-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconst.py
145 lines (117 loc) · 4.15 KB
/
const.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
class BlockType(object):
road = 0 # null, unshown null
obstacle = 1 # obstacle
mountain = 2 # mountain
crown = 300 # crown
city = 4 # empty-city, city
class PlayerColor(object):
grey = 0
blue = 1
red = 2
green = 3
orange = 4
pink = 5
purple = 6
chocolate = 7
maroon = 8
explore_reward = {BlockType.road: 0.01, BlockType.mountain: 0.01, BlockType.crown: 10, BlockType.city: 0.01}
directions = {'W': (0, -1), 'S': (0, 1), 'A': (-1, 0), 'D': (1, 0)}
class FrontColor(object):
black = 30
red = 31
green = 32
yellow = 33
blue = 34
purple = 35
ultramarine = 36
white = 37
class BackgroundColor(object):
black = 40
red = 41
green = 42
yellow = 43
blue = 44
purple = 45
ultramarine = 46
white = 47
class Style(object):
default = 0
high_light = 1
italic = 3
under_line = 4
twinkle = 5
anti_white = 7
invisible = 8
dx = [0, -1, 0, 1]
dy = [-1, 0, 1, 0]
inf = 999999999.0
class ActionTranslator(object):
def __init__(self):
self.__20action, self.__20index = self._generate(20)
self.__19action, self.__19index = self._generate(19)
self.__10action, self.__10index = self._generate(10)
self.__9action, self.__9index = self._generate(9)
self.__actions = {20: self.__20action, 19: self.__19action, 10: self.__10action, 9: self.__9action}
self.__indexes = {20: self.__20index, 19: self.__19index, 10: self.__10index, 9: self.__9index}
def _generate(self, size):
action = [torch.Tensor([[-1, -1, -1, -1, -1]])]
index = []
for _ in range(size + 1):
index.append([])
for __ in range(size + 1):
index[_].append([])
for ___ in range(4):
index[_][__].append([])
for ____ in range(2):
index[_][__][___].append([])
index[0][0][0][0] = 0
for i in range(1, size + 1):
for j in range(1, size + 1):
for k in range(4):
tgx = i + dx[k]
tgy = j + dy[k]
if tgx < 1 or tgx > size or tgy < 1 or tgy > size:
continue
index[i][j][k][0] = len(action)
action.append(torch.Tensor([[i, j, tgx, tgy, 0]]))
for i in range(1, size + 1):
for j in range(1, size + 1):
for k in range(4):
tgx = i + dx[k]
tgy = j + dy[k]
if tgx < 1 or tgx > size or tgy < 1 or tgy > size:
continue
index[i][j][k][1] = len(action)
action.append(torch.Tensor([[i, j, tgx, tgy, 1]]))
return action, index
def i_to_a(self, size: int, index: int) -> torch.Tensor:
return self.__actions[size][index]
def a_to_i(self, size: int, action: torch.Tensor) -> int:
direction = 0
for i in range(4):
if action[0][2] == action[0][0] + dx[i] and action[0][3] == action[0][1] + dy[i]:
direction = i
return self.__indexes[size][action[0][0]][action[0][1]][direction][action[0][4]]
def mask(self, obs, map_size):
o = obs[0]
mask_vec = torch.zeros([len(self.__actions[map_size])], dtype=torch.long)
mask_vec[0] = 1.0
for _a in range(1, len(self.__actions[map_size])):
act = self.__actions[map_size][_a][0].long().tolist()
if int(o[10][act[1] - 1][act[0] - 1]) != 0:
# 不是自己的
mask_vec[_a] = -inf
else:
mask_vec[_a] = 1.0
return mask_vec.to(device)
at = ActionTranslator()
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
def debug_output_mask(_mask):
print("[", end='')
for _ in _mask:
print(f"{_},", end=' ')
print("]")