-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmeshing_2d.py
404 lines (343 loc) · 13.7 KB
/
meshing_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
'''
Script to visualize ODF meshing algorithm
This provides a 2D visualization using a calculated distance function
'''
import numpy as np
import matplotlib.pyplot as plt
import math
from numpy.core.fromnumeric import shape
shape_verts = np.array([
[-0.5, 0.1],
[-0.5, 0.2],
[-0.2, 0.5],
[-0.2, 0.7],
[0.0, 0.8],
[0.6, 0.7],
[0.7, 0.6],
[0.7, 0.3],
[0.6, 0.15],
[0.4, 0.1],
[0.25, 0.2],
[0.25, 0.3],
[0.4, 0.3],
[0.4, 0.5],
[0.1, 0.5],
[0.1, 0.0],
[0.3, -0.2],
[0.45, -0.55],
[0.25, -0.5],
[-0.25, -0.5],
[-0.3, -0.4],
[-0.35, -0.2],
[-0.25, -0.2],
[-0.25, -0.4],
[0.1, -0.4],
[0.1, -0.2],
[-0.3, 0.1]
])
shape_edges = np.array([[i, i+1] for i in range(len(shape_verts)-1)] + [[len(shape_verts)-1, 0]])
class AlgVisualizer2D():
def __init__(self, obj_verts, obj_edges):
super().__init__()
# the object being fitted
self.obj_verts = np.array(obj_verts)
self.obj_edges = np.array(obj_edges)
# the shrinkwrapped polygon being refined to approximate the mesh
self.wrap_verts = []
self.wrap_edges = []
self.probe_points = None
self.probe_segments = None
self.curr_segments = None
def draw_obj(self):
self.ax.scatter([0.], [0.], color="green")
for edge in self.obj_edges:
self.ax.plot(self.obj_verts[edge,0], self.obj_verts[edge,1], color="black")
def draw_wrap(self):
self.ax.scatter(self.wrap_verts[:,0], self.wrap_verts[:,1], color="red")
for edge in self.wrap_edges:
self.ax.plot(self.wrap_verts[edge,0], self.wrap_verts[edge,1], color="orange")
def draw_probes(self):
if self.probe_points is not None:
self.ax.scatter(self.probe_points[:,0], self.probe_points[:,1], color="limegreen")
if self.probe_segments is not None:
for pair in self.probe_segments:
self.ax.plot([pair[0][0], pair[1][0]], [pair[0][1], pair[1][1]], color="darkgreen")
if self.curr_segments is not None:
for pair in self.curr_segments:
self.ax.plot([pair[0][0], pair[1][0]], [pair[0][1], pair[1][1]], color="cyan")
def update_wrap(self, new_wrap_verts, new_wrap_edges):
self.wrap_verts = np.array(new_wrap_verts)
self.wrap_edges = np.array(new_wrap_edges)
def update_probe_points(self, new_probe_points):
self.probe_points = np.array(new_probe_points)
def update_probe_segments(self, new_probe_segments):
if self.probe_segments == None:
self.probe_segments = new_probe_segments
else:
self.probe_segments += new_probe_segments
def update_curr_segments(self, new_segments):
self.curr_segments = new_segments
def clear_probes(self):
self.probe_points = None
self.probe_segments = None
def retire_segments(self):
if self.curr_segments is not None:
if self.probe_segments is not None:
self.probe_segments += self.curr_segments
else:
self.probe_segments = self.curr_segments
self.curr_segments = None
def display(self, probes=True, i=None):
# plotting setup
# plotting setup
self.f, self.ax = plt.subplots(1,1)
self.f.set_size_inches(8, 8)
self.ax.set_ylim(-1.1,1.1)
self.ax.set_xlim(-1.1,1.1)
if i is not None:
self.ax.set_title(f"Iterations: {i}")
self.draw_obj()
self.draw_wrap()
if probes:
self.draw_probes()
plt.show()
def start_points_2d(n_points=100):
'''
Returns circle circumference start points, starting directions, and adjacency list
'''
start_points = [[math.cos(i/n_points*2.*math.pi), math.sin(i/n_points*2.*math.pi)] for i in range(n_points)]
start_directions = [[-math.cos(i/n_points*2.*math.pi), -math.sin(i/n_points*2.*math.pi)] for i in range(n_points)]
adj_list = [[i, i+1] for i in range(n_points-1)] + [[n_points-1, 0]]
return start_points, start_directions, adj_list
def rotate_verts_2d(shape_verts, point, dir):
'''
Calculates a translation + rotation transformation so that point is at the origin and dir is in the +x direction
Applies this transformation to shape_verts and returns it
'''
if dir[0] == 0:
if dir[1] > 0.:
theta = math.pi/2.
else:
theta = -math.pi/2.
