-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpartition_equal_subset_sum.py
49 lines (40 loc) · 1.23 KB
/
partition_equal_subset_sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from typing import List
def canPartition(nums: List[int]) -> bool:
total = sum(nums)
if total % 2 != 0:
return False
target = total // 2
dp = set()
dp.add(0)
for num in nums:
new_dp = set()
for i in dp:
if i + num == target:
return True
new_dp.add(i + num)
new_dp.add(i)
dp = new_dp
return False
"""
Time complexity: O(n * sum(nums))
Space complexity: O(sum(nums))
Algorithm: Dynamic Programming
Explanation:
1. If the total sum is odd, return False
2. If the total sum is even, we can find a subset that sums to total // 2
3. We can use dynamic programming to find the subset
4. We can use a set to store the sum of all subsets
5. We can iterate through the set and add the current number to each sum
6. If the sum is equal to the target, return True
7. If the sum is not equal to the target, add the sum to the set
8. Repeat steps 5-7 until we reach the end of the array
9. Return False
Example:
[1,5,11,5]
total = 22
"""
assert canPartition([1,5,11,5]) == True
assert canPartition([1,2,3,5]) == False
assert canPartition([1,2]) == False
assert canPartition([1,2,3,4,5,6,7]) == True
assert canPartition([1,2,3,4,5,6,7,8]) == True