-
Notifications
You must be signed in to change notification settings - Fork 0
/
modal.py
335 lines (284 loc) · 10.7 KB
/
modal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
'''
Harmonic analysis of surface gravity waves impacting an elastic,
finite-thickness ice shelf with crevasses.
'''
from random import randint
import numpy as np
from time import perf_counter
import gmsh # ellpsoid with holes
import meshio
from lefm import sif
import os.path
def modal_elasticity_solution( x_crevasse=100,
verbose=0,
writevtk = True,
deletemesh = False,
open_ocean_wavelength = 200):
'''
Carry out a modal elasticity solution. Returns SIFs.
'''
if verbose > 0:
print(f'Starting simulation with crevasse at {x_crevasse} m.')
t0 = perf_counter()
# All the parameters are stored in the dictionary p
m = {
'lmbda': 8e9,
'mu' : 3e9,
'rho' : 910,
'rhof' : 1010,
'Wx' : 100000,
'Hw' : 500,
'Hi' : 400,
'h_crevasse' : 5,
'w_crevasse' : 1,
'x_crevasse' : x_crevasse,
'gravity' : 9.8,
'k' : 2*np.pi/open_ocean_wavelength,
'A' : 1,
'max_element_size' : 25,
'min_element_size' : 0.02,
'ice_front_mesh_size' : 5,
'Hc':0,
'omega':0,
'xf':0
}
m['xf'] = m['Wx']/4
m['Hc'] = m['Hw'] - (m['rho']/m['rhof']) * m['Hi']
m['omega'] = np.sqrt(m['gravity']*m['k']*np.tanh(m['k']*m['Hw']))
if verbose > 1:
print(f'\tSwell properties:\n'+\
f'\t\tphase velocity = {m["omega"]/m["k"]} m/s\n'+\
f'\t\twave length = {2*np.pi/m["k"]} m\n'+\
f'\t\tperiod = {2*np.pi/m["omega"]} s\n')
'''
Make the mesh
'''
# mesh id number is just the fracture location
n = int(x_crevasse)
if not os.path.isfile(f"mesh/mesh_{n}.xdmf"):
# only create the mesh if it doesn't exist already
create_mesh(m,n,verbose=verbose)
from dolfin import Mesh, MeshValueCollection, XDMFFile, FiniteElement, Measure, VectorElement, FunctionSpace, TrialFunction, TestFunction, Constant, Expression, split, DirichletBC, sym, grad, Identity, inner, FacetNormal, tr, assemble, solve, Function, near, File
from dolfin.cpp.mesh import MeshFunctionSizet
mesh = Mesh()
with XDMFFile(f"mesh/mesh_{n}.xdmf") as infile:
infile.read(mesh)
mvc = MeshValueCollection("size_t", mesh, 2)
with XDMFFile(f"mesh/mesh_{n}.xdmf") as infile:
infile.read(mvc)
mf = MeshFunctionSizet(mesh, mvc)
mvc2 = MeshValueCollection("size_t", mesh, 1)
with XDMFFile(f"mesh/facet_mesh_{n}.xdmf") as infile:
infile.read(mvc2)
mf2 = MeshFunctionSizet(mesh, mvc2)
if deletemesh:
from os import remove
remove(f"mesh/mesh_{n}.xdmf")
remove(f"mesh/facet_mesh_{n}.xdmf")
remove(f"mesh/mesh_{n}.msh")
remove(f"mesh/mesh_{n}.h5")
remove(f"mesh/facet_mesh_{n}.h5")
'''
Mark domains/boundaries
'''
# Use dS when integrating over the interior boundaries
# Use ds for the exterior boundaries
dx = Measure("dx", domain=mesh,subdomain_data=mf)
ds = Measure("ds", domain=mesh, subdomain_data=mf2)
dS = Measure("dS", domain=mesh, subdomain_data=mf2)
dXf= dx(subdomain_id=1)
dXs = dx(subdomain_id=2)
dst = ds(subdomain_id=3)
dSi = dS(subdomain_id=4)
