forked from fpellegrini/PAC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfp_pac_sim.m
251 lines (201 loc) · 8.1 KB
/
fp_pac_sim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
function fp_pac_sim(params)
% Whole-brain PAC simulation
%
% Copyright (c) 2023 Franziska Pellegrini and Stefan Haufe
% define folders for saving results
DIROUT = './';
DIROUT1 = './';
addpath(genpath(DIROUT))
if params.ip==9 % source localization is varied
%reload data from ip1 to keep them constant and only vary the source
%localization
params_save = params;
load(sprintf('%s/pac_sensorsig/%d.mat',DIROUT1,params.iit));
params = params_save;
clear params_save
else
%% signal generation
tic
% get atlas, voxel and roi indices; active voxel of each region
% is aleady selected here
fprintf('Getting atlas positions... \n')
D = fp_get_Desikan(params.iReg);
%signal generation
fprintf('Signal generation... \n')
[sig,brain_noise,sensor_noise,L,iroi_phase, iroi_amplt,D, fres, n_trials,filt] = ...
fp_pac_signal(params,D);
if params.ip==1 %if ip1, save signals for ip3
outname = sprintf('%s/pac_sig/%d.mat',DIROUT1,params.iit);
save(outname,'-v7.3')
end
%combine noise sources
noise = params.iss*brain_noise + (1-params.iss)*sensor_noise;
noise = noise ./ norm(noise(:),'fro');
%combine signal and noise
signal_sensor1 = params.isnr*sig + (1-params.isnr)*noise;
signal_sensor1 = signal_sensor1 ./ norm(signal_sensor1(:), 'fro');
%high-pass filter signal
signal_sensor = (filtfilt(filt.bhigh, filt.ahigh, signal_sensor1'))';
signal_sensor = signal_sensor / norm(signal_sensor, 'fro');
%reshape
signal_sensor = reshape(signal_sensor,[],size(signal_sensor,2)/n_trials,n_trials);
[n_sensors, l_epoch, n_trials] = size(signal_sensor);
t.signal = toc;
% if params.ip==1 %if ip1, save sig for ip9
% outname = sprintf('%s/pac_sensorsig/%d.mat',DIROUT1,params.iit);
% save(outname,'-v7.3')
% end
end
%% Leadfield
%select only voxels that belong to any roi
L_backward = L(:, D.ind_cortex, :);
%% null distribution for shabazi method
if params.ip == 1 || params.ip==4 || params.ip == 5 || params.ip == 6 || params.ip == 9 || params.ip==10
tic
%ICA
[W,~] = runica(signal_sensor(:,:));
signal_unmixed = W*signal_sensor(:,:);
signal_unmixed = reshape(signal_unmixed,n_sensors, l_epoch, n_trials);
for ishuf = 1:params.nshuf
%shuffling
fprintf(['Shuffle ' num2str(ishuf) '\n'])
signal_shuf = fp_shuffle_shab(W,signal_unmixed);
%lcmv
if strcmp(params.ifilt,'lf')
A = fp_get_lcmv_filtered(signal_shuf,L_backward,filt);
elseif strcmp(params.ifilt,'l')
A = fp_get_lcmv(signal_shuf,L_backward);
elseif strcmp(params.ifilt,'e')
reg_param = fp_eloreta_crossval(signal_sensor,L_backward,5);
A = squeeze(mkfilt_eloreta_v2(L_backward,reg_param));
A = permute(A,[1, 3, 2]);
else
error('wrong filter parameter')
end
%dimesionality reduction
signal_roi_shuf = fp_dimred(signal_shuf,D,A,params.t);
%pac score calculation
pac_shuf(:,:,ishuf) = fp_pac_standard(signal_roi_shuf, filt.low, filt.high, fres);
clear signal_shuf A signal_roi_shuf
end
t.shab = toc;
end
%%
%lcmv
if strcmp(params.ifilt,'lf')
A = fp_get_lcmv_filtered(signal_sensor,L_backward,filt);
elseif strcmp(params.ifilt,'l')
A = fp_get_lcmv(signal_sensor,L_backward);
elseif strcmp(params.ifilt,'e')
reg_param = fp_eloreta_crossval(signal_sensor,L_backward,5);
A = squeeze(mkfilt_eloreta_v2(L_backward,reg_param));
A = permute(A,[1, 3, 2]);
else
error('wrong filter parameter')
end
%dimensionality reduction
signal_roi = fp_dimred(signal_sensor,D,A,params.t);
%%
if params.case == 1 %univariate case
% bispectra
fprintf(['Calculating bispectra \n'])
nshuf = params.nshuf;
tic
%Calculation bispectrum w/o antisymm and ASB, and their null
%distributions, first entry is true score.
