-
Notifications
You must be signed in to change notification settings - Fork 0
/
mhistogram.h
601 lines (557 loc) · 18 KB
/
mhistogram.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
/*
Copyright (C) 2003 Ronald C Beavis, all rights reserved
X! tandem
This software is a component of the X! proteomics software
development project
Use of this software governed by the Artistic license, as reproduced here:
The Artistic License for all X! software, binaries and documentation
Preamble
The intent of this document is to state the conditions under which a
Package may be copied, such that the Copyright Holder maintains some
semblance of artistic control over the development of the package,
while giving the users of the package the right to use and distribute
the Package in a more-or-less customary fashion, plus the right to
make reasonable modifications.
Definitions
"Package" refers to the collection of files distributed by the Copyright
Holder, and derivatives of that collection of files created through
textual modification.
"Standard Version" refers to such a Package if it has not been modified,
or has been modified in accordance with the wishes of the Copyright
Holder as specified below.
"Copyright Holder" is whoever is named in the copyright or copyrights
for the package.
"You" is you, if you're thinking about copying or distributing this Package.
"Reasonable copying fee" is whatever you can justify on the basis of
media cost, duplication charges, time of people involved, and so on.
(You will not be required to justify it to the Copyright Holder, but
only to the computing community at large as a market that must bear
the fee.)
"Freely Available" means that no fee is charged for the item itself,
though there may be fees involved in handling the item. It also means
that recipients of the item may redistribute it under the same
conditions they received it.
1. You may make and give away verbatim copies of the source form of the
Standard Version of this Package without restriction, provided that
you duplicate all of the original copyright notices and associated
disclaimers.
2. You may apply bug fixes, portability fixes and other modifications
derived from the Public Domain or from the Copyright Holder. A
Package modified in such a way shall still be considered the Standard
Version.
3. You may otherwise modify your copy of this Package in any way, provided
that you insert a prominent notice in each changed file stating how and
when you changed that file, and provided that you do at least ONE of the
following:
a. place your modifications in the Public Domain or otherwise make them
Freely Available, such as by posting said modifications to Usenet
or an equivalent medium, or placing the modifications on a major
archive site such as uunet.uu.net, or by allowing the Copyright Holder
to include your modifications in the Standard Version of the Package.
b. use the modified Package only within your corporation or organization.
c. rename any non-standard executables so the names do not conflict
with standard executables, which must also be provided, and provide
a separate manual page for each non-standard executable that clearly
documents how it differs from the Standard Version.
d. make other distribution arrangements with the Copyright Holder.
4. You may distribute the programs of this Package in object code or
executable form, provided that you do at least ONE of the following:
a. distribute a Standard Version of the executables and library files,
together with instructions (in the manual page or equivalent) on
where to get the Standard Version.
b. accompany the distribution with the machine-readable source of the
Package with your modifications.
c. give non-standard executables non-standard names, and clearly
document the differences in manual pages (or equivalent), together
with instructions on where to get the Standard Version.
d. make other distribution arrangements with the Copyright Holder.
5. You may charge a reasonable copying fee for any distribution of
this Package. You may charge any fee you choose for support of
this Package. You may not charge a fee for this Package itself.
However, you may distribute this Package in aggregate with other
(possibly commercial) programs as part of a larger (possibly
commercial) software distribution provided that you do not a
dvertise this Package as a product of your own. You may embed this
Package's interpreter within an executable of yours (by linking);
this shall be construed as a mere form of aggregation, provided that
the complete Standard Version of the interpreter is so embedded.
6. The scripts and library files supplied as input to or produced as
output from the programs of this Package do not automatically fall
under the copyright of this Package, but belong to whomever generated
them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this
Package via the so-called "undump" or "unexec" methods of producing
a binary executable image, then distribution of such an image shall
neither be construed as a distribution of this Package nor shall it
fall under the restrictions of Paragraphs 3 and 4, provided that you
do not represent such an executable image as a Standard Version of
this Package.
7. C subroutines (or comparably compiled subroutines in other languages)
supplied by you and linked into this Package in order to emulate
subroutines and variables of the language defined by this Package
shall not be considered part of this Package, but are the equivalent
of input as in Paragraph 6, provided these subroutines do not change
the language in any way that would cause it to fail the regression
tests for the language.