dsb = ds(subdomain_id=5)
'''
Set up functional spaces
'''
V = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
Vv = VectorElement("Lagrange", mesh.ufl_cell(), 2)
W = FunctionSpace(mesh, V*Vv)
TRF = TrialFunction(W)
TTF = TestFunction(W)
(p, u) = split(TRF)
(q, v) = split(TTF)
'''
Dirichlet boundary conditions
'''
u0 = Constant(0.0)
wavebc= Expression("A*omega/k*cosh(k*x[1])/sinh(k*H)",
A=m['A'],g=m['gravity'],omega=m['omega'],
k=m['k'],H=m['Hw'],degree=2)
zero = Constant(0.0)
zero_2d = Constant((0.0, 0.0))
def left_boundary(x):
return near(x[0],0.0)
def right_ice_boundary(x):
return near(x[0],m['Wx']) and (x[1] > m['Hc'])
def right_water_boundary(x):
return near(x[0],m['Wx']) and (x[1] < m['Hc'])
bcs = [ DirichletBC(W.sub(0), wavebc, left_boundary),
DirichletBC(W.sub(1), zero_2d, right_ice_boundary),
DirichletBC(W.sub(0), zero, right_water_boundary) ]
'''
Define variational problem
'''
sigma = 2.0*m['mu']*sym(grad(u)) \
+ m['lmbda']*tr(sym(grad(u)))*Identity(u.geometric_dimension())
n = FacetNormal(mesh)
#Fluid domain
a_f = inner(grad(p), grad(q))*dXf - m['omega']**2/m['gravity']*p*q*dst
L_f = zero*q*dsb
#Solid domain
a_s = (inner(sigma, grad(v)) - m['rho']*m['omega']**2*inner(u,v))*dXs
#Interface fluid-solid
a_i = (m['rho']*m['omega']**2 * inner(n('+'), u('+')) * q('+')\
- m['omega']*m['rhof']*p('+')*inner(n('+'), v('+')))*dSi
#Weak form
a = a_f + a_s + a_i
L = L_f
'''
Compute solution
'''
s = Function(W)
A=assemble(a, keep_diagonal=True)
b=assemble(L)
for bc in bcs: bc.apply(A, b)
A.ident_zeros()
s = Function(W)
if verbose > 0:
print(f'\tSolve (x={x_crevasse}) STARTING at '+\
f't={(perf_counter()-t0):2.1f} s')
solve(A, s.vector(), b, 'mumps')
if verbose > 0:
print(f'\tSolve (x={x_crevasse}) FINISHED at '+\
f't={(perf_counter()-t0):2.1f} s')
if writevtk:
file = File("fgw.pvd")
file << s
'''
Calculate SIF
'''
Xc = m['xf']+m['x_crevasse']
Yc = m['Hi']+m['Hc']-m['h_crevasse']
Wc = m['w_crevasse']
nu = m['lmbda']/2/(m['lmbda']+m['mu'])
factor = m['mu']/(3-4*nu+1)
pp,uu = split(s)
[KI,KII] = sif(uu,Xc,Yc,Wc,factor,verbose=verbose)
if verbose > 0:
print(f'\tEvaluated SIFs (x={x_crevasse} m), '+\
f't={(perf_counter()-t0):2.1f} s')
print(f'\t\tKI = {KI}, KII={KII}')
return KI, KII
'''
Convert the mesh
'''
def convert_mesh(mesh, cell_type, prune_z=False):
cells = mesh.get_cells_type(cell_type)
cell_data = mesh.get_cell_data("gmsh:physical", cell_type)
points = mesh.points[:, :2] if prune_z else mesh.points
out_mesh = meshio.Mesh(points=points,
cells={cell_type: cells},
cell_data={"name_to_read": [cell_data]})
return out_mesh
def create_mesh(g,n,verbose=0):
'''
create_mesh(g)
g, geometry dictionary
n, a number to append to the mesh filename
Writes mesh files mesh_n.msh, mesh_n.xdmf, and facet_mesh_n.xdmf for our
particular (simple) ice shelf geometry
'''
gmsh.initialize()
if verbose > 1:
gmsh.option.setNumber('General.Verbosity', 2)
print('\tCreating mesh.')
