-
Notifications
You must be signed in to change notification settings - Fork 175
/
Copy pathdataset.py
89 lines (73 loc) · 3.25 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf
import os
IMAGE_SIZE=128
def _extract_image_and_label(record):
"""Extracts and preprocesses the image and label from the record."""
features = tf.parse_single_example(
record,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64)
})
image_size = IMAGE_SIZE
image = tf.decode_raw(features['image_raw'], tf.uint8)
image.set_shape(image_size * image_size * 3)
image = tf.reshape(image, [image_size, image_size, 3])
image = tf.cast(image, tf.float32) * (2. / 255) - 1.
label = tf.cast(features['label'], tf.int32)
return image, label
class InputFunction(object):
"""Wrapper class that is passed as callable to Estimator."""
def __init__(self, is_training, noise_dim, dataset_name, num_classes, data_dir="./dataset",
cycle_length=64, shuffle_buffer_size=100000):
self.is_training = is_training
self.noise_dim = noise_dim
split = ('train' if is_training else 'test')
self.data_files = tf.gfile.Glob(os.path.join(data_dir, '*.tfrecords'))
self.parser = _extract_image_and_label
self.num_classes = num_classes
self.cycle_length = cycle_length
self.shuffle_buffer_size = shuffle_buffer_size
def __call__(self, params):
"""Creates a simple Dataset pipeline."""
batch_size = params['batch_size']
filename_dataset = tf.data.Dataset.from_tensor_slices(self.data_files)
filename_dataset = filename_dataset.shuffle(len(self.data_files))
def tfrecord_dataset(filename):
buffer_size = 8 * 1024 * 1224
return tf.data.TFRecordDataset(filename, buffer_size=buffer_size)
dataset = filename_dataset.apply(tf.contrib.data.parallel_interleave(
tfrecord_dataset,
cycle_length=self.cycle_length, sloppy=True))
if self.is_training:
dataset = dataset.apply(tf.contrib.data.shuffle_and_repeat(
self.shuffle_buffer_size, -1))
dataset = dataset.map(self.parser, num_parallel_calls=32)
dataset = dataset.apply(
tf.contrib.data.batch_and_drop_remainder(batch_size))
dataset = dataset.prefetch(4) # Prefetch overlaps in-feed with training
images, labels = dataset.make_one_shot_iterator().get_next()
labels = tf.squeeze(labels)
random_noise = tf.random_normal([batch_size, self.noise_dim])
gen_class_logits = tf.zeros((batch_size, self.num_classes))
gen_class_ints = tf.multinomial(gen_class_logits, 1)
gen_sparse_class = tf.squeeze(gen_class_ints)
features = {
'real_images': images,
'random_noise': random_noise,
'fake_labels': gen_sparse_class}
return features, labels