8. Aggregation of this Package with a commercial distribution is always
permitted provided that the use of this Package is embedded; that is,
when no overt attempt is made to make this Package's interfaces visible
to the end user of the commercial distribution. Such use shall not be
construed as a distribution of this Package.
9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written permission.
10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The End
*/
#ifndef MHISTOGRAM_H
#define MHISTOGRAM_H
// File version: 2003-07-01
/*
* The mhistogram class is used for storing information about scoring in the mspectrum class.
* Two types of histogram classes are used: the mhistogram which stores information about
* convolution and hyper scores and the count_mhistogram class which is used to store the number
* of specific ion types (e.g. y or b ions). The mhistgram class converts the scores into base-10 logs
* to make the histogram more compact and to linearize the extreme value distribution, which
* governs the scoring distribution. In order to calculate expectation values from these distributions,
* they are first converted to survival functions (by the survival methdod), the outlying non-random
* scores are removed from the distribution and the high scoring tail of the distribution is fitted
* to a log-log linear distribution using least-squares in the model method.
* mhistogram is included in the mspectrum.h file only
*/
/*
Modified 2010 bpratt Insilicos, after
2007 Robert D Bjornson for X!!Tandem, Parallel MPI version.
*/
#ifdef HAVE_MULTINODE_TANDEM // support for Hadoop and/or MPI?
#include "serialize.h"
#endif
class mhistogram {
#ifdef HAVE_MULTINODE_TANDEM
friend class boost::serialization::access;
template<class Archive>
void save(Archive &ar, const unsigned int version) const
{
ar << m_ulCount;
ar << m_dProteinFactor; // a weighting factor
ar << m_fA0; // the intercept of the least-squares fit performed in model
ar << m_fA1; // the slope of the least-squares fit performed in model
ar << m_lLength; // the length of the histogram
ar << m_vlSurvive; // the survival function array, reduced to [96] from [256]
for (int i=0; i<m_lLength; ++i) // doubling buffer */
ar << m_pList[i];
ar << m_lSum;
}
template<class Archive>
void load(Archive &ar, const unsigned int version)
{
ar >> m_ulCount;
ar >> m_dProteinFactor; // a weighting factor
ar >> m_fA0; // the intercept of the least-squares fit performed in model
ar >> m_fA1; // the slope of the least-squares fit performed in model
ar >> m_lLength; // the length of the histogram
ar >> m_vlSurvive; // the survival function array, reduced to [96] from [256]
m_pList = new unsigned short[m_lLength];
for (int i=0; i<m_lLength; ++i) // doubling buffer */
ar >> m_pList[i];
ar >> m_lSum;
}
BOOST_SERIALIZATION_SPLIT_MEMBER()
#endif // HAVE_MULTINODE_TANDEM
public:
mhistogram(void) {
init();
}
mhistogram(const mhistogram& rhs) {
init();
(*this) = rhs;
}
unsigned long m_ulCount;
void init() {
m_ulCount = 0;
m_lLength = 0;
m_pList = NULL;
m_fA0 = (float)4.8;
m_fA1 = (float)-0.28;
m_dProteinFactor = 1.0;
m_lSum = 0;
}
virtual ~mhistogram(void) {
delete [] m_pList;
}
protected:
double m_dProteinFactor; // a weighting factor
float m_fA0; // the intercept of the least-squares fit performed in model
float m_fA1; // the slope of the least-squares fit performed in model
long m_lLength; // the length of the histogram
private:
vector<long> m_vlSurvive; // the survival function array, reduced to [96] from [256]
unsigned short* m_pList; // doubling buffer
long m_lSum;
public:
/*
* expect uses the equation derived in model to convert scores into expectation values
* survival and model must be called before expect will return reasonable values
*/
float expect(const float _f) {
return (float)pow(10.0,(double)(m_fA0 + m_fA1*_f));
}
/*
* list returns a specified value from the stochastic distribution of the histogram
*/
long list(const unsigned long _l) {
if (_l >= (unsigned long) m_lLength)
return 0;
return m_pList[_l];
}
/*
* survive returns a specified value from the stochastic distribution of the survival function
*/
long survive(const unsigned long _l) {
return m_vlSurvive[_l];
}
long sum() {
return m_lSum;
}
/*
* length returns the maximum length of the histogram
*/
long length(void) {
return m_lLength;
}
/*
* a0 returns the first parameter in the linear fit to the survival function
*/
float a0(void) {
return m_fA0;
}
/*
* a1 returns the first parameter in the linear fit to the survival function
*/
float a1(void) {
return m_fA1;
}
/*
* expect_protein allows for a modified expectation value to be used for proteins
*/
float expect_protein(const float _f) {
return (float)pow(10.0,(double)(m_fA0 + m_fA1*_f))*(float)m_dProteinFactor;
}
/*
* set_protein_factor simply sets the value for m_dProteinFactor
*/
bool set_protein_factor(const double _d) {
if(_d <= 0.0)
return false;
m_dProteinFactor = _d;
return true;
}
/*
* reset zeros the histogram array m_pList
*/
virtual bool clear() {
long a = 0;
while(a < m_lLength) {
m_pList[a] = 0;
a++;
}
m_ulCount = 0;
return true;
}
/*
* add increments the appropriate value in m_pList for a score value
*/
virtual long add(const float _f) {
long lValue = (long)(_f + 0.5);
// If buffer too small, double its size.
