-
Notifications
You must be signed in to change notification settings - Fork 0
/
plinko.py
434 lines (346 loc) · 15.9 KB
/
plinko.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import sys
from math import atan2, asin, ceil, floor, degrees, radians, pi, sqrt
import geometry as geom
import downsample
import eom
import plotting
import inputs
# constants
TERM_VEL = 15. # m/s
TRANSITION_VEL = 0.8 # m/s
DT = 0.001 # s
LOWEST_Y = -10
DEBUG = False
DEBUG_2 = False
PEG_RADIUS = 0.25 # m
PUCK_RADIUS = 0.10 # m
FPS = 30
DILATION = 2
print('INPUTS:')
print(' launch angle', inputs.ANGLE)
print(' initial vel ', inputs.VO)
print(' terminal vel', TERM_VEL)
print(' max sim time', inputs.MAX_TIME)
print('')
# --------------------------------------------------------------------------------------------------
def create_pegs():
"""Creates list of Peg instances"""
peg_rows = [-2, -4, -6, -8]
peg_cols = [-6, -4, -2, 0, 2, 4, 6]
pegs = []
pid = -1
for r in peg_rows:
for c in peg_cols:
pid += 1
pegs.append(geom.Peg(c, r, PEG_RADIUS, pid))
# include offset rows
for r in peg_rows:
for c in peg_cols:
pid += 1
pegs.append(geom.Peg(c+1, r+1, PEG_RADIUS, pid))
return pegs
# --------------------------------------------------------------------------------------------------
def create_puck_spray(num_pucks, first_angle):
""""""
pucks = []
# 135 degree sweeps
final_angle = first_angle - 0.75 * pi # 135 degree sweeps
# 360 degree sweeps (has problem in that first & last pucks of a sweep use same angle)
# final_angle = first_angle - 2 * pi
x_coord = 0
y_coord = 1
t = 0
start_time = 0
safe_time = 0.1
num_safe_frames = safe_time / DT
spacing_angle = asin(5 * PUCK_RADIUS / (inputs.VO * DT * num_safe_frames))
max_pucks_per_sweep = floor(abs(final_angle - first_angle) / spacing_angle) + 1
# print(f'first_angle {first_angle} {degrees(first_angle)}')
# print(f'final_angle {final_angle} {degrees(final_angle)}')
# print(f'max_pucks_per {max_pucks_per_sweep}')
# print(f'was spacing angle {spacing_angle}')
if num_pucks < max_pucks_per_sweep:
max_pucks_per_sweep = num_pucks
spacing_angle = (final_angle - first_angle) / (max_pucks_per_sweep - 1)
# print(f'now spacing angle {spacing_angle}')
# print(f'final_angle {degrees(final_angle)}')
# puck_angle = first_angle - spacing_angle
time_between = DT * floor(num_safe_frames / max_pucks_per_sweep)
time_per_sweep = DT * (num_safe_frames + 1)
start_time = -1 * time_per_sweep
s = -1 # sweep counter
for p in range(num_pucks):
if p % max_pucks_per_sweep == 0:
print(" ------------------------- new sweep")
puck_angle = first_angle - spacing_angle
s += 1
start_time = s * time_per_sweep - time_between
start_time += time_between
pucks.append(geom.PuckData(PUCK_RADIUS, start_time, inputs.MAX_TIME, p))
puck_angle += spacing_angle
print(f' puck #{p}, angle {degrees(puck_angle):14.8f} @ start_time = {start_time:8.4f}')
pucks[-1].append(t, x_coord, y_coord, inputs.VO, puck_angle, -1)
