-
Notifications
You must be signed in to change notification settings - Fork 436
/
convertphrase.py
883 lines (720 loc) · 23.1 KB
/
convertphrase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
#!/usr/bin/env python
# Brendio's Passphrase to private key converter
# convertphrase.py 0.1
# based on http://github.com/gavinandresen/bitcointools and pywallet.py
#
# Usage: convertphrase.py [options]
#
# Options:
# --version show program's version number and exit
# -h, --help show this help message and exit
# --phrase="KEYSTR" convert the passphrase "KEYSTR" to a private key hash
from bsddb.db import *
import os, sys, time
import json
import logging
import struct
import StringIO
import traceback
import socket
import types
import string
import exceptions
import hashlib
import random
max_version = 32400
addrtype = 0
json_db = {}
private_keys = []
def determine_db_dir():
import os
import os.path
import platform
if platform.system() == "Darwin":
return os.path.expanduser("~/Library/Application Support/Bitcoin/")
elif platform.system() == "Windows":
return os.path.join(os.environ['APPDATA'], "Bitcoin")
return os.path.expanduser("~/.bitcoin")
# secp256k1
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
class CurveFp( object ):
def __init__( self, p, a, b ):
self.__p = p
self.__a = a
self.__b = b
def p( self ):
return self.__p
def a( self ):
return self.__a
def b( self ):
return self.__b
def contains_point( self, x, y ):
return ( y * y - ( x * x * x + self.__a * x + self.__b ) ) % self.__p == 0
class Point( object ):
def __init__( self, curve, x, y, order = None ):
self.__curve = curve
self.__x = x
self.__y = y
self.__order = order
if self.__curve: assert self.__curve.contains_point( x, y )
if order: assert self * order == INFINITY
def __add__( self, other ):
if other == INFINITY: return self
if self == INFINITY: return other
assert self.__curve == other.__curve
if self.__x == other.__x:
if ( self.__y + other.__y ) % self.__curve.p() == 0:
return INFINITY
else:
return self.double()
p = self.__curve.p()
l = ( ( other.__y - self.__y ) * \
inverse_mod( other.__x - self.__x, p ) ) % p
x3 = ( l * l - self.__x - other.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def __mul__( self, other ):
def leftmost_bit( x ):
assert x > 0
result = 1L
while result <= x: result = 2 * result
return result / 2
e = other
if self.__order: e = e % self.__order
if e == 0: return INFINITY
if self == INFINITY: return INFINITY
assert e > 0
e3 = 3 * e
negative_self = Point( self.__curve, self.__x, -self.__y, self.__order )
i = leftmost_bit( e3 ) / 2
result = self
while i > 1:
result = result.double()
if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self
if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self
i = i / 2
return result
def __rmul__( self, other ):
return self * other
def __str__( self ):
if self == INFINITY: return "infinity"
return "(%d,%d)" % ( self.__x, self.__y )
def double( self ):
if self == INFINITY:
return INFINITY
p = self.__curve.p()
a = self.__curve.a()
l = ( ( 3 * self.__x * self.__x + a ) * \
inverse_mod( 2 * self.__y, p ) ) % p
x3 = ( l * l - 2 * self.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def x( self ):
return self.__x
def y( self ):
return self.__y
def curve( self ):
return self.__curve
def order( self ):
return self.__order
INFINITY = Point( None, None, None )
def inverse_mod( a, m ):
if a < 0 or m <= a: a = a % m
c, d = a, m
uc, vc, ud, vd = 1, 0, 0, 1
while c != 0:
q, c, d = divmod( d, c ) + ( c, )
uc, vc, ud, vd = ud - q*uc, vd - q*vc, uc, vc
assert d == 1
if ud > 0: return ud
else: return ud + m
class Signature( object ):
def __init__( self, r, s ):
self.r = r
self.s = s
class Public_key( object ):
def __init__( self, generator, point ):
self.curve = generator.curve()
self.generator = generator
self.point = point
n = generator.order()
if not n:
raise RuntimeError, "Generator point must have order."
if not n * point == INFINITY:
raise RuntimeError, "Generator point order is bad."
