forked from naiveHobo/InvoiceNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_parser.py
69 lines (57 loc) · 2.74 KB
/
train_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright (c) 2020 Sarthak Mittal
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import argparse
from invoicenet.common import trainer
from invoicenet.parsing.parser import Parser
from invoicenet.parsing.data import ParseData
from invoicenet.acp.data import InvoiceData
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--field", type=str, required=True, choices=["amount", "date"],
help="field to train parser for")
ap.add_argument("--batch_size", type=int, default=128,
help="batch size for training")
ap.add_argument("--restore", action="store_true",
help="restore from checkpoint")
ap.add_argument("--steps", type=int, default=50000,
help="maximum number of training steps")
ap.add_argument("--early_stop_steps", type=int, default=0,
help="stop training if validation doesn't improve "
"for a given number of steps, disabled when 0 (default)")
args = ap.parse_args()
output_length = {"date": InvoiceData.seq_date, "amount": InvoiceData.seq_amount}[args.field]
train_data = ParseData.create_dataset(
path='invoicenet/parsing/data/%s/train.tsv' % args.field,
output_length=output_length,
batch_size=args.batch_size)
val_data = ParseData.create_dataset(
path='invoicenet/parsing/data/%s/valid.tsv' % args.field,
output_length=output_length,
batch_size=args.batch_size)
print("Training...")
trainer.train(
model=Parser(field=args.field, restore=args.restore),
train_data=train_data,
val_data=val_data,
total_steps=args.steps,
early_stop_steps=args.early_stop_steps
)
if __name__ == '__main__':
main()