%shape of bispectra: amplitude ROI x phase ROI x nshuf
[b_orig, b_anti] = fp_pac_bispec_uni(signal_roi,fres,filt,nshuf+1);
t.bispec = toc;
fprintf(['Calculating MI and ortho \n'])
tic
for ishuf = 1:nshuf+1
clear s_shuf
for iroi = 1:D.nroi
%shuffle trials
if ishuf ==1 % first shuf is true value
inds = 1:n_trials;
else
inds = randperm(n_trials);
end
s_shuf(iroi,:,:) = signal_roi(iroi,:,inds);
end
%shuffled MI
pac_standard(:,:,ishuf) = fp_pac_standard(s_shuf, filt.low, filt.high, fres);
%shuffled ortho
[signal_ortho, ~, ~, ~] = symmetric_orthogonalise(s_shuf(:,:)', 1); %orthogonalize
signal_ortho = reshape(signal_ortho',D.nroi,l_epoch,n_trials);
pac_ortho(:,:,ishuf) = fp_pac_standard(signal_ortho, filt.low, filt.high, fres);
end
t.shufMI = toc;
%calculate p-values for all ROI combinations
for iroi = 1:D.nroi
for jroi = 1:D.nroi
p_orig(iroi,jroi) = sum(squeeze(b_orig(iroi,jroi,1))<squeeze(b_orig(iroi,jroi,2:end)))/nshuf;
p_anti(iroi,jroi) = sum(squeeze(b_anti(iroi,jroi,1))<squeeze(b_anti(iroi,jroi,2:end)))/nshuf;
p_standard(iroi,jroi) = sum(squeeze(pac_standard(iroi,jroi,1))<squeeze(pac_standard(iroi,jroi,2:end)))/nshuf;
p_ortho(iroi,jroi) = sum(squeeze(pac_ortho(iroi,jroi,1))<squeeze(pac_ortho(iroi,jroi,2:end)))/nshuf;
if params.ip==10
p_shahbazi(iroi,jroi) = sum(squeeze(pac_standard(iroi,jroi,1))<squeeze(pac_shuf(iroi,jroi,:)))/nshuf;
else
p_shahbazi=[];
end
end
end
%save evaluation parameters
outname1 = sprintf('%spr_%s.mat',DIROUT,params.logname);
save(outname1,...
'p_standard','p_ortho','p_shahbazi','p_orig','p_anti','t','iroi_phase','iroi_amplt',...
'-v7.3')
else
%MI
fprintf(['Calculating MI \n'])
tic
pac_standard = fp_pac_standard(signal_roi, filt.low, filt.high, fres);
t.standard = toc;
%ortho+MI
tic
fprintf(['Calculating ortho pac \n'])
[signal_ortho, ~, ~, ~] = symmetric_orthogonalise(signal_roi(:,:)', 1);
signal_ortho = reshape(signal_ortho',D.nroi,l_epoch,n_trials);
pac_ortho = fp_pac_standard(signal_ortho, filt.low, filt.high, fres);
t.ortho = toc;
%IC shuffling: normalize MI with null distribution
if params.ip == 1 || params.ip==4 || params.ip == 5 || params.ip == 6 || params.ip == 9
pac_shahbazi = (pac_standard-mean(pac_shuf,3))/std(pac_shuf,[],3);
end
% bispectra
fprintf(['Calculating bispectra \n'])
tic
[b_orig, b_anti, b_orig_norm,b_anti_norm] = fp_pac_bispec(signal_roi,fres,filt);
t.bispec = toc;
%% Evaluate
if params.case==3
%remove univariate interaction before calculating performance
iroi_amplt_save = iroi_amplt;
iroi_phase_save = iroi_phase;
iroi_amplt(1:params.iInt(1))=[];
iroi_phase(1:params.iInt(1))=[];
end
%calculate percentage rank
pr_shahbazi=[];
if params.ip == 1 || params.ip==4 || params.ip == 5 || params.ip == 6 || params.ip == 9
[pr_shahbazi] = fp_pr_pac(pac_shahbazi,iroi_amplt,iroi_phase);
end
[pr_standard] = fp_pr_pac(pac_standard,iroi_amplt,iroi_phase);
[pr_ortho] = fp_pr_pac(pac_ortho,iroi_amplt,iroi_phase);
[pr_bispec_o] = fp_pr_pac(b_orig,iroi_amplt,iroi_phase);
[pr_bispec_a] = fp_pr_pac(b_anti,iroi_amplt,iroi_phase);
[pr_bispec_o_norm] = fp_pr_pac(b_orig_norm,iroi_amplt,iroi_phase);
[pr_bispec_a_norm] = fp_pr_pac(b_anti_norm,iroi_amplt,iroi_phase);
%save evaluation parameters
outname1 = sprintf('%spr_%s.mat',DIROUT,params.logname);
save(outname1,...
'pr_standard','pr_ortho','pr_shahbazi','pr_bispec_o','pr_bispec_a',...
'pr_bispec_o_norm','pr_bispec_a_norm','t',...
'-v7.3')
end
%% Saving workspace
% fprintf('Saving... \n')
% %save all
% outname = sprintf('%spac_%s.mat',DIROUT,params.logname);
% save(outname,'-v7.3')