// Buffer must have empty bucket at end to output
// histogram correctly for reports.
if(lValue >= m_lLength - 1) {
long lLengthNew = 32;
while (lLengthNew - 1 <= lValue)
lLengthNew *= 2;
unsigned short* pListNew = new unsigned short[lLengthNew];
memset(pListNew, 0, lLengthNew * sizeof(unsigned short));
if (m_pList != NULL) {
memcpy(pListNew, m_pList, m_lLength * sizeof(unsigned short));
delete [] m_pList;
}
m_pList = pListNew;
m_lLength = lLengthNew;
}
if(m_pList[lValue] < 0xFFFE) {
m_pList[lValue]++;
}
m_ulCount++;
return lValue;
}
/*
* survival converts the scoring histogram in m_pList into a survival function
*/
bool survival()
{
if (m_lLength == 0)
return false;
long a = m_lLength - 1;
long lSum = 0;
long *plValues = new long[m_lLength];
/*
* first calculate the raw survival function
*/
while(a > -1) {
lSum += m_pList[a];
plValues[a] = lSum;
a--;
}
a = 0;
/*
* determine the value of the survival function that is 1/5 of the maximum
*/
const long lPos = plValues[0]/5;
while(a < m_lLength && plValues[a] > lPos) {
a++;
}
const long lMid = a;
a = m_lLength - 1;
while(a > -1 && plValues[a] == 0) {
a--;
}
lSum = 0;
long lValue = 0;
/*
* remove potentially valid scores from the stochastic distribution
*/
while(a > 0) {
if(plValues[a] == plValues[a-1]
&& plValues[a] != plValues[0]
&& a > lMid) {
lSum = plValues[a];
lValue = plValues[a];
a--;
while(plValues[a] == lValue) {
plValues[a] -= lSum;
a--;
}
}
else {
plValues[a] -= lSum;
a--;
}
}
plValues[a] -= lSum;
a = 0;
/*
* replace the scoring distribution with the survival function
*/
m_vlSurvive.clear();
while(a < m_lLength) {
m_vlSurvive.push_back(plValues[a]);
a++;
}
delete plValues;
m_lSum = m_vlSurvive[0];
return true;
}
bool clear_survive()
{
m_vlSurvive.clear();
return true;
}
/*
* model performs a least-squares fit to the log score vs log survival function.
