-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathhr_layers.py
468 lines (364 loc) · 15.7 KB
/
hr_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
from __future__ import absolute_import, division, print_function
import numpy as np
import math
from matplotlib import pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
def visual_feature(features,stage):
feature_map = features.squeeze(0).cpu()
n,h,w = feature_map.size()
print(h,w)
list_mean = []
#sum_feature_map = torch.sum(feature_map,0)
sum_feature_map,_ = torch.max(feature_map,0)
for i in range(n):
list_mean.append(torch.mean(feature_map[i]))
sum_mean = sum(list_mean)
feature_map_weighted = torch.ones([n,h,w])
for i in range(n):
feature_map_weighted[i,:,:] = (torch.mean(feature_map[i]) / sum_mean) * feature_map[i,:,:]
sum_feature_map_weighted = torch.sum(feature_map_weighted,0)
plt.imshow(sum_feature_map)
#plt.savefig('feature_viz/{}_stage.png'.format(a))
plt.savefig('feature_viz/decoder_{}.png'.format(stage))
plt.imshow(sum_feature_map_weighted)
#plt.savefig('feature_viz/{}_stage_weighted.png'.format(a))
plt.savefig('feature_viz/decoder_{}_weighted.png'.format(stage))
def depth_to_disp(depth, min_depth, max_depth):
min_disp = 1 / max_depth
max_disp = 1 / min_depth
disp = 1 / depth - min_disp
return disp / (max_disp - min_disp)
def disp_to_depth(disp, min_depth, max_depth):
"""Convert network's sigmoid output into depth prediction
The formula for this conversion is given in the 'additional considerations'
section of the paper.
"""
min_disp = 1 / max_depth
max_disp = 1 / min_depth
scaled_disp = min_disp + (max_disp - min_disp) * disp
depth = 1 / scaled_disp
return scaled_disp, depth
def transformation_from_parameters(axisangle, translation, invert=False):
"""Convert the network's (axisangle, translation) output into a 4x4 matrix
"""
R = rot_from_axisangle(axisangle)
t = translation.clone()
if invert:
R = R.transpose(1, 2)
t *= -1
T = get_translation_matrix(t)
if invert:
M = torch.matmul(R, T)
else:
M = torch.matmul(T, R)
return M
def get_translation_matrix(translation_vector):
"""Convert a translation vector into a 4x4 transformation matrix
"""
T = torch.zeros(translation_vector.shape[0], 4, 4).to(device=translation_vector.device)
t = translation_vector.contiguous().view(-1, 3, 1)
T[:, 0, 0] = 1
T[:, 1, 1] = 1
T[:, 2, 2] = 1
T[:, 3, 3] = 1
T[:, :3, 3, None] = t
return T
def rot_from_axisangle(vec):
"""Convert an axisangle rotation into a 4x4 transformation matrix
(adapted from https://github.com/Wallacoloo/printipi)
Input 'vec' has to be Bx1x3
"""
angle = torch.norm(vec, 2, 2, True)
axis = vec / (angle + 1e-7)
ca = torch.cos(angle)
sa = torch.sin(angle)
C = 1 - ca
x = axis[..., 0].unsqueeze(1)
y = axis[..., 1].unsqueeze(1)
z = axis[..., 2].unsqueeze(1)
xs = x * sa
ys = y * sa
zs = z * sa
xC = x * C
yC = y * C
zC = z * C
xyC = x * yC
yzC = y * zC
zxC = z * xC
rot = torch.zeros((vec.shape[0], 4, 4)).to(device=vec.device)
rot[:, 0, 0] = torch.squeeze(x * xC + ca)
rot[:, 0, 1] = torch.squeeze(xyC - zs)
rot[:, 0, 2] = torch.squeeze(zxC + ys)
rot[:, 1, 0] = torch.squeeze(xyC + zs)
rot[:, 1, 1] = torch.squeeze(y * yC + ca)
rot[:, 1, 2] = torch.squeeze(yzC - xs)
rot[:, 2, 0] = torch.squeeze(zxC - ys)
rot[:, 2, 1] = torch.squeeze(yzC + xs)
rot[:, 2, 2] = torch.squeeze(z * zC + ca)
rot[:, 3, 3] = 1
return rot
class ConvBlock(nn.Module):
"""Layer to perform a convolution followed by ELU
"""
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv = Conv3x3(in_channels, out_channels)
self.nonlin = nn.ELU(inplace=True)
def forward(self, x):
out = self.conv(x)
out = self.nonlin(out)
return out
class Conv3x3(nn.Module):
"""Layer to pad and convolve input
"""
def __init__(self, in_channels, out_channels, use_refl=True):
super(Conv3x3, self).__init__()
if use_refl:
self.pad = nn.ReflectionPad2d(1)
else:
self.pad = nn.ZeroPad2d(1)
self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3)
def forward(self, x):
out = self.pad(x)
out = self.conv(out)
return out
class Conv1x1(nn.Module):
def __init__(self, in_channels, out_channels):
super(Conv1x1, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, 1, stride=1, bias=False)
def forward(self, x):
return self.conv(x)
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels):
super(ASPP, self).__init__()
self.atrous_block1 = nn.Conv2d(in_channels, out_channels, 1, 1)
self.atrous_block6 = nn.Conv2d(in_channels, out_channels, 3, 1, padding=6, dilation=6)
self.atrous_block12 = nn.Conv2d(in_channels, out_channels, 3, 1, padding=12, dilation=12)
self.atrous_block18 = nn.Conv2d(in_channels, out_channels, 3, 1, padding=18, dilation=18)
self.conv1x1 = nn.Conv2d(out_channels*4, out_channels, 1, 1)
def forward(self, features):
features_1 = self.atrous_block18(features[0])
features_2 = self.atrous_block12(features[1])
features_3 = self.atrous_block6(features[2])
features_4 = self.atrous_block1(features[3])
output_feature = [features_1, features_2, features_3, features_4]
output_feature = torch.cat(output_feature, 1)
return self.conv1x1(output_feature)
class BackprojectDepth(nn.Module):
"""Layer to transform a depth image into a point cloud
"""
def __init__(self, batch_size, height, width):
super(BackprojectDepth, self).__init__()
self.batch_size = batch_size
self.height = height
self.width = width
# Prepare Coordinates shape [b,3,h*w]
meshgrid = np.meshgrid(range(self.width), range(self.height), indexing='xy')
self.id_coords = np.stack(meshgrid, axis=0).astype(np.float32)
self.id_coords = nn.Parameter(torch.from_numpy(self.id_coords),
requires_grad=False)
self.ones = nn.Parameter(torch.ones(self.batch_size, 1, self.height * self.width),
requires_grad=False)
self.pix_coords = torch.unsqueeze(torch.stack(
[self.id_coords[0].view(-1), self.id_coords[1].view(-1)], 0), 0)
self.pix_coords = self.pix_coords.repeat(batch_size, 1, 1)
self.pix_coords = nn.Parameter(torch.cat([self.pix_coords, self.ones], 1),
requires_grad=False)
def forward(self, depth, inv_K):
cam_points = torch.matmul(inv_K[:, :3, :3], self.pix_coords)
cam_points = depth.view(self.batch_size, 1, -1) * cam_points
cam_points = torch.cat([cam_points, self.ones], 1)
return cam_points
class Project3D(nn.Module):
"""Layer which projects 3D points into a camera with intrinsics K and at position T
"""
def __init__(self, batch_size, height, width, eps=1e-7):
super(Project3D, self).__init__()
self.batch_size = batch_size
self.height = height
self.width = width
self.eps = eps
def forward(self, points, K, T):
P = torch.matmul(K, T)[:, :3, :]
cam_points = torch.matmul(P, points)
pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze(1) + self.eps)
pix_coords = pix_coords.view(self.batch_size, 2, self.height, self.width)
pix_coords = pix_coords.permute(0, 2, 3, 1)
# normalize
pix_coords[..., 0] /= self.width - 1
pix_coords[..., 1] /= self.height - 1
pix_coords = (pix_coords - 0.5) * 2
return pix_coords
def upsample(x):
"""Upsample input tensor by a factor of 2
"""
return F.interpolate(x, scale_factor=2, mode="nearest")
def get_smooth_loss(disp, img):
"""Computes the smoothness loss for a disparity image
The color image is used for edge-aware smoothness
"""
grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])
grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :]), 1, keepdim=True)
grad_disp_x *= torch.exp(-grad_img_x)
grad_disp_y *= torch.exp(-grad_img_y)
return grad_disp_x.mean() + grad_disp_y.mean()
class SSIM(nn.Module):
"""Layer to compute the SSIM loss between a pair of images
"""
def __init__(self):
super(SSIM, self).__init__()
self.mu_x_pool = nn.AvgPool2d(3, 1)
self.mu_y_pool = nn.AvgPool2d(3, 1)
self.sig_x_pool = nn.AvgPool2d(3, 1)
self.sig_y_pool = nn.AvgPool2d(3, 1)
self.sig_xy_pool = nn.AvgPool2d(3, 1)
self.refl = nn.ReflectionPad2d(1)
self.C1 = 0.01 ** 2
self.C2 = 0.03 ** 2
def forward(self, x, y):
x = self.refl(x)
y = self.refl(y)
mu_x = self.mu_x_pool(x)
mu_y = self.mu_y_pool(y)
sigma_x = self.sig_x_pool(x ** 2) - mu_x ** 2
sigma_y = self.sig_y_pool(y ** 2) - mu_y ** 2
sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y
SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2)
SSIM_d = (mu_x ** 2 + mu_y ** 2 + self.C1) * (sigma_x + sigma_y + self.C2)
return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1)
def compute_depth_errors(gt, pred):
"""Computation of error metrics between predicted and ground truth depths
"""
thresh = torch.max((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).float().mean()
a2 = (thresh < 1.25 ** 2).float().mean()
a3 = (thresh < 1.25 ** 3).float().mean()
rmse = (gt - pred) ** 2
rmse = torch.sqrt(rmse.mean())
rmse_log = (torch.log(gt) - torch.log(pred)) ** 2
rmse_log = torch.sqrt(rmse_log.mean())
abs_rel = torch.mean(torch.abs(gt - pred) / gt)
sq_rel = torch.mean((gt - pred) ** 2 / gt)
return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3
class SE_block(nn.Module):
def __init__(self, in_channel, visual_weights = False, reduction = 16 ):
super(SE_block, self).__init__()
reduction = reduction
in_channel = in_channel
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channel, in_channel // reduction, bias = False),
nn.ReLU(inplace = True),
nn.Linear(in_channel // reduction, in_channel, bias = False)
)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU(inplace = True)
self.vis = False
def forward(self, in_feature):
b,c,_,_ = in_feature.size()
output_weights_avg = self.avg_pool(in_feature).view(b,c)
output_weights_max = self.max_pool(in_feature).view(b,c)
output_weights_avg = self.fc(output_weights_avg).view(b,c,1,1)
output_weights_max = self.fc(output_weights_max).view(b,c,1,1)
output_weights = output_weights_avg + output_weights_max
output_weights = self.sigmoid(output_weights)
return output_weights.expand_as(in_feature) * in_feature
## ChannelAttetion
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_planes,in_planes // ratio, bias = False),
nn.ReLU(inplace = True),
nn.Linear(in_planes // ratio, in_planes, bias = False)
)
self.sigmoid = nn.Sigmoid()
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
def forward(self, in_feature):
x = in_feature
b, c, _, _ = in_feature.size()
avg_out = self.fc(self.avg_pool(x).view(b,c)).view(b, c, 1, 1)
out = avg_out
return self.sigmoid(out).expand_as(in_feature) * in_feature
## SpatialAttetion
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
self.sigmoid = nn.Sigmoid()
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
def forward(self, in_feature):
x = in_feature
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
#x = avg_out
#x = max_out
x = self.conv1(x)
return self.sigmoid(x).expand_as(in_feature) * in_feature
#CS means channel-spatial
class CS_Block(nn.Module):
def __init__(self, in_channel, reduction = 16 ):
super(CS_Block, self).__init__()
reduction = reduction
in_channel = in_channel
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channel, in_channel // reduction, bias = False),
nn.ReLU(inplace = True),
nn.Linear(in_channel // reduction, in_channel, bias = False)
)
self.sigmoid = nn.Sigmoid()
## Spatial_Block
self.conv = nn.Conv2d(2,1,kernel_size = 1, bias = False)
#self.conv = nn.Conv2d(1,1,kernel_size = 1, bias = False)
self.relu = nn.ReLU(inplace = True)
def forward(self, in_feature):
b,c,_,_ = in_feature.size()
output_weights_avg = self.avg_pool(in_feature).view(b,c)
output_weights_max = self.max_pool(in_feature).view(b,c)
output_weights_avg = self.fc(output_weights_avg).view(b,c,1,1)
output_weights_max = self.fc(output_weights_max).view(b,c,1,1)
output_weights = output_weights_avg + output_weights_max
output_weights = self.sigmoid(output_weights)
out_feature_1 = output_weights.expand_as(in_feature) * in_feature
## Spatial_Block
in_feature_avg = torch.mean(out_feature_1,1,True)
in_feature_max,_ = torch.max(out_feature_1,1,True)
mixed_feature = torch.cat([in_feature_avg,in_feature_max],1)
spatial_attention = self.sigmoid(self.conv(mixed_feature))
out_feature = spatial_attention.expand_as(out_feature_1) * out_feature_1
#########################
return out_feature
class Attention_Module(nn.Module):
def __init__(self, high_feature_channel, low_feature_channels, output_channel = None):
super(Attention_Module, self).__init__()
in_channel = high_feature_channel + low_feature_channels
out_channel = high_feature_channel
if output_channel is not None:
out_channel = output_channel
channel = in_channel
self.ca = ChannelAttention(channel)
#self.sa = SpatialAttention()
#self.cs = CS_Block(channel)
self.conv_se = nn.Conv2d(in_channels = in_channel, out_channels = out_channel, kernel_size = 3, stride = 1, padding = 1 )
self.relu = nn.ReLU(inplace = True)
def forward(self, high_features, low_features):
features = [upsample(high_features)]
features += low_features
features = torch.cat(features, 1)
features = self.ca(features)
#features = self.sa(features)
#features = self.cs(features)
return self.relu(self.conv_se(features))