-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
227 lines (164 loc) · 5.96 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import base64
import os
from io import BytesIO
import time
import io
import cv2
import numpy as np
from flask import Flask, request, jsonify, Response, render_template
from PIL import Image, ImageOps
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
app = Flask(__name__)
app.config["TEMPLATES_AUTO_RELOAD"] = True
class Net2(nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.pool1 = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(0.25)
self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.pool2 = nn.MaxPool2d(2, 2)
self.dropout2 = nn.Dropout(0.25)
self.conv3 = nn.Conv2d(64, 64, 3, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.pool3 = nn.MaxPool2d(2, 2)
self.dropout3 = nn.Dropout(0.25)
self.conv4 = nn.Conv2d(64, 64, 3, padding=1)
self.bn4 = nn.BatchNorm2d(64)
self.pool4 = nn.MaxPool2d(2, 2)
self.dropout4 = nn.Dropout(0.25)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(64 * 5 * 5, 200)
self.fc2 = nn.Linear(200, 150)
self.fc3 = nn.Linear(150, 2)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool2(x)
x = self.dropout2(x)
x = F.relu(self.bn3(self.conv3(x)))
x = self.pool3(x)
x = self.dropout3(x)
x = F.relu(self.bn4(self.conv4(x)))
x = self.pool4(x)
x = self.dropout4(x)
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.softmax(self.fc3(x), dim=1)
return x
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
self.pool1 = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(0.25)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1)
self.pool2 = nn.MaxPool2d(2, 2)
self.dropout2 = nn.Dropout(0.25)
self.conv3 = nn.Conv2d(32, 32, 3, padding=1)
self.pool3 = nn.MaxPool2d(2, 2)
self.dropout3 = nn.Dropout(0.25)
self.conv4 = nn.Conv2d(32, 32, 3, padding=1)
self.pool4 = nn.MaxPool2d(2, 2)
self.dropout4 = nn.Dropout(0.25)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(32 * 5 * 5, 200)
self.fc2 = nn.Linear(200, 150)
self.fc3 = nn.Linear(150, 2)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
x = self.dropout2(x)
x = F.relu(self.conv3(x))
x = self.pool3(x)
x = self.dropout3(x)
x = F.relu(self.conv4(x))
x = self.pool4(x)
x = self.dropout4(x)
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = torch.sigmoid(self.fc3(x))
return x
model = None
# model_path = "model3.pth"
model2 = None
model2_path = "model4.pth"
if os.path.exists(model2_path):
state_dict = torch.load(model2_path, map_location=torch.device('cpu'))
new_state_dict = {}
for key, value in state_dict.items():
new_key = key.replace("module.", "")
new_state_dict[new_key] = value
model = Net2()
model.load_state_dict(new_state_dict)
model.eval()
else:
print("Model file not found at", model2_path)
@app.route("/", methods=["GET", "POST"])
def predict():
if request.method == "GET":
return render_template("index.html")
else:
file = request.files["image"]
image = Image.open(file).convert("RGB")
buffer_original = BytesIO()
image.save(buffer_original, format='JPEG')
image_base64 = base64.b64encode(buffer_original.getvalue()).decode()
start_time = time.time()
heatmap = scanmap(np.array(image), model)
elapsed_time = time.time() - start_time
heatmap_img = Image.fromarray(np.uint8(plt.cm.hot(heatmap) * 255)).convert('RGB')
heatmap_img = heatmap_img.resize(image.size)
buffer_heatmap = BytesIO()
heatmap_img.save(buffer_heatmap, format='JPEG')
heatmap_base64 = base64.b64encode(buffer_heatmap.getvalue()).decode()
return render_template("index.html", prediction=heatmap_base64, image=image_base64,
elapsed_time=int(elapsed_time))
def scanmap(image_np, model):
image_np = image_np.astype(np.float32) / 255.0
window_size = (80, 80)
stride = 10
height, width, channels = image_np.shape
probabilities_map = []
for y in range(0, height - window_size[1] + 1, stride):
row_probabilities = []
for x in range(0, width - window_size[0] + 1, stride):
cropped_window = image_np[y:y + window_size[1], x:x + window_size[0]]
cropped_window_torch = transforms.ToTensor()(cropped_window).unsqueeze(0)
with torch.no_grad():
probabilities = model(cropped_window_torch)
row_probabilities.append(probabilities[0, 1].item())
probabilities_map.append(row_probabilities)
probabilities_map = np.array(probabilities_map)
return probabilities_map
@app.route("/", methods=["GET"])
def home():
return render_template("index.html")
@app.route('/about')
def about():
return render_template("aboutus.html")
@app.route('/article')
def article():
return render_template("article.html")
@app.route('/gp2report')
def gpreport():
return render_template("gp2report.html")
@app.route('/notebook')
def notebokk():
return render_template("shipnetgp3.html")
if __name__ == "__main__":
app.run(debug=True, host="0.0.0.0", port=int(os.environ.get("PORT", 8001)))
# app.run(debug=True, port=8001)