else:
theta = math.atan(dir[1] / dir[0])
# theta = -theta
if dir[0] < 0.:
theta = theta + math.pi
rot_mat = np.array([[math.cos(theta), -math.sin(theta)],[math.sin(theta), math.cos(theta)]])
rot_verts = []
for v in shape_verts:
rot_verts.append(np.matmul([v - point], rot_mat)[0])
return np.array(rot_verts)
def intersection_depth_2d(rot_verts, edges):
depths = []
for edge in edges:
seg1 = rot_verts[edge[0]]
seg2 = rot_verts[edge[1]]
if int(seg1[1] > 0) + int(seg2[1] > 0) == 1:
depth = (abs(seg1[1])/(abs(seg1[1]) + abs(seg2[1]))) * seg2[0] + (abs(seg2[1])/(abs(seg1[1]) + abs(seg2[1]))) * seg1[0]
if depth >= 0.:
depths.append(depth)
if len(depths) == 0:
return False, None
else:
return True, min(depths)
def get_depths(shape_verts, shape_edges, points, directions):
'''
Gets the surface depth for different rays.
TODO: Handle no intersection case
'''
all_depths = []
for i in range(len(points)):
rot_verts = rotate_verts_2d(shape_verts, points[i], directions[i])
all_depths.append(intersection_depth_2d(rot_verts, shape_edges)[1])
return all_depths
def find_probe(p1, p2, point, dir):
'''
Return an x,y coordinate where the line defined by a point and direction intersects the segment between p1 and p2
Returns None if no such intersection exists
'''
# vertical line
if dir[0] == 0.:
# see if segment straddles the line
trans_p1 = p1[0]-point[0]
trans_p2 = p2[0]-point[0]
if trans_p1 * trans_p2 <= 0.:
wgt = abs(trans_p2) / (abs(trans_p1) + abs(trans_p2))
return [p1[0]*wgt + p2[0]*(1-wgt), p1[1]*wgt + p2[1]*(1-wgt)]
else:
return None
# horizontal line
if dir[1] == 0.:
# see if segment straddles the x axis
trans_p1 = p1[1]-point[1]
trans_p2 = p2[1]-point[1]
if trans_p1 * trans_p2 <= 0.:
wgt = abs(trans_p2) / (abs(trans_p2)+ abs(trans_p1))
return [p1[0]*wgt + p2[0]*(1-wgt), p1[1]*wgt + p2[1]*(1-wgt)]
else:
return None
# calculate the slope and intercept of the line
slope = dir[1]/dir[0]
b = point[1] - point[0]*slope
# check if the segment is horizontal
if p1[1] == p2[1]:
y_sol = p1[1]
x_sol = (y_sol - b) / slope
if x_sol < max(p1[0], p2[0]) and x_sol > min(p1[0], p2[0]):
return [x_sol, y_sol]
else:
return None
# check if the segment is vertical
if p1[0] == p2[0]:
x_sol = p1[0]
y_sol = x_sol * slope + b
if y_sol < max(p1[1], p2[1]) and y_sol > min(p1[1], p2[1]):
return [x_sol, y_sol]
else:
return None
# check if the segment is parallel
diff = p2 - p1
seg_slope = diff[1] / diff[0]
if seg_slope == slope:
return None
# handle general case (neither the segment or line are vertical and they aren't parallel)
# intercept of the line defined by p1, p2
c = p1[1] - p1[0] * seg_slope
# set y equal to y, solve
x_sol = (b-c)/(seg_slope-slope)
y_sol = x_sol * seg_slope + c
# see if intersection is within segment bounds
if x_sol < max(p1[0], p2[0]) and x_sol > min(p1[0], p2[0]):
return [x_sol, y_sol]
else:
return None
def initialization(shape_verts, shape_edges, viewer=None):
start_points, dirs, adj_list = start_points_2d()
if viewer is not None:
viewer.update_wrap(start_points, adj_list)
viewer.display(i=0)
depths = get_depths(shape_verts, shape_edges, start_points, dirs)
points = [np.array(start_points[i]) + depths[i]*np.array(dirs[i]) if depths[i] is not None else start_points[i] for i in range(len(start_points))]
if viewer is not None:
viewer.update_curr_segments([[start_points[i], points[i]] for i in range(len(start_points))])
viewer.display(i=0)
viewer.retire_segments()
viewer.update_wrap(points, adj_list)
viewer.display(probes=False,i=1)
# viewer.display(i)
return points, dirs, depths, adj_list
def meshing(shape_verts, shape_edges, resolution=0.02):
viewer = AlgVisualizer2D(shape_verts, shape_edges)
points, dirs, depths, adj_list = initialization(shape_verts, shape_edges, viewer=viewer)
dynamic_edges = [edge for edge in adj_list]
# for i in range(len(points)):
# print(f"{i} - {points[i]}")
# print(adj_list)
iterations = 5
for i in range(iterations-1):
new_dynamic_edges = []
new_dirs = []
new_probes = []
for edge in dynamic_edges:
v1 = edge[0]
v2 = edge[1]
# only expand large edges
v_dist = np.linalg.norm(np.array(points[v1]) - np.array(points[v2]))
if v_dist <= resolution:
continue
else:
adj_list.remove(edge)
# find new probe point
midpoint = (np.array(points[v1]) + np.array(points[v2]))/2.
