-
Notifications
You must be signed in to change notification settings - Fork 0
/
S7_Dimension_Reduction.Rmd
3162 lines (2348 loc) · 106 KB
/
S7_Dimension_Reduction.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "S7 Dimension Reduction"
author: "Benjamin R Fitzpatrick"
output:
html_document:
df_print: paged
---
In this file I use the R package `ClustOfVar`[1] to cluster related explanatory variables and summarise the information in each cluster with a central synthetic variable.
`ClustOfVar` is able to function on sets of variables that include both numeric and categorical variables and includes a bootstrap based routine to examine the stability of the partitioning of these variables into various numbers of clusters.
This file is divided into the following four sections:
*1. Clustering the NFI Data*
*2. Clustering the Terrain Data*
*3. Clustering the Terrain \& Climate Data*
*4. Aggregating the final Set of Explanatory Variables*
# Clustering the NFI Data
```{r, message = FALSE, warning = FALSE}
library(caret)
library(heatmaply)
library(ClustOfVar)
library(glue)
library(tidyverse)
```
## Clustering all descriptions of Plots that do not quantify human disturbance
### Read in the prepared NFI Field Data
```{r}
load('~/rwa/data/NFI/Prepared_Field_Data/NFI.Plot.Data.Infilled.RData')
```
### Subset to the metrics that do not describe direct human disturbance of the plots
```{r}
NFI.Set.1.tb <- select(NFI.Plot.Data, -AHAUFEN, -Stone.Struc, -Tracks, -UEBERBEL, -WEID, -FLSCHADEN)
```
```{r}
NFI.Set.1.quant.tb <- select(NFI.Set.1.tb, -CLNR) %>%
select_if(is.numeric)
```
```{r}
NFI.Set.1.qual.tb <- select(NFI.Set.1.tb, -CLNR) %>%
select_if(is.character)
```
Check:
```{r}
if_else(identical(sort(c(colnames(NFI.Set.1.quant.tb), colnames(NFI.Set.1.qual.tb))), sort(colnames(select(NFI.Set.1.tb, -CLNR)))), true = 'check passed', false = 'check failed')
```
Check:
```{r}
if_else(identical(NFI.Set.1.quant.tb$BESTOBER, as.matrix(NFI.Set.1.quant.tb)[,'BESTOBER']), true = 'check passed', false = 'check failed')
```
### Hierarchical Clustering of the Variables
```{r, out.extra='angle=90', fig.height = 13, fig.width = 13}
NFI.Set.1.hclust.1 <- hclustvar(X.quanti = as.matrix(NFI.Set.1.quant.tb), X.quali = as.matrix(NFI.Set.1.qual.tb))
plot(NFI.Set.1.hclust.1, cex = 0.5)
```
### Choose the Number of Clusters
```{r, eval = FALSE}
NFI.Set.1.hclust.1.stab <- stability(tree = NFI.Set.1.hclust.1, B = 1e3)
```
```{r, echo = FALSE}
load('~/rwa/data/NFI/clustered_data/intermediate_workspaces/NFI.Set.1.Intermediate.v2.RData')
```
```{r, fig.width = 12, fig.height = 12}
plot(NFI.Set.1.hclust.1.stab)
```
```{r, fig.width = 12, fig.height = 9}
boxplot(NFI.Set.1.hclust.1.stab$matCR)
abline(v = 35, col = 'blue', lty = 2)
```
P = 36 looks like the optimal choice
```{r}
NFI.Set.1.hclust.ct <- cutreevar(obj = NFI.Set.1.hclust.1, k = 36)
```
### Examine the Clusters
#### Key to Variable Names
Abbreviations for Tree Categories and species that are members of these categories:
| Group | Member Species |
|------:|-----------------------------------------------------------------------------------------------:|
| AHORN | *Acer campestris*, *Acer platanoides*, *Acer pseudoplatanus* & *Acer opalus* |
| ARVEN | *Pinus cembra* |
| BUCHE | *Fagus sylvatica* |
| CASTA | *Castanea sativa* |
| CONIF | All Conifers |
| DECID | All Broadleaf |
| EICHE | *Quercus robur*, *Quercus petraea*, *Quercus pubescens*, *Quercus cerris* & *Quercus rubra* |
| ESCHE | *Fraxinus excelsior*, *Fraxinus ornus* |
| FICHT | *Picea abies* |
| FOEHR | *Pinus sylvestris*, *Pinus nigra*, *Pinus strobus*, *Pinus mugo arborea* & *Pinus spec.* |
| LARCH | *Larix decidua* & *Larix kaempferi* |
| TANNE | *Abies alba* & *Abies sp.* |
| UENDH | Other Conifers |
| UELBH | Other Broadleaf |
```{r,echo = FALSE}
Key.to.Var.Names.tb <- tribble(
~Variable, ~Explanation,
'AHAUFEN' , 'Heaps of branches Presence/Absence' ,
'AZOTYP' , 'Vegetation Zonal/Azonal' ,
'BAS_AHORN' , 'extrapolated basal area of standing, live AHORN trees per ha' ,
'BAS_ALL' , 'extrapolated basal area of all standing, live trees per ha' ,
'BAS_ARVEN' , 'extrapolated basal area of standing, live ARVEN trees per ha' ,
'BAS_BUCHE' , 'extrapolated basal area of standing, live BUCHE trees per ha' ,
'BAS_CASTA' , 'extrapolated basal area of standing, live CASTA trees per ha' ,
'BAS_CONIF' , 'extrapolated basal area of standing, live CONIF trees per ha' ,
'BAS_EICHE' , 'extrapolated basal area of standing, live EICHE trees per ha' ,
'BAS_ESCHE' , 'extrapolated basal area of standing, live ESCHE trees per ha' ,
'BAS_FICHT' , 'extrapolated basal area of standing, live FICHT trees per ha' ,
'BAS_FOEHR' , 'extrapolated basal area of standing, live FOEHR trees per ha' ,
'BAS_LARCH' , 'extrapolated basal area of standing, live LARCH trees per ha' ,
'BAS_TANNE' , 'extrapolated basal area of standing, live TANNE trees per ha' ,
'BEERDG' , 'Percentage Cover by Berry Bushes' ,
'BESTALT.AGEDOM' , 'Estimate of the dominant age of trees' ,
'BESTOBER' , 'Average height of the 100 tallest trees and shrubs per hectare' ,
'BODVEGDG' , 'Percentage cover of ground vegetation' ,
'DDOM' , 'Dominant diameter at breast height of standing, live trees' ,
'DUERSTA' , 'Presence/Absence Standing Dead Trees' ,
'GEWAESS' , 'Presence/Absence of Flowing/Still Water' ,
'LAWI' , 'Presence/Absence of Traces of Avalanches' ,
'LUECKEN' , 'Type (or Absence) of Gap in Forest' ,
'Mittelschicht' , 'Coverage of Middle Layer of Forest' ,
'Oberschicht' , 'Coverage of Upper Layer of Forest' ,
'Prct.Ahorn' , 'Percentage Cover in Upper Layer of Forest by AHORN' ,
'Prct.Arven' , 'Percentage Cover in Upper Layer of Forest by ARVEN' ,
'Prct.Buche' , 'Percentage Cover in Upper Layer of Forest by BUCHE' ,
'Prct.Casta' , 'Percentage Cover in Upper Layer of Forest by CASTA' ,
'Prct.Conif' , 'Percentage Cover in Upper Layer of Forest by Conifers' ,
'Prct.Decid' , 'Percentage Cover in Upper Layer of Forest by Broadleaf trees' ,
'Prct.Eiche' , 'Percentage Cover in Upper Layer of Forest by EICHE' ,
'Prct.Esche' , 'Percentage Cover in Upper Layer of Forest by ESCHE' ,
'Prct.Ficht' , 'Percentage Cover in Upper Layer of Forest by FICHT' ,
'Prct.Foehr' , 'Percentage Cover in Upper Layer of Forest by FOEHR' ,
'Prct.Larch' , 'Percentage Cover in Upper Layer of Forest by LARCH' ,
'Prct.Tanne' , 'Percentage Cover in Upper Layer of Forest by TANNE' ,
'SCHLART.Mittelschicht' , 'Type of canopy closure of middle layer of forest' ,
'SCHLART.Oberschicht' , 'Type of canopy closure of upper layer of forest' ,
'SCHLART.Unterschicht' , 'Type of canopy closure of lower layer of forest' ,
'SCHLUSSG' , 'Type of Crown Closure' ,
'SCHNLANG' , 'Presence/Absence of traces of slow snowpack movement' ,
'STOECKE' , 'Presence/Absence of stumps and/or lying dead wood' ,
'Stone.Struc' , 'Presence/Absence of stone structures' ,
'STRADG' , 'Percentage cover of shrub layer' ,
'STRUK' , 'Vertical structure of the stand' ,
'STZ_AHORN' , 'extrapolated number of living AHORN trees per ha' ,
'STZ_ALL' , 'extrapolated number of living trees per ha' ,
'STZ_ARVEN' , 'extrapolated number of living ARVEN trees per ha' ,
'STZ_BUCHE' , 'extrapolated number of living BUCHE trees per ha' ,
'STZ_CASTA' , 'extrapolated number of living CASTA trees per ha' ,
'STZ_CONIF' , 'extrapolated number of living Coniferous trees per ha' ,
'STZ_EICHE' , 'extrapolated number of living EICHE trees per ha' ,
'STZ_ESCHE' , 'extrapolated number of living ESCHE trees per ha' ,
'STZ_FICHT' , 'extrapolated number of living FICHT trees per ha' ,
'STZ_FOEHR' , 'extrapolated number of living FOEHR trees per ha' ,
'STZ_LARCH' , 'extrapolated number of living LARCH trees per ha' ,
'STZ_TANNE' , 'extrapolated number of living TANNE trees per ha' ,
'TOSTZ_AHORN' , 'extrapolated number of dead AHORN trees per ha' ,
'TOSTZ_ALL' , 'extrapolated number of dead trees per ha' ,
'TOSTZ_ARVEN' , 'extrapolated number of dead ARVEN trees per ha' ,
'TOSTZ_BUCHE' , 'extrapolated number of dead BUCHE trees per ha' ,
'TOSTZ_CASTA' , 'extrapolated number of dead CASTA trees per ha' ,
'TOSTZ_CONIF' , 'extrapolated number of dead Coniferous trees per ha' ,
'TOSTZ_EICHE' , 'extrapolated number of dead EICHE trees per ha' ,
'TOSTZ_ESCHE' , 'extrapolated number of dead ESCHE trees per ha' ,
'TOSTZ_FICHT' , 'extrapolated number of dead FICHT trees per ha' ,
'TOSTZ_FOEHR' , 'extrapolated number of dead FOEHR trees per ha' ,
'TOSTZ_LARCH' , 'extrapolated number of dead LARCH trees per ha' ,
'TOSTZ_TANNE' , 'extrapolated number of dead TANNE trees per ha' ,
'TOV_AHORN' , 'extrapolated volume of dead AHORN trees per hectare' ,
'TOV_ALL' , 'extrapolated volume of dead trees per hectare' ,
'TOV_ARVEN' , 'extrapolated volume of dead ARVEN trees per hectare' ,
'TOV_BUCHE' , 'extrapolated volume of dead BUCHE trees per hectare' ,
'TOV_CASTA' , 'extrapolated volume of dead CASTA trees per hectare' ,
'TOV_CONIF' , 'extrapolated volume of dead Coniferous trees per hectare' ,
'TOV_EICHE' , 'extrapolated volume of dead EICHE trees per hectare' ,
'TOV_ESCHE' , 'extrapolated volume of dead ESCHE trees per hectare' ,
'TOV_FICHT' , 'extrapolated volume of dead FICHT trees per hectare' ,
'TOV_FOEHR' , 'extrapolated volume of dead FOEHR trees per hectare' ,
'TOV_LARCH' , 'extrapolated volume of dead LARCH trees per hectare' ,
'TOV_TANNE' , 'extrapolated volume of dead TANNE trees per hectare' ,
'Tracks' , 'Presence/Absence of tracks' ,
'UEBERBEL' , 'Presence/Absence of excessive ecological pressure/disturbances' ,
'Unterschicht' , 'Coverage of Lower Layer of Forest' ,
'V_AHORN' , 'extrapolated volume of live AHORN trees per hectare' ,
'V_ALL' , 'extrapolated volume of live trees per hectare' ,
'V_ARVEN' , 'extrapolated volume of live ARVEN trees per hectare' ,
'V_BUCHE' , 'extrapolated volume of live BUCHE trees per hectare' ,
'V_CASTA' , 'extrapolated volume of live CASTA trees per hectare' ,
'V_CONIF' , 'extrapolated volume of live Coniferous trees per hectare' ,
'V_EICHE' , 'extrapolated volume of live EICHE trees per hectare' ,
'V_ESCHE' , 'extrapolated volume of live ESCHE trees per hectare' ,
'V_FICHT' , 'extrapolated volume of live FICHT trees per hectare' ,
'V_FOEHR' , 'extrapolated volume of live FOEHR trees per hectare' ,
'V_LARCH' , 'extrapolated volume of live LARCH trees per hectare' ,
'V_TANNE' , 'extrapolated volume of live TANNE trees per hectare' ,
'VERJDG' , 'Percentage of cover of regeneration' ,
'VORHERBA.HABART' , 'Dominant tree species/group according to basal area' ,
'VORHERNL.InFill' , 'Dominant tree group according to basal area (Conifers/Broadleafs/Unknown)' ,
'WARA' , 'Presence/Absence of Forest edge' ,
'WEID' , 'Presence/Absence of evidence of grazing by animals.' ,
'WFRM' , 'Forest structure (form)' ,
'WNWENTTXT' , 'Forest / Scrub Forest' ,
'WUTEAKT' , 'Presence/Absence of Root Plates')
```
```{r}
NFI.Set.1.clust.membership <- NFI.Set.1.hclust.ct$cluster %>%
tibble(Variable = names(.), Cluster = .) %>%
arrange(Cluster) %>%
left_join(y = Key.to.Var.Names.tb, by = 'Variable') %>%
select(Cluster, Variable, Explanation)
knitr::kable(NFI.Set.1.clust.membership)
```
I have written a function to plot the values of each of the explanatory variables in a cluster against the central synthetic variable that summarises the information in the cluster.
Subplots are arranged by the squared loading metric of relatedness between the explanatory variable in the subplot and the central synthetic variable of the cluster.
The source for this function is included at the end of this file as an Appendix.
```{r}
source('./functions/cmv.csv.R')
```
### NFI Set 1 Cluster 1
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 1) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c1.p.ls <- cmv.csv(csvn = 'cluster1',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c1.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c1.p.ls$num.var.plot
```
FICHT codes for *Picea abies* (Norway spruce).
Thus the central synthetic variable of this cluster seems to summarise various metrics of the 'amount' of conifers in a plot and these conifers seem to mainly consider of Norway spruce in many plots.
### NFI Set 1 Cluster 2
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 2) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c2.p.ls <- cmv.csv(csvn = 'cluster2',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 6}
nfi.s1.c2.p.ls$cat.var.plot
```
```{r, fig.width = 6, fig.height = 6}
nfi.s1.c2.p.ls$num.var.plot
```
**Broadleaf**:
* Ahorn = 'Acer sp.' (Maples)
* Buche = 'Fagus silvatica' (European Beech)
* Casta = 'Castanea sativa'(Chestnut trees)
* Eiche = 'Quercus sp.' (Oaks)
* Esche = 'Fraxinus sp.' (Ash trees)
* UELBH = Other Broadleaf
**Conifers**:
* Arve = 'Pinus cembra' (Stone Pine)
* Fichte = 'Picea sp.' (Spruce)
* Föhre = 'Pinus sp.' (Other Pines)
* Lärche = 'Larix sp.' (Larch)
* Tanne = 'Abies sp.' (Fir)
* UENDH = Other Conifer
Low values of the central synthetic variable of this cluster correspond to plots dominated by conifers whereas high values of this central synthetic variable correspond to plots dominated by broadleaf trees.
### NFI Set 1 Cluster 3
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 3) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c3.p.ls <- cmv.csv(csvn = 'cluster3',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c3.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c3.p.ls$num.var.plot
```
The central synthetic variable for this cluster is negatively correlated with these metrics of the 'amount' of live maple in a plot.
### NFI Set 1 Cluster 4
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 4) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c4.p.ls <- cmv.csv(csvn = 'cluster4',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c4.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c4.p.ls$num.var.plot
```
The central synthetic variable for this cluster is positively correlated with these metrics of the 'amount' of live Stone Pine (*Pinus cembra*) in a plot.
### NFI Set 1 Cluster 5
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 5) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c5.p.ls <- cmv.csv(csvn = 'cluster5',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c5.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c5.p.ls$num.var.plot
```
The central synthetic variable for this cluster is negatively correlated with these metrics of the 'amount' of live European Beech (*Fagus sylvatica*) in a plot.
### NFI Set 1 Cluster 6
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 6) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c6.p.ls <- cmv.csv(csvn = 'cluster6',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c6.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c6.p.ls$num.var.plot
```
The central synthetic variable for this cluster is positively correlated with these metrics of the 'amount' of live Chestnut (*Castanea sativa*) in a plot.
### NFI Set 1 Cluster 7
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 7) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c7.p.ls <- cmv.csv(csvn = 'cluster7',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c7.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c7.p.ls$num.var.plot
```
The central synthetic variable for this cluster is positively correlated with these metrics of the 'amount' of live Oak in a plot.
### NFI Set 1 Cluster 8
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 8) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c8.p.ls <- cmv.csv(csvn = 'cluster8',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c8.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c8.p.ls$num.var.plot
```
The central synthetic variable for this cluster is positively correlated with these metrics of the 'amount' of live Ash (*Fraxinus excelsior* and *Fraxinus ornus*) in a plot.
### NFI Set 1 Cluster 9
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 9) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c9.p.ls <- cmv.csv(csvn = 'cluster9',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c9.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c9.p.ls$num.var.plot
```
The central synthetic variable for this cluster is negatively correlated with these metrics of the 'amount' of live Pines (other than Stone Pine) in a plot.
### NFI Set 1 Cluster 10
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 10) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c10.p.ls <- cmv.csv(csvn = 'cluster10',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c10.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c10.p.ls$num.var.plot
```
The central synthetic variable for this cluster is positively correlated with these metrics of the 'amount' of live Larch (*Larix decidua* & *Larix kaempferi*) in a plot.
### NFI Set 1 Cluster 11
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 11) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c11.p.ls <- cmv.csv(csvn = 'cluster11',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c11.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c11.p.ls$num.var.plot
```
The central synthetic variable for this cluster is positively correlated with these metrics of the 'amount' of live Fir (*Abies alba* & *Abies sp.*) in a plot.
### NFI Set 1 Cluster 12
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 12) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c12.p.ls <- cmv.csv(csvn = 'cluster12',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c12.p.ls$cat.var.plot
```
```{r, fig.width = 6, fig.height = 6}
nfi.s1.c12.p.ls$num.var.plot
```
This cluster contains a single variable and thus the central synthetic variable for this cluster is perfectly correlated with this variable.
In this situation the central synthetic variable is equivalent to the single variable that is a member of this cluster.
### NFI Set 1 Cluster 13
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 13) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c13.p.ls <- cmv.csv(csvn = 'cluster13',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 6, fig.height = 6}
nfi.s1.c13.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 6}
nfi.s1.c13.p.ls$num.var.plot
```
Lower values of the central synthetic variable of this cluster as associated with the absence of gaps in a the forest whereas higher values of this central synthetic variable are associated with various sorts of gaps in the forest.
The central synthetic variable of this cluster is also negatively correlated with the percentage cover of the upper layer of the forest and positively correlated with the percentage cover of ground vegetation.
Thus the central synthetic variable of this cluster can be considered to be a metric of openness in the upper layer of the forest (a more open upper layer allowing more sunlight through to the lower layer could account for the positive correlation with the percentage cover of ground vegetation).
### NFI Set 1 Cluster 14
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 14) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c14.p.ls <- cmv.csv(csvn = 'cluster14',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c14.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c14.p.ls$num.var.plot
```
The positive correlation of these three variables with the central synthetic variable of this cluster makes it a measure of the coverage of the lower layer of the forest if we take lower here to refer generally to the lower layer, young regrowth (regeneration) and the shrub layer.
### NFI Set 1 Cluster 15
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 15) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c15.p.ls <- cmv.csv(csvn = 'cluster15',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c15.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c15.p.ls$num.var.plot
```
The central synthetic variable of this cluster is positively correlated with the extrapolated densities of living trees, living conifers and living Norway Spruce (*Picea abies*).
I interpret this to mean that conifers, in particular Norway Spruce, form a substantial fraction of the live trees in NFI plots.
Thus I interpret the central synthetic variable of this cluster to be a measure of the density of live trees in NFI plots (of which many are conifers and many of these conifers are Norway Spruce).
### NFI Set 1 Cluster 16
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 16) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c16.p.ls <- cmv.csv(csvn = 'cluster16',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c16.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c16.p.ls$num.var.plot
```
The central synthetic variable of this cluster is positively correlated with the extrapolated densities of dead trees, dead conifers and dead Norway Spruce (*Picea abies*).
I interpret this to mean that conifers, in particular Norway Spruce, form a substantial fraction of the dead trees in NFI plots.
Thus I interpret the central synthetic variable of this cluster to be a measure of the density of dead trees in NFI plots (of which many are conifers and many of these conifers are Norway Spruce).
### NFI Set 1 Cluster 17
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 17) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c17.p.ls <- cmv.csv(csvn = 'cluster17',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c17.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 6}
nfi.s1.c17.p.ls$num.var.plot
```
These positive correlations suggest that the central synthetic variable of this cluster is serving as a measure of the density of dead Fir trees in NFI plots.
### NFI Set 1 Cluster 18
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 18) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c18.p.ls <- cmv.csv(csvn = 'cluster18',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c18.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 6}
nfi.s1.c18.p.ls$num.var.plot
```
The positive correlations between these variables and the central synthetic variable suggest that the central synthetic variable of this cluster of variables is serving as a measure of the density of dead Pines (other than stone pine) in NFI plots.
### NFI Set 1 Cluster 19
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 19) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c19.p.ls <- cmv.csv(csvn = 'cluster19',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c19.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 6}
nfi.s1.c19.p.ls$num.var.plot
```
The positive correlations between these variables and the central synthetic variable suggest that the central synthetic variable of this cluster of variables is serving as a measure of the density of dead Larch (*Larix decidua* & *Larix kaempferi*) in NFI plots.
### NFI Set 1 Cluster 20
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 20) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c20.p.ls <- cmv.csv(csvn = 'cluster20',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c20.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 6}
nfi.s1.c20.p.ls$num.var.plot
```
The positive correlations between the variables in this cluster and the central synthetic variable of this cluster suggest that this the central synthetic variable is serving as a measure of the density of dead Stone Pine (*Pinus cembra*) in NFI plots.
### NFI Set 1 Cluster 21
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 21) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c21.p.ls <- cmv.csv(csvn = 'cluster21',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c21.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 6}
nfi.s1.c21.p.ls$num.var.plot
```
The positive correlations between the variables in this cluster and the central synthetic variable of this cluster suggest that this the central synthetic variable is serving as a measure of the density of dead European Beech (*Fagus sylvatica*) in NFI plots.
### NFI Set 1 Cluster 22
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 22) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c22.p.ls <- cmv.csv(csvn = 'cluster22',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c22.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 6}
nfi.s1.c22.p.ls$num.var.plot
```
The positive correlations between the variables in this cluster and the central synthetic variable of this cluster suggest that this central synthetic variable is serving as a measure of the density of dead Maples (*Acer sp.*) in NFI plots.
### NFI Set 1 Cluster 23
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 23) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c23.p.ls <- cmv.csv(csvn = 'cluster23',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c23.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 6}
nfi.s1.c23.p.ls$num.var.plot
```
The positive correlations between the variables in this cluster and the central synthetic variable of this cluster suggest that this central synthetic variable is serving as a measure of the density of dead Ash (*Fraxinus excelsior* & *Fraxinus ornus*) in NFI plots.
### NFI Set 1 Cluster 24
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 24) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c24.p.ls <- cmv.csv(csvn = 'cluster24',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c24.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 6}
nfi.s1.c24.p.ls$num.var.plot
```
The positive correlations between the variables in this cluster and the central synthetic variable of this cluster suggest that this central synthetic variable is serving as a measure of the density of dead Oak (*Quercus sp.*) in NFI plots.
### NFI Set 1 Cluster 25
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 25) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c25.p.ls <- cmv.csv(csvn = 'cluster25',
data = NFI.Set.1.tb,
tree = NFI.Set.1.hclust.ct,
data.description = 'NFI Set 1',
facet.ncol = 2,
num.point.alpha = 0.05,
box.point.alpha = 0.2
)
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c25.p.ls$cat.var.plot
```
```{r, fig.width = 12, fig.height = 6}
nfi.s1.c25.p.ls$num.var.plot
```
The positive correlations between the variables in this cluster and the central synthetic variable of this cluster suggest that this central synthetic variable is serving as a measure of the density of dead Sweet Chestnut (*Castanea sativa*) in NFI plots.
### NFI Set 1 Cluster 26
```{r}
filter(NFI.Set.1.clust.membership, Cluster == 26) %>%
knitr::kable()
```
```{r, fig.width = 12, fig.height = 12}
nfi.s1.c26.p.ls <- cmv.csv(csvn = 'cluster26',