-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathpitch_classifier.py
259 lines (206 loc) · 9.16 KB
/
pitch_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from settings import *
from keras.models import Sequential
from keras import regularizers
from keras.layers import Input, RepeatVector
from keras.models import Model
from keras.layers.recurrent import LSTM, GRU
from keras.layers import TimeDistributed
from keras.layers import Dense, Activation
from keras.layers.embeddings import Embedding
from keras.optimizers import RMSprop, Adam
from keras.utils import to_categorical
from keras.layers.wrappers import Bidirectional
from random import shuffle
import progressbar
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import os
import numpy as np
import _pickle as pickle
import time
import data_class
from sklearn.model_selection import train_test_split
from sklearn.utils import class_weight
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
import pretty_midi as pm
import sys
from import_midi import import_midi_from_folder
from matplotlib2tikz import save as tikz_save
model_path = 'models/pitchclustering/'
model_filetype = '.pickle'
verbose = False
show_plot = False
save_plot = True
lstm_size = 256
batch_size = 512
learning_rate = 0.00002 #1e-06
step_size = 1
save_step = 10
shuffle_train_set = True
bidirectional = False
embedding = False
optimizer = 'Adam'
activity_regularizer = None
reset_states = True
num_layers = 2
test_step = 1
print('loading data...')
# Get Train and test sets
folder = source_folder
V_train, V_test, D_train, D_test, T_train, T_test, I_train, I_test, Y_train, Y_test, X_train, X_test, C_train, C_test, train_paths, test_paths = import_midi_from_folder(folder)
train_set_size = len(X_train)
test_set_size = len(X_test)
print(len(train_paths))
print(len(test_paths))
print(C_test)
class_string = ''
for class_name in classes:
class_string += class_name
fd = {'highcrop': high_crop, 'lowcrop':low_crop, 'lr': learning_rate, 'opt': optimizer,
'bi': bidirectional, 'lstm_size': lstm_size, 'trainsize': train_set_size,
'testsize': test_set_size, 'input_length': input_length, 'reset_states': reset_states,
'num_layers':num_layers, 'classes':class_string}
t = str(int(round(time.time())))
model_name = t+'-num_layers_%(num_layers)s_maxlen_%(input_length)s_lstmsize_%(lstm_size)s_trainsize_%(trainsize)s_testsize_%(testsize)s_classes_%(classes)s' % fd
model_path = model_path + model_name + '/'
if not os.path.exists(model_path):
os.makedirs(model_path)
inputs = Input(shape=(None, input_dim))
lstm_outputs = inputs
for layer_no in range(num_layers-1):
lstm_outputs = GRU(lstm_size, return_state=False, return_sequences=True)(lstm_outputs)
#last layer, that does not return sequences
lstm_outputs = GRU(lstm_size, return_state=False, return_sequences=False)(lstm_outputs)
dense = Dense(num_classes, activation='softmax')
outputs = dense(lstm_outputs)
model = Model(inputs, outputs)
#compile autoencoder
if optimizer == 'RMS': optimizer = RMSprop(lr=learning_rate)
if optimizer == 'Adam': optimizer = Adam(lr=learning_rate)
loss = 'categorical_crossentropy'
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
print(model.summary())
# initialize loss arrays
total_test_loss_array = []
total_test_accuracy_array = []
total_train_loss_array = []
total_train_loss = 0
total_train_accuracy_array = []
total_train_accuracy = 0
# Test function
def test(testID):
print('\nTesting:')
total_test_loss = 0
total_test_loss_length = 0
total_test_loss_number = 0
confusion_matrix = np.zeros((num_classes, num_classes))
bar = progressbar.ProgressBar(max_value=test_set_size, redirect_stdout=False)
for i, test_song in enumerate(X_test):
X = X_test[i]
num_samples = X.shape[0]
c = C_test[i]
Y = np.asarray([to_categorical(c, num_classes=num_classes)]*num_samples).squeeze()
scores = model.evaluate(X,Y , batch_size=batch_size, verbose=verbose)
if reset_states:
model.reset_states()
total_test_loss += scores[0]
Y_predicted = model.predict(X, batch_size=batch_size, verbose=verbose)
for y_val, y_predicted in zip(Y, Y_predicted):
y_class_test = np.argmax(y_val)
y_class_predicted = np.argmax(y_predicted)
confusion_matrix[y_class_predicted, y_class_test] += 1
