From 966406e2d8ced474a41ee42515590d61351e002c Mon Sep 17 00:00:00 2001 From: bsenst Date: Sat, 9 Jul 2022 17:47:16 +0200 Subject: [PATCH] Add timestamps for video 04 Aki Vehrati, Inference diagnostics ### Reference Towards #11 Closes #29 ### Description Adjusted auto-timestamps and added new ones --- videos-list/04-aki.md | 49 +++++++++++++++++++++++++++++++++++++------ 1 file changed, 43 insertions(+), 6 deletions(-) diff --git a/videos-list/04-aki.md b/videos-list/04-aki.md index 5bf563d..2edd23b 100644 --- a/videos-list/04-aki.md +++ b/videos-list/04-aki.md @@ -13,12 +13,49 @@ Discourse Discussion https://discourse.pymc.io/t/keynote-these-are-a-few-of-my-favorite-inference-diagnostics-by-aki-vehtari/6180 ## Timestamps -- 0:00 Start of event -- x:xx -- x:xx - -## Note: help us add timestamps here -https://github.com/pymc-devs/video-timestamps +00:00 Introduction by Aki +00:22 Outline of the talk +00:48 Run inference many times +01:27 MCMC warm-up and convergence diagnostics +03:10 It is good to run several chains +03:49 Trace plots & convergence +04:24 Convergence in worm plots +04:53 Converge vs not converge +05:10 R-hat for MCMC convergence diagnostics +06:36 R-hat compares within and total variances - 50 warmup, 50 post warmup iterations +08:34 Running more - 500 warmup, 500 post warmup iterations +09:06 5000 warmup, 5000 post warmup iterations +09:50 Total variance and within chain variance +10:47 Overview versions of R-hat +12:42 R-hat versions 1-4 +14:13 R-hat v1-v4 vs v5 +15:10 R-hat v5: Rank normalization and folding +18:14 Effective sample size and Monte Carlo error +21:55 Local effective sample size (ESS) +24:43 Bulk-ESS and Tail-ESS +26:50 Rank plots +27:52 Traces vs. Rank plots +28:22 Uniformity check? +29:41 ECDF and ECDF difference +32:20 ECDF difference envelope for multiple chains +32:42 R* multivariate diagnostic +34:45 MCMC convergence and accuracy diagnostics +35:08 Variational inference (VI) convergence diagnostics +37:31 Convergence diagnostic for VI optimization +41:24 Split-R-hat +42:59 VI accuracy diagnostics +43:46 Importance sampling (IS) +45:24 Importance function +47:08 Example: normal approximation at the mode +51:13 Effective sample size for importance sampling +53:16 Pareto smoothed importance sampling +54:08 ESS and MCSE for importance sampling +54:39 Pareto k-hat diagnostic for VI +55:36 VI convergence and accuracy diagnostics +56:04 Stacking for non-mixing Bayesian computations +57:48 Favorite inference diagnostics +58:28 References +58:38 Software references Speaker bio: Aki is an Associate professor in computational probabilistic modeling at Aalto University, Finland.