diff = points[v1] - points[v2]
v1_probe = np.array(points[v1]) - depths[v1]*np.array(dirs[v1])
v2_probe = np.array(points[v2]) - depths[v2]*np.array(dirs[v2])
dir = np.array([-diff[1], diff[0]])
dir /= np.linalg.norm(dir)
new_probe = find_probe(points[v1], v1_probe, midpoint, dir)
if new_probe is None:
new_probe = find_probe(points[v2], v2_probe, midpoint, dir)
if new_probe is None:
new_probe = v1_probe if abs(np.dot(v1_probe - midpoint, dir)) > abs(np.dot(v2_probe - midpoint, dir)) else v2_probe
# determine directions from probe
n_verts_to_add = int(v_dist / resolution)
for j in range(n_verts_to_add):
interpolated_surface_point = points[v1] + (j+1.)/(n_verts_to_add+1.)*(points[v2]-points[v1])
dir = interpolated_surface_point - new_probe
dir = dir / np.linalg.norm(dir)
new_dirs.append(dir)
new_probes.append(new_probe)
new_point_index = len(points) + len(new_dirs)-1 #new dirs has already had an element added this loop
if j == 0:
new_dynamic_edges.append([v1, new_point_index])
else:
new_dynamic_edges.append([new_point_index-1, new_point_index])
if j == n_verts_to_add-1:
new_dynamic_edges.append([new_point_index, v2])
print(f"Iteration: {i+1}")
# show the baseline at the start of the iteration
viewer.update_probe_points(new_probes)
viewer.display(i=i+1)
new_depths = get_depths(shape_verts, shape_edges, new_probes, new_dirs)
new_points = [new_probes[x] + new_depths[x]*new_dirs[x] for x in range(len(new_probes))]
points += new_points
# show the probe segments and new vertices
viewer.update_curr_segments([[new_probes[i], new_points[i]] for i in range(len(new_probes))])
viewer.display(i=i+1)
viewer.retire_segments()
adj_list += new_dynamic_edges
dynamic_edges = new_dynamic_edges
depths += new_depths
dirs += new_dirs
# Show the newly updated wrap
viewer.update_wrap(points, adj_list)
viewer.display(probes=False, i=i+2)
def show_data(shape_verts, shape_edges, wrap_verts, wrap_edges):
'''
Displays the shrinkwrap algorithm components
'''
# plotting setup
f, ax = plt.subplots(1,1)
f.set_size_inches(8, 8)
ax.set_ylim(-1.1,1.1)
ax.set_xlim(-1.1,1.1)
# input manipulation
wrap_verts = np.array(wrap_verts)
# plotting
ax.scatter([0.], [0.], color="green")
for edge in shape_edges:
ax.plot(shape_verts[edge,0], shape_verts[edge,1], color="black")
ax.scatter(wrap_verts[:,0], wrap_verts[:,1], color="red")
for edge in wrap_edges:
ax.plot(wrap_verts[edge,0], wrap_verts[edge,1], color="tab:blue")
plt.show()
def show_rotation(shape_verts, shape_edges, v=40, n=100):
'''
Shows how the object is rotated to check the depth of the vth vertex from a circle of n vertices
'''
start_points, dirs, adj_list = start_points_2d(n_points=n)
point = start_points[v]
dir = dirs[v]
rot_verts = rotate_verts_2d(shape_verts, point, dir)
# plotting setup
f, ax = plt.subplots(1,1)
f.set_size_inches(8, 8)
ax.set_ylim(-1.1,1.1)
ax.set_xlim(-1.1,1.1)
ax.scatter([point[0]], point[1], color="red")
ax.plot([point[0], point[0]+0.2*dir[0]], [point[1], point[1]+0.2*dir[1]], color="orange")
ax.scatter([0.], [0.], color="darkgreen")
ax.plot([0.0, 0.2], [0.0,0.0], color="limegreen")
for edge in shape_edges:
ax.plot(shape_verts[edge][:,0], shape_verts[edge][:,1], color="black")
ax.plot(rot_verts[edge][:,0], rot_verts[edge][:, 1], color="blue")
plt.show()
if __name__ == "__main__":
# start_points, start_directions, adj_list = start_points_2d()
# show_data(shape_verts, shape_edges, start_points, adj_list)
meshing(shape_verts, shape_edges)
n=360
# for i in range(0, n, 10):
# print(i)
# show_rotation(shape_verts, shape_edges, v=i, n=n)