if point.x() < 0 or n <= point.x() or point.y() < 0 or n <= point.y():
raise RuntimeError, "Generator point has x or y out of range."
def verifies( self, hash, signature ):
G = self.generator
n = G.order()
r = signature.r
s = signature.s
if r < 1 or r > n-1: return False
if s < 1 or s > n-1: return False
c = inverse_mod( s, n )
u1 = ( hash * c ) % n
u2 = ( r * c ) % n
xy = u1 * G + u2 * self.point
v = xy.x() % n
return v == r
class Private_key( object ):
def __init__( self, public_key, secret_multiplier ):
self.public_key = public_key
self.secret_multiplier = secret_multiplier
def der( self ):
hex_der_key = '06052b8104000a30740201010420' + \
'%064x' % self.secret_multiplier + \
'a00706052b8104000aa14403420004' + \
'%064x' % self.public_key.point.x() + \
'%064x' % self.public_key.point.y()
def sign( self, hash, random_k ):
G = self.public_key.generator
n = G.order()
k = random_k % n
p1 = k * G
r = p1.x()
if r == 0: raise RuntimeError, "amazingly unlucky random number r"
s = ( inverse_mod( k, n ) * \
( hash + ( self.secret_multiplier * r ) % n ) ) % n
if s == 0: raise RuntimeError, "amazingly unlucky random number s"
return Signature( r, s )
class EC_KEY(object):
def __init__( self, secret ):
curve = CurveFp( _p, _a, _b )
generator = Point( curve, _Gx, _Gy, _r )
self.pubkey = Public_key( generator, generator * secret )
self.privkey = Private_key( self.pubkey, secret )
self.secret = secret
def i2d_ECPrivateKey(pkey):
hex_i2d_key = '308201130201010420' + \
'%064x' % pkey.secret + \
'a081a53081a2020101302c06072a8648ce3d0101022100' + \
'%064x' % _p + \
'3006040100040107044104' + \
'%064x' % _Gx + \
'%064x' % _Gy + \
'022100' + \
'%064x' % _r + \
'020101a14403420004' + \
'%064x' % pkey.pubkey.point.x() + \
'%064x' % pkey.pubkey.point.y()
return hex_i2d_key.decode('hex')
def i2o_ECPublicKey(pkey):
hex_i2o_key = '04' + \
'%064x' % pkey.pubkey.point.x() + \
'%064x' % pkey.pubkey.point.y()
return hex_i2o_key.decode('hex')
# hashes
def hash_160(public_key):
md = hashlib.new('ripemd160')
md.update(hashlib.sha256(public_key).digest())
return md.digest()
def public_key_to_bc_address(public_key):
h160 = hash_160(public_key)
return hash_160_to_bc_address(h160)
def hash_160_to_bc_address(h160):
vh160 = chr(addrtype) + h160
h = Hash(vh160)
addr = vh160 + h[0:4]
return b58encode(addr)
def bc_address_to_hash_160(addr):
bytes = b58decode(addr, 25)
return bytes[1:21]
def long_hex(bytes):
return bytes.encode('hex_codec')
def short_hex(bytes):
t = bytes.encode('hex_codec')
if len(t) < 32:
return t
return t[0:32]+"..."+t[-32:]
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
__b58base = len(__b58chars)
def b58encode(v):
""" encode v, which is a string of bytes, to base58.
"""
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += (256**i) * ord(c)
result = ''
while long_value >= __b58base:
div, mod = divmod(long_value, __b58base)
result = __b58chars[mod] + result
long_value = div
result = __b58chars[long_value] + result
# Bitcoin does a little leading-zero-compression:
# leading 0-bytes in the input become leading-1s
nPad = 0
for c in v:
if c == '\0': nPad += 1
else: break
return (__b58chars[0]*nPad) + result
def b58decode(v, length):
""" decode v into a string of len bytes
"""
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += __b58chars.find(c) * (__b58base**i)
result = ''
while long_value >= 256:
div, mod = divmod(long_value, 256)
result = chr(mod) + result
long_value = div
result = chr(long_value) + result
nPad = 0
for c in v:
if c == __b58chars[0]: nPad += 1
else: break
result = chr(0)*nPad + result
if length is not None and len(result) != length:
return None
return result
def long_hex(bytes):
return bytes.encode('hex_codec')
def Hash(data):
return hashlib.sha256(hashlib.sha256(data).digest()).digest()
def EncodeBase58Check(vchIn):
hash = Hash(vchIn)
return b58encode(vchIn + hash[0:4])
def DecodeBase58Check(psz):
vchRet = b58decode(psz, None)
key = vchRet[0:-4]
csum = vchRet[-4:]
hash = Hash(key)
cs32 = hash[0:4]
if cs32 != csum:
return None
else:
return key
def str_to_long(b):
res = 0
pos = 1
for a in reversed(b):
res += ord(a) * pos
pos *= 256
return res
def PrivKeyToSecret(privkey):
return privkey[9:9+32]
def Add0x80(secret):
vchIn = chr(addrtype+128) + secret
return vchIn
def SecretToASecret(secret):
vchIn = chr(addrtype+128) + secret
return EncodeBase58Check(vchIn)
def ASecretToSecret(key):
vch = DecodeBase58Check(key)
if vch and vch[0] == chr(addrtype+128):
return vch[1:]
else:
return False
def regenerate_key(sec):
b = ASecretToSecret(sec)
if not b:
return False
secret = str_to_long(b)
return EC_KEY(secret)
def GetPubKey(pkey):
return i2o_ECPublicKey(pkey)
def GetPrivKey(pkey):
return i2d_ECPrivateKey(pkey)
def GetSecret(pkey):
return ('%064x' % pkey.secret).decode('hex')
# parser
def create_env(db_dir):
db_env = DBEnv(0)
r = db_env.open(db_dir, (DB_CREATE|DB_INIT_LOCK|DB_INIT_LOG|DB_INIT_MPOOL|DB_INIT_TXN|DB_THREAD|DB_RECOVER))
return db_env
def parse_CAddress(vds):
d = {'ip':'0.0.0.0','port':0,'nTime': 0}
try:
d['nVersion'] = vds.read_int32()
d['nTime'] = vds.read_uint32()
d['nServices'] = vds.read_uint64()
d['pchReserved'] = vds.read_bytes(12)
d['ip'] = socket.inet_ntoa(vds.read_bytes(4))
d['port'] = vds.read_uint16()
except:
pass
return d
def deserialize_CAddress(d):
return d['ip']+":"+str(d['port'])
def parse_BlockLocator(vds):
d = { 'hashes' : [] }
nHashes = vds.read_compact_size()
for i in xrange(nHashes):
d['hashes'].append(vds.read_bytes(32))
return d
def deserialize_BlockLocator(d):
result = "Block Locator top: "+d['hashes'][0][::-1].encode('hex_codec')
return result
def parse_setting(setting, vds):
if setting[0] == "f": # flag (boolean) settings
return str(vds.read_boolean())
elif setting[0:4] == "addr": # CAddress
d = parse_CAddress(vds)
return deserialize_CAddress(d)
elif setting == "nTransactionFee":
return vds.read_int64()
elif setting == "nLimitProcessors":
return vds.read_int32()
return 'unknown setting'
class SerializationError(Exception):
""" Thrown when there's a problem deserializing or serializing """
class BCDataStream(object):
def __init__(self):
self.input = None
self.read_cursor = 0
def clear(self):
self.input = None
self.read_cursor = 0
def write(self, bytes): # Initialize with string of bytes
if self.input is None:
self.input = bytes
else:
self.input += bytes
def map_file(self, file, start): # Initialize with bytes from file
self.input = mmap.mmap(file.fileno(), 0, access=mmap.ACCESS_READ)
self.read_cursor = start
def seek_file(self, position):
self.read_cursor = position
def close_file(self):
self.input.close()
def read_string(self):
# Strings are encoded depending on length:
# 0 to 252 : 1-byte-length followed by bytes (if any)
# 253 to 65,535 : byte'253' 2-byte-length followed by bytes
# 65,536 to 4,294,967,295 : byte '254' 4-byte-length followed by bytes
# ... and the Bitcoin client is coded to understand:
# greater than 4,294,967,295 : byte '255' 8-byte-length followed by bytes of string
# ... but I don't think it actually handles any strings that big.
if self.input is None:
raise SerializationError("call write(bytes) before trying to deserialize")
try:
length = self.read_compact_size()
except IndexError:
raise SerializationError("attempt to read past end of buffer")
return self.read_bytes(length)
def write_string(self, string):
# Length-encoded as with read-string
self.write_compact_size(len(string))
self.write(string)
def read_bytes(self, length):
try:
result = self.input[self.read_cursor:self.read_cursor+length]
self.read_cursor += length
return result
except IndexError:
raise SerializationError("attempt to read past end of buffer")
return ''
def read_boolean(self): return self.read_bytes(1)[0] != chr(0)
def read_int16(self): return self._read_num('<h')
def read_uint16(self): return self._read_num('<H')
def read_int32(self): return self._read_num('<i')
def read_uint32(self): return self._read_num('<I')
def read_int64(self): return self._read_num('<q')
def read_uint64(self): return self._read_num('<Q')
def write_boolean(self, val): return self.write(chr(1) if val else chr(0))
def write_int16(self, val): return self._write_num('<h', val)
def write_uint16(self, val): return self._write_num('<H', val)
def write_int32(self, val): return self._write_num('<i', val)
def write_uint32(self, val): return self._write_num('<I', val)
def write_int64(self, val): return self._write_num('<q', val)
def write_uint64(self, val): return self._write_num('<Q', val)
def read_compact_size(self):
size = ord(self.input[self.read_cursor])
self.read_cursor += 1
if size == 253:
size = self._read_num('<H')
elif size == 254:
size = self._read_num('<I')
elif size == 255:
size = self._read_num('<Q')
return size
def write_compact_size(self, size):
if size < 0:
raise SerializationError("attempt to write size < 0")
elif size < 253:
self.write(chr(size))
elif size < 2**16:
self.write('\xfd')
self._write_num('<H', size)
elif size < 2**32:
self.write('\xfe')
self._write_num('<I', size)
elif size < 2**64:
self.write('\xff')
self._write_num('<Q', size)
def _read_num(self, format):
(i,) = struct.unpack_from(format, self.input, self.read_cursor)
self.read_cursor += struct.calcsize(format)
return i
def _write_num(self, format, num):
s = struct.pack(format, num)
self.write(s)
def open_wallet(db_env, writable=False):
db = DB(db_env)
flags = DB_THREAD | (DB_CREATE if writable else DB_RDONLY)
try:
r = db.open("wallet.dat", "main", DB_BTREE, flags)
except DBError:
r = True
if r is not None:
logging.error("Couldn't open wallet.dat/main. Try quitting Bitcoin and running this again.")
sys.exit(1)
return db
def parse_wallet(db, item_callback):
kds = BCDataStream()
vds = BCDataStream()
for (key, value) in db.items():
d = { }
kds.clear(); kds.write(key)
vds.clear(); vds.write(value)
type = kds.read_string()
d["__key__"] = key
d["__value__"] = value
d["__type__"] = type
try:
if type == "tx":
d["tx_id"] = kds.read_bytes(32)
elif type == "name":
d['hash'] = kds.read_string()
d['name'] = vds.read_string()
elif type == "version":
d['version'] = vds.read_uint32()
elif type == "setting":
d['setting'] = kds.read_string()
d['value'] = parse_setting(d['setting'], vds)
elif type == "key":
d['public_key'] = kds.read_bytes(kds.read_compact_size())
d['private_key'] = vds.read_bytes(vds.read_compact_size())
elif type == "wkey":
d['public_key'] = kds.read_bytes(kds.read_compact_size())
d['private_key'] = vds.read_bytes(vds.read_compact_size())
d['created'] = vds.read_int64()
d['expires'] = vds.read_int64()
d['comment'] = vds.read_string()
elif type == "defaultkey":
d['key'] = vds.read_bytes(vds.read_compact_size())
elif type == "pool":
d['n'] = kds.read_int64()
d['nVersion'] = vds.read_int32()
d['nTime'] = vds.read_int64()
d['public_key'] = vds.read_bytes(vds.read_compact_size())
elif type == "acc":
d['account'] = kds.read_string()
d['nVersion'] = vds.read_int32()
d['public_key'] = vds.read_bytes(vds.read_compact_size())
elif type == "acentry":
d['account'] = kds.read_string()
d['n'] = kds.read_uint64()
d['nVersion'] = vds.read_int32()
d['nCreditDebit'] = vds.read_int64()
d['nTime'] = vds.read_int64()
d['otherAccount'] = vds.read_string()
d['comment'] = vds.read_string()
elif type == "bestblock":
d['nVersion'] = vds.read_int32()
d.update(parse_BlockLocator(vds))
item_callback(type, d)
except Exception, e:
traceback.print_exc()
print("ERROR parsing wallet.dat, type %s" % type)
print("key data in hex: %s"%key.encode('hex_codec'))
print("value data in hex: %s"%value.encode('hex_codec'))
sys.exit(1)
def update_wallet(db, type, data):
"""Write a single item to the wallet.