print('')
return pucks
# --------------------------------------------------------------------------------------------------
def create_puck_shower(num_pucks, left_x, right_x, launch_angle):
"""Creates list of PuckData instances, with evenly spaced launch locations"""
pucks = []
if num_pucks > 1:
x_spacing = (right_x - left_x) / (num_pucks - 1)
else:
x_spacing = 0
x_coord = left_x - x_spacing
y_coord = 0
t = 0
start_time = 0
for p in range(num_pucks):
pucks.append(geom.PuckData(PUCK_RADIUS, start_time, inputs.MAX_TIME, p))
x_coord += x_spacing
pucks[-1].append(t, x_coord, y_coord, inputs.VO, launch_angle, -1)
return pucks
# --------------------------------------------------------------------------------------------------
def create_block_of_pucks(num_pucks):
""""""
block_rh_wall_x = 3
block_lh_wall_x = -1 * block_rh_wall_x
min_block_wall_y = 0
# create block of pucks (leave 10% of diameter as spacing between pucks)
x_spacing = 0.2 * PUCK_RADIUS
y_spacing = 0.2 * PUCK_RADIUS
block_width = block_rh_wall_x - block_lh_wall_x
pucks_per_row = floor(block_width / (2 * PUCK_RADIUS + x_spacing))
num_rows = ceil(num_pucks / pucks_per_row)
print(f'pucks/row = {pucks_per_row}')
print(f'num rows = {num_rows}')
print('')
x_init = block_lh_wall_x + PUCK_RADIUS + x_spacing / 2
y_coord = min_block_wall_y + PUCK_RADIUS + y_spacing
vel_init = 0
puck_angle = 0
start_time = 0
pucks = []
for p in range(num_pucks):
if p % pucks_per_row == 0:
# reset the x- & y-coord for the next row
x_coord = x_init
y_coord += 2 * PUCK_RADIUS + y_spacing
pucks.append(geom.PuckData(PUCK_RADIUS, start_time, inputs.MAX_TIME, p))
pucks[-1].append(t, x_coord, y_coord, vel_init, puck_angle, -1)
x_coord += PUCK_RADIUS*2.2
return pucks
# --------------------------------------------------------------------------------------------------
def create_flat_surfaces():
""""""
lh_wall_x = -7
rh_wall_x = 8
max_wall_y = 2
min_wall_y = -9
flat_surfaces = []
# create sides
flat_surfaces.append(geom.FlatSurface([lh_wall_x, max_wall_y], [lh_wall_x, min_wall_y], 0))
flat_surfaces.append(geom.FlatSurface([rh_wall_x, max_wall_y], [rh_wall_x, min_wall_y], 1))
# create bottom
flat_surfaces.append(geom.FlatSurface([lh_wall_x, min_wall_y], [-1, min_wall_y - 0.5], 2))
# flat_surfaces.append(geom.FlatSurface([rh_wall_x, min_wall_y], [2, min_wall_y - 0.5], 3))
flat_surfaces.append(geom.FlatSurface([rh_wall_x, min_wall_y], [0, min_wall_y - 0.5], 3))
flat = geom.FlatSurface([-3, -3], [0, -3.75], 4)
# flat = geom.FlatSurface([-3, -3], [0, -4], 4)
flat_surfaces.append(flat)
for flat in flat_surfaces:
print(f' flat angle: {flat.id} {degrees(flat.angle)}')
print('')
return flat_surfaces
# --------------------------------------------------------------------------------------------------
def update_puck(puck, pucks, flat_surfaces, t):
"""Updates the PuckData instance based on its projectile motion (and possible ricochets after
a time interval of DT."""