* survival must be called prior to using model
*/
bool model()
{
survival();
m_fA0 = (float)3.5;
m_fA1 = (float)-0.18;
/*
* use default values if the statistics in the survival function is too meager
*/
if(m_lLength == 0 || m_vlSurvive[0] < 200) {
return false;
}
float *pfX = new float[m_lLength];
float *pfT = new float[m_lLength];
long a = 1;
long lMaxLimit = (long)(0.5 + m_vlSurvive[0]/2.0);
const long lMinLimit = 10;
/*
* find non zero points to use for the fit
*/
a = 0;
while(a < m_lLength && m_vlSurvive[a] > lMaxLimit) {
a++;
}
long b = 0;
while(a < m_lLength-1 && m_vlSurvive[a] > lMinLimit) {
pfX[b] = (float)a;
pfT[b] = (float)log10((double)m_vlSurvive[a]);
b++;
a++;
}
/*
* calculate the fit
*/
double dSumX = 0.0;
double dSumT = 0.0;
double dSumXX = 0.0;
double dSumXT = 0.0;
long iMaxValue = 0;
double dMaxT = 0.0;
long iValues = b;
a = 0;
while(a < iValues) {
if(pfT[a] > dMaxT) {
dMaxT = pfT[a];
iMaxValue = a;
}
a++;
}
a = iMaxValue;
while(a < iValues) {
dSumX += pfX[a];
dSumXX += pfX[a]*pfX[a];
dSumXT += pfX[a]*pfT[a];
dSumT += pfT[a];
a++;
}
iValues -= iMaxValue;
double dDelta = (double)iValues*dSumXX - dSumX*dSumX;
if(dDelta == 0.0) {
delete pfX;
delete pfT;
return false;
}
m_fA0 = (float)((dSumXX*dSumT -dSumX*dSumXT)/dDelta);
m_fA1 = (float)(((double)iValues*dSumXT - dSumX*dSumT)/dDelta);
delete pfX;
delete pfT;
m_vlSurvive.clear();
return true;
}
/*
* simple copy method using the = operator
*/
mhistogram& operator=(const mhistogram &rhs) {
m_ulCount = rhs.m_ulCount;
m_lLength = rhs.m_lLength;
delete [] m_pList;
if (rhs.m_pList == NULL)
m_pList = NULL;
else {
size_t size = m_lLength * sizeof(unsigned short);
m_pList = new unsigned short[size];
memcpy(m_pList, rhs.m_pList, size);
}
m_fA0 = rhs.m_fA0;
m_fA1 = rhs.m_fA1;
m_dProteinFactor = rhs.m_dProteinFactor;
m_lSum = rhs.m_lSum;
return *this;
}
mhistogram& operator+=(const mhistogram &rhs) {
m_ulCount += rhs.m_ulCount;
m_lLength = rhs.m_lLength;
long a = 0;
m_fA0 = rhs.m_fA0;
m_fA1 = rhs.m_fA1;
m_dProteinFactor = rhs.m_dProteinFactor;
while(a < m_lLength) {
m_pList[a] += rhs.m_pList[a];
a++;
}
m_lSum += rhs.m_lSum;
return *this;
}
};
/*
* count_mhistogram stores information about the number of specific ion-types
* discovered while modeling mspectrum object against a sequence collection.
* model and survival are not used
* starting in version 2004.04.01, this class is no longer a public mhistogram
* this change was made to reduce memory usage, by eliminating the
* m_pSurvive array & reducing the size of the m_pList array
*/
class count_mhistogram
{
#ifdef HAVE_MULTINODE_TANDEM
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive &ar, const unsigned int version)
{
ar & m_lLength;
for (int n=m_lLength;n--;) {
ar & m_pList[n]; // the histogram array
}
}
#endif // HAVE_MULTINODE_TANDEM
public:
count_mhistogram(void) {m_lLength = 8;}
virtual ~count_mhistogram(void) { }
long m_lLength;
virtual float convert(const float _f) {
return _f;
}
virtual long add(const long _c) {
if(_c < m_lLength && _c > -1) {
m_pList[_c]++;
}
else if(_c > -1) {
m_pList[m_lLength-1]++;
}
else if(_c < 0) {
m_pList[0]++;
}
return _c;
}
/*
* reset zeros the histogram array m_pList
*/
virtual bool clear() {
long a = 0;
while(a < m_lLength) {
m_pList[a] = 0;
a++;
}
return true;
}
/*
* simple copy method using the = operator
*/
count_mhistogram& operator=(const count_mhistogram &rhs) {
m_lLength = rhs.m_lLength;
long a = 0;
while(a < m_lLength) {
m_pList[a] = rhs.m_pList[a];
a++;
}
return *this;
}
count_mhistogram& operator+=(const count_mhistogram &rhs) {
m_lLength = rhs.m_lLength;
long a = 0;
while(a < m_lLength) {
m_pList[a] += rhs.m_pList[a];
a++;
}
return *this;
}
/*
* list returns a specified value from the stochastic distribution of the histogram
*/
long list(const unsigned long _l) {
return m_pList[_l];
}
/*
* length returns the maximum length of the histogram
*/
long length(void) {
return m_lLength;
}
private:
long m_pList[32]; // the histogram array
};
#endif //ifdef MHISTOGRAM_H