db must be open with writable=True.
type and data are the type code and data dictionary as parse_wallet would
give to item_callback.
data's __key__, __value__ and __type__ are ignored; only the primary data
fields are used.
"""
d = data
kds = BCDataStream()
vds = BCDataStream()
# Write the type code to the key
kds.write_string(type)
vds.write("") # Ensure there is something
try:
if type == "tx":
raise NotImplementedError("Writing items of type 'tx'")
kds.write(d['tx_id'])
elif type == "name":
kds.write_string(d['hash'])
vds.write_string(d['name'])
elif type == "version":
vds.write_uint32(d['version'])
elif type == "setting":
raise NotImplementedError("Writing items of type 'setting'")
kds.write_string(d['setting'])
#d['value'] = parse_setting(d['setting'], vds)
elif type == "key":
kds.write_string(d['public_key'])
vds.write_string(d['private_key'])
elif type == "wkey":
kds.write_string(d['public_key'])
vds.write_string(d['private_key'])
vds.write_int64(d['created'])
vds.write_int64(d['expires'])
vds.write_string(d['comment'])
elif type == "defaultkey":
vds.write_string(d['key'])
elif type == "pool":
kds.write_int64(d['n'])
vds.write_int32(d['nVersion'])
vds.write_int64(d['nTime'])
vds.write_string(d['public_key'])
elif type == "acc":
kds.write_string(d['account'])
vds.write_int32(d['nVersion'])
vds.write_string(d['public_key'])
elif type == "acentry":
kds.write_string(d['account'])
kds.write_uint64(d['n'])
vds.write_int32(d['nVersion'])
vds.write_int64(d['nCreditDebit'])
vds.write_int64(d['nTime'])
vds.write_string(d['otherAccount'])
vds.write_string(d['comment'])
else:
print "Unknown key type: "+type
# Write the key/value pair to the database
db.put(kds.input, vds.input)
except Exception, e:
print("ERROR writing to wallet.dat, type %s"%type)
print("data dictionary: %r"%data)
traceback.print_exc()
def rewrite_wallet(db_env, destFileName, pre_put_callback=None):
db = open_wallet(db_env)
db_out = DB(db_env)
try:
r = db_out.open(destFileName, "main", DB_BTREE, DB_CREATE)
except DBError:
r = True
if r is not None:
logging.error("Couldn't open %s."%destFileName)
sys.exit(1)
def item_callback(type, d):
if (pre_put_callback is None or pre_put_callback(type, d)):
db_out.put(d["__key__"], d["__value__"])
parse_wallet(db, item_callback)
db_out.close()
db.close()
def read_wallet(json_db, db_env, print_wallet, print_wallet_transactions, transaction_filter):
db = open_wallet(db_env)
json_db['keys'] = []
json_db['pool'] = []
json_db['names'] = {}
def item_callback(type, d):
if type == "name":
json_db['names'][d['hash']] = d['name']
elif type == "version":
json_db['version'] = d['version']
elif type == "setting":
if not json_db.has_key('settings'): json_db['settings'] = {}
json_db["settings"][d['setting']] = d['value']
elif type == "defaultkey":
json_db['defaultkey'] = public_key_to_bc_address(d['key'])
elif type == "key":
addr = public_key_to_bc_address(d['public_key'])
sec = SecretToASecret(PrivKeyToSecret(d['private_key']))
private_keys.append(sec)
json_db['keys'].append({'addr' : addr, 'sec' : sec})
elif type == "wkey":
if not json_db.has_key('wkey'): json_db['wkey'] = []
json_db['wkey']['created'] = d['created']
elif type == "pool":
json_db['pool'].append( {'n': d['n'], 'addr': public_key_to_bc_address(d['public_key']), 'nTime' : d['nTime'] } )
elif type == "acc":
json_db['acc'] = d['account']
print("Account %s (current key: %s)"%(d['account'], public_key_to_bc_address(d['public_key'])))
elif type == "acentry":
json_db['acentry'] = (d['account'], d['nCreditDebit'], d['otherAccount'], time.ctime(d['nTime']), d['n'], d['comment'])
elif type == "bestblock":
json_db['bestblock'] = d['hashes'][0][::-1].encode('hex_codec')
else:
json_db[type] = 'unsupported'
parse_wallet(db, item_callback)
db.close()
for k in json_db['keys']:
addr = k['addr']
if addr in json_db['names'].keys():
k["label"] = json_db['names'][addr]
else:
k["reserve"] = 1
del(json_db['pool'])
del(json_db['names'])
def importprivkey(db, sec):
pkey = regenerate_key(sec)
if not pkey:
return False
secret = GetSecret(pkey)
private_key = GetPrivKey(pkey)
public_key = GetPubKey(pkey)
addr = public_key_to_bc_address(public_key)
print "Address: %s" % addr
print "Privkey: %s" % SecretToASecret(secret)
update_wallet(db, 'key', { 'public_key' : public_key, 'private_key' : private_key })
update_wallet(db, 'name', { 'hash' : addr, 'name' : '' })
return True
from optparse import OptionParser
def main():
global max_version, addrtype
parser = OptionParser(usage="%prog [options]", version="%prog 0.1")
parser.add_option("--phrase", dest="keystr",
help="convert the passphrase \"KEYSTR\" to a private key base 58 hash")
(options, args) = parser.parse_args()
if options.keystr is None:
print "A mandatory option is missing\n"
parser.print_help()
exit(0)
if options.keystr:
#Take sha256 hash of key string
priv_key = hashlib.sha256(options.keystr).digest()
#Convert hash to bitcoin address
priv_key = SecretToASecret(priv_key)
#Make key
key = regenerate_key(priv_key)
#Get public key
publ_key = GetPubKey(key)
#Get public key address
bc_add = public_key_to_bc_address(publ_key)
#Get private key
privkeyo = GetPrivKey(key)
#Print outputs
print "Public address: " + bc_add+"\r"
print "Privey: "+priv_key+"\n"
# Depricated
#Works
#Exptl alternative to generate private key
#Take sha256 hash of key string
# sha256hash = hashlib.sha256(options.keystr).digest() #sha256hash is the secret
# padded_add = Add0x80(sha256hash)
# b58_of_privkey = EncodeBase58Check(padded_add)
# print b58_of_privkey+"\n"
#Get Private Key (alternative method)
# print "Priv2: " + EncodeBase58Check(Add0x80(GetSecret(key)))+"\n"
#Below may not work
#Generate address of public key
# pub_key = GetPubKey(sha256hash)
# pub_key = regenerate_key(sha256hash).pubkey
# pub_key = i2o_ECPublicKey(priv_key)
# print public_key_to_bc_address(pub_key)
# priv_key = b58encode(SecretToASecret(long_hex(options.keystr)[1:32]))
# priv_key = SecretToASecret(long_hex(options.keystr)[1:32])
# priv_key = SecretToASecret(options.keystr)
# print priv_key+"\n"
# priv_key = EncodeBase58Check(chr(addrtype+128) + long_hex(options.keystr)[1:32])
# priv_key = EncodeBase58Check(long_hex(options.keystr))
#Print 33 byte array
# priv_key = "0x80"+long_hex(options.keystr)[1:32]
# pub_key = public_key_to_bc_address(GetPubKey(b58decode(priv_key)))
# print "Private key: " + priv_key
# print "Public key: " + pub_key
if __name__ == '__main__':
main()