# do not exceed terminal velocity
if puck.v[-1] >= TERM_VEL:
accel = 0
else:
accel = eom.GC
if puck.sliding_on >= 0:
new_angle, new_vel, x, y, sdist = eom.slide_down_flat(puck.v[-1], puck.x[-1], puck.y[-1],
puck.radius, DT,
flat_surfaces[puck.sliding_on])
if sdist > 1:
puck.sliding_on = -1
else:
# update the relative position
x_rel, y_rel = eom.get_position(puck.v[-1], puck.angle[-1], DT, accel)
# update the velocity
new_vel = eom.get_velocity(puck.v[-1], puck.angle[-1], DT, accel)
if new_vel >= TERM_VEL:
accel = 0
new_vel = TERM_VEL
# recalculate relative position based on terminal velocity and no acceleration
x_rel, y_rel = eom.get_position(TERM_VEL, puck.angle[-1], DT, accel)
# update velocity's angle
x_inc, y_inc = eom.get_position(puck.v[-1], puck.angle[-1], DT - DT / 100, accel)
new_angle = atan2(y_rel - y_inc, x_rel - x_inc)
# update the absolute position
x = puck.x[-1] + x_rel
y = puck.y[-1] + y_rel
# check if position is inside or contacting flat surface
for flat in flat_surfaces:
if not geom.puck_near_flat([x, y], puck.radius, flat):
continue
dist_to_flat = geom.calc_dist_to_object([x, y], flat)
if dist_to_flat <= puck.radius + geom.RTOL:
if new_vel < TRANSITION_VEL:
puck.sliding_on = flat.id
if dist_to_flat < puck.radius + geom.RTOL:
if DEBUG_2:
print(f'distance to flat surface = {dist_to_flat}')
print(f'{puck.id} inside surface!!!!!!!!! {flat.id}')
print(' old puck coords', x, y)
print(' new_vel = ', new_vel)
# re-calculate current position so that it is on the surface, not inside
x, y = geom.calc_puck_flat_intersection([puck.x[-1], puck.y[-1]], [x, y],
puck.radius, flat)
if DEBUG_2:
print(' new puck coords', x, y)
# calculate rebound angle & reduced velocity
if puck.sliding_on < 0:
new_angle, new_vel = eom.calc_rebound_flat(new_angle, new_vel, x, y, flat)
if new_vel < TRANSITION_VEL or puck.sliding_on >= 0:
puck.sliding_on = flat.id
else:
puck.sliding_on = -1
# check if position is inside or contacting peg surface
for peg in pegs:
dist_to_center = sqrt((x - peg.center[0])**2 + (y - peg.center[1])**2)
if dist_to_center <= (peg.radius + puck.radius + geom.RTOL):
puck.sliding_on = -1
if dist_to_center < (peg.radius + puck.radius + geom.RTOL):
if DEBUG_2:
print(f"{puck.id} inside peg!!!!!!!!! {peg.id}")
print(' old puck coords', x, y)
# re-calculate current position so that it is on the surface, not inside
x, y = geom.get_line_circle_intersection([puck.x[-1], puck.y[-1]], [x, y],
peg.center, peg.radius + puck.radius)
if DEBUG_2:
print(' new puck coords', x, y)
# calculate rebound angle & reduced velocity
new_angle, new_vel = eom.calc_rebound(new_angle, new_vel, x, y, peg.center, peg.radius)
# check if puck is stuck on top of peg
if new_vel < 0.01 and y > peg.center[1]:
if DEBUG:
print('---------------------------------------')
print(f' id: {puck.id}')
print(f' new_vel: {new_vel:13.8f} (m/s)')
print(f' new_angle: {degrees(new_angle):13.8f} (deg) {new_angle:13.8f} (rads)')
print(f' puck center: {x:13.8f} {y:13.8f}')
print(f' peg center: {peg.center[0]:13.8f} {peg.center[1]:13.8f}')
print('---------------------------------------')
# give the peg a small push...
new_vel = 0.4
if x < peg.center[0]:
# ...to the left
new_angle = pi
else:
# ...to the right
new_angle = 0
# check if position is inside or contacting other pucks
for other_puck in pucks:
if other_puck.id == puck.id:
continue
if not other_puck.inplay:
# other puck is no longer bouncing about, so treat it as non-existent
continue
# NOTE: may be faster to pre-calculate all distances at once
dist_to_center = sqrt((x - other_puck.x[-1])**2 + (y - other_puck.y[-1])**2)
if dist_to_center <= (other_puck.radius + puck.radius + geom.RTOL):
if dist_to_center < (other_puck.radius + puck.radius + geom.RTOL):
if DEBUG_2:
print(f"{puck.id} inside other puck!!!!!!!!! {other_puck.id}")
print(' old puck coords', x, y)
# re-calculate current position so that it is on the surface, not inside
x, y = geom.get_line_circle_intersection([puck.x[-1], puck.y[-1]], [x, y],
[other_puck.x[-1], other_puck.y[-1]],
other_puck.radius + puck.radius)
if DEBUG_2:
print(' new puck coords', x, y)
new_angle, new_vel, other_angle, other_vel = eom.puck_collision(new_angle, new_vel,
x, y, other_puck)