else:
gmsh.option.setNumber('General.Verbosity', 0)
gmsh.model.occ.addRectangle(g['xf'], g['Hc'], 0.0,
(g['Wx']-g['xf']), g['Hi'], tag=1)
gmsh.model.occ.addRectangle(0.0,0.0,0.0,g['Wx'],g['Hw'], tag=2)
gmsh.model.occ.addRectangle(g['xf']+g['x_crevasse']-g['w_crevasse']/2,
g['Hi']+g['Hc']-g['h_crevasse'],0.0,
g['w_crevasse'],g['h_crevasse'],tag=3)
gmsh.model.occ.cut([(2,1)],[(2,3)],tag=4)
gmsh.model.occ.fragment([(2,4)],[(2,2)])
gmsh.model.occ.synchronize()
# Label the surfaces (ice and water)
solid_tag = []
for surface in gmsh.model.getEntities(dim=2):
com = gmsh.model.occ.getCenterOfMass(surface[0], surface[1])
if np.isclose(com[0], g['Wx']*.625, atol=g['max_element_size']/5):
solid_tag.append(surface[1])
else:
fluid_tag = surface[1]
gmsh.model.addPhysicalGroup(2,[fluid_tag],1)
gmsh.model.addPhysicalGroup(2,solid_tag,2)
#gmsh.model.addPhysicalGroup(2,[100],100)
# Label boundaries
ice_interface = []
for edge in gmsh.model.getEntities(dim=1):
com = gmsh.model.occ.getCenterOfMass(edge[0], edge[1])
if np.isclose(com[1], g['Hw']):
water_surface = [edge[1]]
elif np.isclose(com[0],g['xf']):
ice_interface.append(edge[1])
elif np.isclose(com[1],g['Hc']):
ice_interface.append(edge[1])
elif np.isclose(com[1],0.0):
water_bottom= [edge[1]]
# Add physical entities
gmsh.model.addPhysicalGroup(1,water_surface,3)
gmsh.model.addPhysicalGroup(1,ice_interface,4)
gmsh.model.addPhysicalGroup(1,water_bottom,5)
eps=1.0
pt = (g['xf'],g['Hc'])
bot = gmsh.model.getEntitiesInBoundingBox( pt[0] - eps,
pt[1] - eps,
0.0,
pt[0] + eps,
pt[1] +eps,
0.0,
0)[0]
distance_field0 = gmsh.model.mesh.field.add("Distance")
gmsh.model.mesh.field.setNumbers(distance_field0, "PointsList", [bot[1]])
threshold_field0 = gmsh.model.mesh.field.add("Threshold")
gmsh.model.mesh.field.setNumber(threshold_field0,
"IField", distance_field0)
gmsh.model.mesh.field.setNumber(threshold_field0,
"LcMin", g['ice_front_mesh_size'])
gmsh.model.mesh.field.setNumber(threshold_field0,
"LcMax", g['max_element_size'])
gmsh.model.mesh.field.setNumber(threshold_field0,
"DistMin", g['Hi'])
gmsh.model.mesh.field.setNumber(threshold_field0,
"DistMax", g['Hi']*2)
distance_field = gmsh.model.mesh.field.add("Distance")
gmsh.model.mesh.field.setNumbers(distance_field, "EdgesList", [3])
threshold_field = gmsh.model.mesh.field.add("Threshold")
gmsh.model.mesh.field.setNumber(threshold_field,
"IField", distance_field)
gmsh.model.mesh.field.setNumber(threshold_field,
"LcMin", g['min_element_size'])
gmsh.model.mesh.field.setNumber(threshold_field,
"LcMax", g['max_element_size'])
gmsh.model.mesh.field.setNumber(threshold_field,
"DistMin", g['w_crevasse']*2)
gmsh.model.mesh.field.setNumber(threshold_field,
"DistMax", g['Hi'])
min_field = gmsh.model.mesh.field.add("Min")
gmsh.model.mesh.field.setNumbers(min_field,
"FieldsList", [threshold_field0, threshold_field])
gmsh.model.mesh.field.setAsBackgroundMesh(min_field)
# Generate the mesh
gmsh.model.mesh.generate(2)
if verbose > 2:
print(f"\t\tWriting mesh_{n}.msh")
gmsh.write(f"mesh/mesh_{n}.msh")
gmsh.finalize()
mesh_from_file = meshio.read(f"mesh/mesh_{n}.msh")
triangle_mesh = convert_mesh(mesh_from_file,
"triangle", prune_z=True)
meshio.write(f"mesh/mesh_{n}.xdmf", triangle_mesh)
line_mesh = convert_mesh(mesh_from_file, "line", prune_z=True)
meshio.write(f"mesh/facet_mesh_{n}.xdmf", line_mesh)