ -280,7 +280,7 @@ def print_student_names(**kwargs):
def some_function(name, age):
return f'{name} is {age} years old'
-
+
some_function('Tom', 27)
@@ -293,7 +293,7 @@ def some_function(name, age):
def some_function(name: str, age: int) -> str:
return f'{name} is {age} years old'
-
+
some_function('Tom', 27)
@@ -336,7 +336,7 @@ def store_sales(data: pd.DataFrame, store: int, week: int) -> float:
filt = (data['store_id'] == store) & (data['week'] == week)
total_sales = data['sales_value'][filt].sum()
return total_sales
-
+
store_sales(data=df, store=309, week=48)
@@ -351,7 +351,7 @@ def store_sales(data: pd.DataFrame, store: int, week: int) -> float:
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Docstrings
@@ -370,11 +370,11 @@ def store_sales(data: pd.DataFrame, store: int, week: int) -> float:
def store_sales(data: pd.DataFrame, store: int, week: int) -> float:
"""
Compute total store sales.
-
+
This function computes the total sales for a given
store and week based on a user supplied DataFrame that
contains sales in a column named `sales_value`.
-
+
Parameters
----------
data : DataFrame
@@ -383,16 +383,16 @@ def store_sales(data: pd.DataFrame, store: int, week: int) -> float:
Integer value representing store number
week : int
Integer value representing week of year
-
+
Returns
-------
float
A float object representing total store sales
-
+
See Also
--------
store_visits : Computes total store visits
-
+
Examples
--------
>>> store_sales(data=df, store=309, week=48)
@@ -417,7 +417,7 @@ def store_sales(data: pd.DataFrame, store: int, week: int) -> float:
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Errors and exceptions
@@ -439,13 +439,13 @@ def store_sales(data: pd.DataFrame, store: int, week: int) -> float:
if not isinstance(data, pd.DataFrame): raise Exception('`data` should be a Pandas DataFrame')
if not isinstance(store, int): raise Exception('`store` should be an integer')
if not isinstance(week, int): raise Exception('`week` should be an integer')
-
+
# computation
filt = (data['store_id'] == store) & (data['week'] == week)
total_sales = data['sales_value'][filt].sum()
return total_sales
-
-store_sales(data=df, store='309', week=48)
+
+store_sales(data=df, store='309', week=48)
# Note that `Exception()` is used to create a generic exception object/output. Python has [many built-in exception types](https://docs.python.org/3/library/exceptions.html) that can be used to indicate a specific error has occured. For example, we could replace `Exception()` with `TypeError()` in the previous example to make it more specific that the error is due to an invalid argument type.
@@ -458,13 +458,13 @@ def store_sales(data: pd.DataFrame, store: int, week: int) -> float:
if not isinstance(data, pd.DataFrame): raise TypeError('`data` should be a Pandas DataFrame')
if not isinstance(store, int): raise TypeError('`store` should be an integer')
if not isinstance(week, int): raise TypeError('`week` should be an integer')
-
+
# computation
filt = (data['store_id'] == store) & (data['week'] == week)
total_sales = data['sales_value'][filt].sum()
return total_sales
-
-store_sales(data=df, store='309', week=48)
+
+store_sales(data=df, store='309', week=48)
# We can expand this as much as necessary. For example, say we want to ensure users only use a store value that exists in our data. Currently, if the user supplies a store value that does not exist (i.e. 35), they simply get a return value of 0.
@@ -485,10 +485,10 @@ def store_sales(data: pd.DataFrame, store: int, week: int) -> float:
if not isinstance(data, pd.DataFrame): raise TypeError('`data` should be a Pandas DataFrame')
if not isinstance(store, int): raise TypeError('`store` should be an integer')
if not isinstance(week, int): raise TypeError('`week` should be an integer')
- if store not in data.store_id.unique():
+ if store not in data.store_id.unique():
raise ValueError(f'`store` {store} does not exist in the supplied DataFrame')
-
-
+
+
# computation
filt = (data['store_id'] == store) & (data['week'] == week)
total_sales = data['sales_value'][filt].sum()
@@ -544,8 +544,8 @@ def apply_discount(product, discount):
price = round(product['price'] * (1.0 - discount), 2)
assert 0 <= price <= product['price'], 'Invalid discount applied'
return price
-
-apply_discount(milk, 2.00)
+
+apply_discount(milk, 2.00)
# ### Try and except
@@ -613,7 +613,7 @@ def apply_discount(product, discount):
# ```
# ```{admonition} Video 🎥:
-#
+#
# ```
# ## Scoping
@@ -636,8 +636,8 @@ def apply_discount(product, discount):
def func(x):
return x + 1
-
-func(x = 50)
+
+func(x = 50)
# However, the function environment is only active when called and all function variables are removed from memory after being called. Consequently, you can continue using `x` that is contained in the global environment.
@@ -657,8 +657,8 @@ def func(x):
def func(x):
return x + ' ' + y
-
-func(x = 'Brad')
+
+func(x = 'Brad')
# The same will happen if we have nested functions. Python will search in enclosing functions in a hierarchical fashion until it finds the necessary variables. In this convoluted procedure...
@@ -683,7 +683,7 @@ def my_name(sep):
def my_paste():
return x + sep + y
return my_paste()
-
+
my_name(sep=' ')
@@ -707,7 +707,7 @@ def convert(x):
y = firstpart + '.' + secondpart
return y
-convert(8451)
+convert(8451)
# In[82]: