Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[OpOptimization]add IREE pooing #101

Merged
merged 12 commits into from
Oct 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
147 changes: 147 additions & 0 deletions benchmarks/OpOptimization/Pooling/IREE/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
# ===- main.py -----------------------------------------------------------------
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ===---------------------------------------------------------------------------
#
# This file implements the IREE optimization entry for Pooling.
# you can choose run on CPU/GPU by change iree_backend = "cuda" or "llvm-cpu" in pooling_iree.py.
# See the IREE license at: https://github.com/openxla/iree/blob/main/LICENSE
#
# ===---------------------------------------------------------------------------

import numpy
import time
from pooling_iree import *

# ------------------------------------------------------------------------------
# User Configurable Variables
# ------------------------------------------------------------------------------
dtype = "float32"


# ------------------------------------------------------------------------------
# Helper Function
# ------------------------------------------------------------------------------
def iree_evaluator(s, inputs, num):
result = s.forward(inputs)
all_time = []
for i in range(num):
start = time.time()
s.forward(inputs)
end = time.time()
elapsed_time = end - start
all_time.append(elapsed_time)
average_time = sum(all_time) / num
return average_time


def numpy_evaluator(a_tensor, b_tensor, num):
a_tensor_np = a_tensor.numpy()
b_tensor_np = b_tensor.numpy()
batch_size = a_tensor.shape[0]
result_size1 = a_tensor.shape[1]
result_size2 = b_tensor.shape[2]
result = np.random.randn(batch_size, result_size1, result_size2)
all_time = []
for i in range(num):
for j in range(batch_size):
start = time.time()
result[j] = np.dot(a_tensor_np[j], b_tensor_np[j])
end = time.time()
elapsed_time = end - start
all_time.append(elapsed_time)
average_time = sum(all_time) / num
return average_time


def evaluator(s, inputs, num):
result = s(inputs)
all_time = []
for i in range(num):
start = time.time()
s(inputs)
end = time.time()
elapsed_time = end - start
all_time.append(elapsed_time)
average_time = sum(all_time) / num
return average_time


def evaluate_operation(s, inputs, optimization, log):
"""Evaluate operation correctness and print the performance information.
Args:
s: The schedule to be built.
inputs: The input tensors.
optimization: The name of the optimization.
log: The log list.
"""
if optimization == "IREE":
mean_time = iree_evaluator(s, inputs, 10)
else:
mean_time = evaluator(s, inputs, 10)
log.append((optimization, mean_time))


def report_performance(log):
"""Convert the log into a performance table.
Args:
log: The log list.
"""
baseline = log[-1][1]
header = (
"Benchmark".ljust(20) + "\t" + "Time".rjust(10) + "\t" + "SpeedUp".rjust(10)
)
split_line = "-" * 50
print(split_line)
print(header)
print(split_line)
for result in log:
formatted_time = "{:.2f}".format(result[1])
formatted_performance = "{:.2f}".format(baseline / result[1])
print(
"\033[32m%s\033[0m\t\033[33m%s\033[0m\t\033[34m%s\033[0m"
% (
result[0].ljust(20),
str(formatted_time + " ms").rjust(10),
str(formatted_performance).rjust(10),
)
)


def main():
# ----------------------------------------------------------------------------
# Initialization and Baseline
# ----------------------------------------------------------------------------
# Initialize the log list.
log = []
# Generate random tensor for testing.
size = (512, 64, 3)
c, n, k, p, s = size[0], size[0], size[1], size[2], 1
oc, ic, n, k, p, s = size[0], size[0], size[1], size[2], 1, 1
data, out_max = get_pool_data_torch(c, n, k, p, s)
model = torch_pooling(k, p, s)
model(data)
example_input = data
invoker = iree_pooling(model, example_input)
# ----------------------------------------------------------------------------
# Register Benchmarks and Dump Report
# ----------------------------------------------------------------------------
# Register default schedule.
evaluate_operation(invoker, inputs=example_input, optimization="IREE", log=log)
evaluate_operation(model, inputs=data, optimization="torch_cpu", log=log)
report_performance(log)


if __name__ == "__main__":
main()
88 changes: 88 additions & 0 deletions benchmarks/OpOptimization/Pooling/IREE/pooling_iree.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
# ===- pooling_iree.py ---------------------------------------------------------
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ===---------------------------------------------------------------------------
#
# This file implements the IREE optimization for Pooling.
# you can choose run on CPU/GPU by change iree_backend = "cuda" or "llvm-cpu" in pooling_iree.py.
# See the IREE license at: https://github.com/openxla/iree/blob/main/LICENSE
#
# ===---------------------------------------------------------------------------

import torch
import torch.nn as nn
import torch_mlir
import iree_torch
import io
import numpy as np


def conv_out_size(n, k, p, s):
"""Compute the output size by given input size n (width or height),
kernel size k, padding p, and stride s
Return output size (width or height)
"""
return (n - k + 2 * p) // s + 1


def get_conv_data(oc, ic, n, k, p=0, s=1, constructor=None):
"""Return random 3-D data tensor, 3-D kernel tenor and empty 3-D output
tensor with the shapes specified by input arguments.
oc, ic : output and input channels
n : input width and height
k : kernel width and height
p : padding size, default 0
s : stride, default 1
constructor : user-defined tensor constructor
"""
np.random.seed(0)
data = np.random.normal(size=(ic, n, n)).astype("float32")
weight = np.random.normal(size=(oc, ic, k, k)).astype("float32")
on = conv_out_size(n, k, p, s)
out = np.empty((oc, on, on), dtype="float32")
if constructor:
data, weight, out = (constructor(x) for x in [data, weight, out])
return data, weight, out


def get_pool_data_torch(c, n, k, p, s):
data, _, out = get_conv_data(c, c, n, k, p, s, lambda x: torch.from_numpy(x))
data = data.unsqueeze(0)
out = out.unsqueeze(0)
return data, out


class pooling_model(nn.Module):
def __init__(self, k, p, s):
super(pooling_model, self).__init__()
self.pool = nn.MaxPool2d(k, s, p)

def forward(self, x):
result = self.pool(x)
return result


def torch_pooling(k, p, s):
model = pooling_model(k, s, p)
return model


def iree_pooling(model, example_input):
linalg_on_tensors_mlir = torch_mlir.compile(
model, example_input, output_type="linalg-on-tensors", use_tracing=False
)
iree_backend = "llvm-cpu"
iree_vmfb = iree_torch.compile_to_vmfb(linalg_on_tensors_mlir, iree_backend)
invoker = iree_torch.load_vmfb(iree_vmfb, iree_backend)
return invoker