bar.update(i+1)
accuracy = np.sum(np.diagonal(confusion_matrix)) / np.sum(confusion_matrix)
total_test_loss_array.append(total_test_loss/test_set_size)
total_test_accuracy_array.append(accuracy)
print('\nTotal test loss: ', total_test_loss/test_set_size)
print('Total accuracy: ' + str(accuracy*100) + "%")
print('-'*50)
plt.figure()
plt.plot(total_test_loss_array, label='Total test loss')
plt.plot(total_train_loss_array, label='Total train loss')
plt.plot(total_test_accuracy_array, label='Total test accuracy')
plt.plot(total_train_accuracy_array, label='Total train accuracy')
plt.legend(loc='lower left', prop={'size': 8})
if show_plot: plt.show()
if save_plot:
plt.savefig(model_path+t+'pitch_classifier_train.png')
tikz_save(model_path+t+'pitch_classifier_train.tex',encoding='utf-8', show_info=False)
pickle.dump(total_test_loss_array,open(model_path+'total_test_loss_array.pickle', 'wb'))
pickle.dump(total_test_accuracy_array,open(model_path+'total_test_accuracy_array.pickle', 'wb'))
pickle.dump(total_train_accuracy_array,open(model_path+'total_train_accuracy_array.pickle', 'wb'))
pickle.dump(total_train_loss_array,open(model_path+'total_train_loss_array.pickle', 'wb'))
if testID % save_step is 0:
confusion_matrix = confusion_matrix/confusion_matrix.sum(axis=1, keepdims=True)
plt.figure()
plt.imshow(confusion_matrix, interpolation='nearest')
plt.title('Total accuracy: ' + str(accuracy) + '%')
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.xticks(np.arange(0,num_classes), classes)
plt.yticks(np.arange(0,num_classes), classes)
plt.colorbar()
if show_plot: plt.show()
if save_plot:
plt.savefig(model_path+t+'confusion_matrix' + str(testID) + '.png')
tikz_save(model_path+t+'confusion_matrix' + str(testID) + '.tex', encoding='utf-8', show_info=False)
# Save Parameters to text file
with open(model_path + 'params.txt', "w", encoding='utf-8') as text_file:
text_file.write("epochs: %s" % epochs + '\n')
text_file.write("train_set_size: %s" % train_set_size + '\n')
text_file.write("test_set_size: %s" % test_set_size + '\n')
text_file.write("learning_rate: %s" % learning_rate + '\n')
text_file.write("save_step: %s" % save_step + '\n')
text_file.write("shuffle_train_set: %s" % shuffle_train_set + '\n')
text_file.write("test_step: %s" % test_step + '\n')
text_file.write("bidirectional: %s" % bidirectional + '\n')
text_file.write("load_from_pickle_instead_of_midi: %s" % load_from_pickle_instead_of_midi + '\n')
text_file.write("pickle_load_path: %s" % pickle_load_path + '\n')
text_file.write("train_paths: %s" % train_paths + '\n')
text_file.write("test_paths: %s" % test_paths + '\n')
# Train model
print('training model...')
for e in range(epochs):
total_train_loss = 0
total_train_accuracy = 0
print('Epoch ', e, 'of ', epochs, 'Epochs\nTraining:')
if shuffle_train_set:
permutation = np.random.permutation(len(X_train))
train_paths = [train_paths[i] for i in permutation]
X_train = [X_train[i] for i in permutation]
Y_train = [Y_train[i] for i in permutation]
C_train = [C_train[i] for i in permutation]
I_train = [I_train[i] for i in permutation]
V_train = [V_train[i] for i in permutation]
D_train = [D_train[i] for i in permutation]
T_train = [T_train[i] for i in permutation]
bar = progressbar.ProgressBar(max_value=train_set_size)
# Train model with each song seperately
for i, train_song in enumerate(X_train):
X = X_train[i]
num_samples = X.shape[0]
if num_samples > 1:
c = C_train[i]
Y = np.asarray([to_categorical(c, num_classes=num_classes)]*num_samples).squeeze()
hist = model.fit(X, Y,
epochs=1,
batch_size=batch_size,
shuffle=False,
verbose=verbose)
if reset_states:
model.reset_states()
total_train_loss += np.mean(hist.history['loss'])
total_train_accuracy += np.mean(hist.history['acc'])
bar.update(i+1)
if e%test_step is 0:
total_train_loss = total_train_loss/train_set_size
total_train_loss_array.append(total_train_loss)
total_train_accuracy = total_train_accuracy/train_set_size
total_train_accuracy_array.append(total_train_accuracy)
test(e)
if e%save_step is 0:
print('saving model')
model_save_path = model_path + 'model' + 'Epoch' + str(e) + model_filetype
model.save(model_save_path)