-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_mjsyth.py
90 lines (63 loc) · 2.15 KB
/
demo_mjsyth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import tensorflow as tf
from net import model
import Image
from dataset.utils import load_label_from_img_dir,encode_label,sparse_tensor_to_str
import glob
import os
import math
checkpoint_dir = './tmp/'
import numpy as np
def load_image(img_dir):
"""
:param img_dir:
:return:img_data
load image and resize it
"""
img = Image.open(img_dir)
size = img.size
width = math.ceil(size[0] * (32 / size[1]))
img = img.resize([width, 32])
im_arr = np.fromstring(img.tobytes(), dtype=np.uint8)
im_arr = im_arr.reshape((img.size[1], img.size[0], 3))
im_arr = im_arr.astype(np.float32) * (1. / 255) - 0.5
return im_arr,width
def prepare_data(img_dir):
"""
:param img_dir:
:return:
"""
# first load image and label
image_raw,width = load_image(img_dir)
label = load_label_from_img_dir(img_dir)
label = label.lower()
return image_raw,label,width
width_input = tf.placeholder(tf.int32, shape=())
img_input = tf.placeholder(tf.float32, shape=(None, None, 3))
tf.reshape(img_input,shape=(32,-1,3))
img_4d = tf.expand_dims(img_input, 0)
# define the crnn net
crnn_params = model.CRNNNet.default_params._replace(batch_size=1) # ,seq_length=int(width/4+1)
crnn = model.CRNNNet(crnn_params)
logits, inputs, seq_len, W, b = crnn.net(img_4d, width=width_input)
decoded, log_prob = tf.nn.ctc_beam_search_decoder(logits, seq_len, merge_repeated=False)
saver = tf.train.Saver()
sess = tf.Session()
dir = tf.train.latest_checkpoint(checkpoint_dir)
saver.restore(sess, dir)
sess.run(tf.local_variables_initializer())
print("Model restore!")
def recognize_img(img_dir):
img_raw,label,width = prepare_data(img_dir)
decoded_s = sess.run([decoded],feed_dict={img_input:img_raw,width_input:width})
# print(decoded_s[0])
str = sparse_tensor_to_str(decoded_s[0])
print("label",label)
print('识别结果',str)
def main(_):
img_dirs = glob.glob(os.path.join("demo/","*.jpg"))
for i,img_dir in enumerate(img_dirs):
print("index:",i,"name",img_dir)
#index = int(input("the index choose is :"))
recognize_img(img_dirs[i])
if __name__ =="__main__":
tf.app.run()