other_puck.v[-1] = other_vel
other_puck.angle[-1] = other_angle
# or, could treat the other puck as an immovable object, like a peg...
# new_angle, new_vel = calc_rebound(new_angle, new_vel, x, y,
# [other_puck.x[-1], other_puck.y[-1]],
# other_puck.radius)
puck.append(t, x, y, new_vel, new_angle, puck.sliding_on)
if DEBUG:
sys.stdout.write(f"---- {puck.id} {t:9.4f} {x:9.4f} {y:9.4f} {degrees(new_angle):9.4f} ")
sys.stdout.write(f"{new_vel:9.4f} {accel:9.4f} {puck.sliding_on}\n")
return puck
# --------------------------------------------------------------------------------------------------
if __name__ == "__main__":
""""""
launch_angle = radians(float(inputs.ANGLE))
vel = inputs.VO
t = 0
x = 0
y = 0
pegs = create_pegs()
flat_surfaces = create_flat_surfaces()
if inputs.SHOT_TYPE == 'spray':
pucks = create_puck_spray(inputs.NUM_PUCKS, launch_angle)
elif inputs.SHOT_TYPE == 'shower':
pucks = create_puck_shower(inputs.NUM_PUCKS, -6, 6, launch_angle)
elif inputs.SHOT_TYPE == 'block':
pucks = create_block_of_pucks(inputs.NUM_PUCKS)
else:
sys.stderr.write(f'*** unknown SHOT_TYPE: {inputs.SHOT_TYPE} ***\n')
raise TypeError
if DEBUG:
sys.stdout.write(" time x y angle vel accel")
sys.stdout.write(" sliding_on\n")
while True:
if abs((t * 100) % 1) - 0 < 0.000001:
sys.stderr.write(f"time ={t:6.2f}\n")
for p, puck in enumerate(pucks):
if abs(t - puck.start_time) < 0.000001:
puck.inplay = True
sys.stdout.write(f'launching puck #{puck.id} at time = {t:12.8f}\n\n')
# if puck has not yet launched or is done, just repeat its previous state
if not puck.inplay:
puck.append(t, puck.x[-1], puck.y[-1], puck.v[-1], puck.angle[-1], -1)
continue
if puck.y[-1] <= LOWEST_Y:
sys.stdout.write(f'puck #{p} reached bottom at time={t:8.4f}\n\n')
puck.inplay = False
puck.final_time = t
# break
puck = update_puck(puck, pucks, flat_surfaces, t)
# end simulation if all pegs have reached bottom
keep_going = False
for puck in pucks:
if puck.inplay:
keep_going = True
if not keep_going:
sys.stdout.write(f'\nbreaking early at time = {t:12.8f}\n\n')
break
# end simulation if it is taking too long
if t >= inputs.MAX_TIME:
sys.stdout.write(f'\nbreaking at time = {t:12.8f}\n\n')
break
t = round(t + DT, 4) # using 't += DT' causes floating error build-ups
if DEBUG:
# print out results to the screen
for puck in pucks:
sys.stdout.write(" time x-pos y-pos vel\n")
for t, x, y, v, s in zip(puck.t, puck.x, puck.y, puck.v, puck.sliding_list):
sys.stdout.write(f"{t:10.4f} {x:11.8f} {y:11.8f} {v:11.8f} {puck.id} {s}\n")
print('maxtime', max(puck.t))
print('')
# print time history
frame_data = downsample.create_frame_data(pucks, fps=FPS, dilation=DILATION)
downsample.write_dict_to_file(frame_data, inputs.TIMEHIST_OUTFILE)
# create matplotlib figure or mp4 file
frame_list = downsample.convert_to_list_of_lists(frame_data)
plot_title = f'angle={degrees(launch_angle):12.8f}'
plotting.make_plot(frame_list, pucks, pegs, flat_surfaces, plot_title=plot_title,
avi_filename=inputs.OUTFILE_MP4, fps=FPS)
# plotting.make_plot(pucks, pegs, flat_surfaces, plot_title=plot_title)